
One of the main challenges in devising agents that can
act intelligently is to endow them with the ability to
understand the behaviors of other agents (human or

artificial) in their environment. Intelligent tutoring systems
(ITSs) are the ultimate example of this challenge: their goal is
to provide instruction personalized to the specific needs of
each learner, as good human tutors do. But understanding
these needs can be extremely hard, because it entails model-
ing and capturing that complex ensemble of processes and
states that constitutes human learning. These processes and
states range from purely behavioral (for example, what
actions a student takes to solve a problem), to cognitive (for
example, domain knowledge, goals, cognitive load), to
metacognitive (for example, domain-independent reasoning
skills), to affective (for example, frustration, boredom, moti-
vation). The more a tutor (human or artificial) understands
about its learners at these different levels, the more person-
alized to the learners’ needs its instruction can be. 

Cognitive, metacognitive, and affective states, however, can
be hard to assess accurately and unobtrusively from naturally
occurring interaction events. Learner assessment is nontrivial
even in its most basic incarnation, namely evaluating a learn-
er’s understanding of a set of domain-dependent skills from ad
hoc test items (for example, Desmarais [2011]). The assessment
challenges increase with the complexity of the learner’s traits
to be captured, because how a student behaves during an
instructional activity generally provides partial and ambigu-
ous information on the student’s underlying states, and the
gap between what can be observed and what a learner actual-
ly thinks and feels increases as these states go from cognitive
to metacognitive and affective. In ITSs, the research field con-
cerned with addressing these challenges is known as student
modeling, and a student model is the ITS component in
charge of assessing student traits and states relevant to tailor
the tutorial interaction to specific student needs.
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n The field of intelligent tutoring sys-
tems (ITSs) has successfully delivered
techniques and applications to provide
personalized coaching and feedback for
problem solving in a variety of domains.
The core of this personalized instruction
is a student model: the ITS component
in charge of assessing student traits and
states relevant to tailor the tutorial
interaction to specific student needs dur-
ing problem solving. There are however,
other educational activities that can
help learners acquire the target skills
and abilities at different stages of learn-
ing including, among others, exploring
interactive simulations and playing
educational games. This article de -
scribes research on creating student
models that support personalization for
these novel types of interactions, their
unique challenges, and how AI and
machine learning can help. 



et al. [2010]), given extensive evidence
in education research showing that
affective factors play an important role
in learning. 

While providing support during
problem solving is an important form
of instruction, other educational activ-
ities can foster understanding at differ-
ent stages of the learning process or for
learners with different preferences and
abilities. These activities include,
among others, learning from exam-
ples, exploring interactive simulations,
playing educational games, and learn-
ing with a group of peers. As is the case
for problem solving, providing indi-
vidualized support for these activities
can be highly beneficial. However, pro-
viding this support through an ITS
poses unique challenges because it
requires modeling student behaviors,
mental processes, and states that may
not be as well defined and understood
as those involved in problem solving. 

For instance, because of the novelty
of these educational activities, it can be
difficult to judge a priori which ensem-
bles of user-interaction behaviors are
conducive to learning and which ones
indicate a suboptimal interaction with
the system that warrants help from the
tutor. Thus, when moving beyond
problem solving, even student model-
ing at the behavioral level becomes
increasingly more ill defined and chal-
lenging. Traditional approaches based
on providing the student model with a
set of solutions or behaviors against
which to compare the learner’s per-
formance with the system are unfeasi-
ble when there is limited knowledge of
what these solutions and behaviors
may be. 

In this article, we describe research
to provide student modeling at the
behavioral level in light of these chal-
lenges. We present a user-modeling
framework that can be leveraged to
analyze logs of learners’ interactions
with a novel application, and discover
classes of user types as well as their
identifying behaviors and how these
behaviors relate to learning. This infor-
mation is then used to create a student
model that can automatically classify
the behaviors of new learners and
whether they are associated with sub-
optimal task performance that may
require the tutor intervention. In the

Student modeling research has made
substantial progress in providing reli-
able learner assessment during prob-
lem solving or question-answering
activities in a variety of domains (for
example, programming, physics, alge-
bra, geometry, and introductory com-
puter science). Educational technology
however, continues to produce novel
environments often consisting of
activities not as structured and well
understood as problem solving, mak-
ing the student modeling problem
increasingly challenging. This article
describes our research on creating stu-
dent models that support personaliza-
tion for these novel types of interac-
tions, their unique challenges, and
how we address them by relying on AI
and machine-learning techniques. 

Student Modeling for 
Problem Solving and

Beyond 
The field of ITS has made impressive
progress in delivering e-learning envi-
ronments that provide personalized
support for problem solving in a vari-
ety of domains. In ITSs for problem
solving, student modeling is generally
used to provide coaching and feedback
as students work on generating solu-
tions to given problems. The student
model includes a representation of one
or more acceptable solutions to each
available problem. This representation
is used to evaluate the student’s solu-
tion and provide tutorial interventions
in case it deviates from the tutor’s
known solutions (for example, Conati,
Gertner, and VanLehn 2002;
Koedinger et al. 1997; Mitrovic 2012).
The type of assessment needed from
the student model depends, among
other things, upon the type of inter-
ventions to be provided (VanLehn
2006).

At the behavioral level, solution
assessment; that is, assessing the qual-
ity of the student’s solution, is needed
to provide feedback that helps the stu-
dent improve the solution when nec-
essary, as well as to support knowledge
assessment (described later). There has
also been extensive work on student
models that detect instances of gaming
the system. These are behaviors indi-
cating that the student is trying to get

the problem solution from the tutor
(for instance by repeatedly asking for
help) without trying to solve the prob-
lem on their own (Baker et al. 2008),
thus the tutor may need to take
actions for discouraging them (for
example, Baker et al. 2006). 

At the cognitive level, knowledge
assessment, that is, evaluating the stu-
dent’s knowledge of relevant concepts
and skills at specific points of the inter-
action (also known as knowledge trac-
ing [Corbett and Anderson 1994]), is
useful both for selecting which exer-
cise or activity the student should do
next (for example, Koedinger et al.
[1997]), as well as for deciding how to
provide feedback on the current stu-
dent’s solution (for example, Albacete
and VanLehn [2000]). Plan/goal recog-
nition, that is, understanding which
solution a student is trying to follow or
which part of a specific solution the
student is working on, is necessary for
providing help while the student is
building her solution if the ITS accepts
a variety of solutions to a problem or
does not enforce a particular order for
generating solutions (for example,
Conati, Gertner, and VanLehn [2002]). 

At the metacognitive level, there has
been research on student modeling to
assess both a student’s metacognitive
skills involved in effective analogical
problem solving (Muldner and Conati
2010), as well as a student’s ability to
effectively use an ITS’s help function-
alities (Aleven et al. 2006). Preliminary
results have shown that this informa-
tion can be used by an ITS to provide
interventions fostering the adequate
metacognitive processes for students
who do not spontaneously employ
them (Muldner and Conati 2007, Roll
et al. 2007).

At the affective level, researchers
have looked at devising student mod-
els that can assess a student’s motiva-
tion during problem solving with an
ITS (for example, Qu and Johnson
[2005]), as well as a variety of different
emotions, including frustration, con-
fusion, boredom (for example, Arroyo
et al. [2009]; D’Mello and Graesser
[2010]; Muldner, Burleson, and Van-
Lehn [2010]). The goal is to allow an
ITS to include student affect as a factor
in deciding how to conduct coached
problem solving (for example, D’Mello
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rest of the article, we first describe the user-modeling
framework. Next, we describe the interactive simula-
tion that we used as a test bed to evaluate the frame-
work’s effectiveness, followed by the results of this
evaluation. After discussing the implications of this
work, and avenues for future research, we end with
presenting related work and conclusions.

User-Modeling Framework
Our user-modeling approach consists of two phases:
behavior discovery (figure 1a) and user classification
(figure 1b). In behavior discovery, raw unlabeled data
from interaction logs is preprocessed into feature vec-
tors representing individual users in terms of their
interface actions, where features consist of statistical
measures that summarize the user’s actions in the
interfaces (for example, action frequencies; time
interval between actions).1 These vectors are the
input to a clustering algorithm (that is, k-means with
a modified initialization step; see Kardan and Conati
[2011]) that groups them according to their similari-
ties. The resulting clusters represent users who inter-
act similarly with the interface. These clusters are
then analyzed to determine which interaction behav-
iors are effective or ineffective for learning. The
analysis consists of first identifying how the different
clusters relate to learning outcomes (by relying either
on formal test results if available, or on the judgment
of a human expert) and then isolating in each cluster
those behaviors that are responsible for the learning
effects. Behavior identification is done by performing
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association rule mining (Zhang and Zhang 2002) on
each cluster. This process extracts the common
behavior patterns in terms of class association rules
(CAR) in the form of X → c, where X is a set of fea-
ture-value pairs and c is the predicted class label (that
is, the cluster) for the data points where X applies.
We use the Hotspot algorithm (Hall et al. 2009) for
association rule mining, modified to look for the
optimal settings for each of the three Hotspot param-
eters that define which of the many association rules
generated are most representative of the cluster (see
Kardan and Conati [2011] for details). Essentially, the
goal of this process is to find a few rules that charac-
terize as many elements in the cluster as possible and
provide an easily understandable explanation of
users’ behaviors for each cluster. 

Understanding the effectiveness of a user’s interac-
tion behaviors is useful in itself for revealing to
designers of novel educational environments how to
improve them (for example, García et al. [2009b]).
However, we also want to use these behaviors to guide
automated adaptive support during the interaction.
Thus, the CARs extracted in the behavior discovery
phase are used to build a classifier student model in
the user-classification phase (figure 1b). The use of
association rules to construct a classifier is called asso-
ciative classification mining or associative classifica-
tion (Thabtah 2007). As new users interact with the
system, they are classified in real time into one of the
clusters generated by the behavior discovery phase,
based on a measure that summarizes how well a user’s
behaviors match the CARs for each cluster. 
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Figure 1. User-Modeling Framework.

(A) Behavior discovery. (B) User classification.



The user-modeling framework is implemented as a
toolset of modules that automate the process of
going from interaction logs to generating the rule-
based classifier (CAR classifier from now on). The
modules are implemented in Python, with some
external calls to Weka (Hall et al. 2009) through a
command-line interface.2 The framework includes a
classifier evaluation module that uses cross-valida-
tion to evaluate the CAR classifier on available data
sets, as follows. For each fold of the cross-validation,
the data for each user in the test set is fed into the
classifier trained on the training set by incremental-
ly updating the feature vector representing the inter-
action behaviors of this user. Predictions are then
made for the incoming vector as described earlier.
The accuracy of the classifier is computed by check-
ing (after each action in the user’s log) whether each
test user is correctly classified into its original cluster. 

The rremainder of this article describes the results
we obtained by applying the framework to build a
user model for an interactive simulation designed to
demonstrate the workings of an algorithm for con-
straint-satisfaction problems (CSPs), known as the
CSP applet.

The AISpace CSP Applet
The CSP applet is one of a collection of interactive
tools for learning artificial intelligence algorithms,
called AIspace3 (Amershi et al. 2008). Algorithm
dynamics are demonstrated through interactive visu-
alizations on graphs by the use of color and high-
lighting, and graphical state changes are reinforced
through textual messages.

A CSP consists of a set of variables, variable
domains, and a set of constraints on legal variable-
value assignments (Rossi, Van Beek, and Walsh 2006).
Solving a CSP requires finding an assignment that
satisfies all constraints. The CSP applet illustrates the
arc consistency 3 (AC-3) algorithm for solving CSPs
represented as networks of variable nodes and con-
straint arcs (see figure 2). AC-3 iteratively makes indi-
vidual arcs consistent by removing variable domain
values inconsistent with a given constraint, until all
arcs have been considered and the network is consis-
tent. Then, if there remains a variable with more
than one domain value, a procedure called domain
splitting can be applied to that variable to split the
CSP into disjoint cases so that AC-3 can recursively
solve each case. The CSP applet provides several
mechanisms to allow a learner to explore how AC-3
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Figure 2. The CSP Applet with an Example CSP Problem.



solves a variety of available CPSs. These mechanisms
are accessible through the toolbar shown at the top
of figure 2 or through direct manipulation of graph
elements. In particular, the user can perform the fol-
lowing: (1) Use the fine step button to see how AC-3
goes through its three basic steps: selecting an arc,
testing it for consistency, removing domain values to
make the arc consistent. Figure 3 shows one instance
of fine stepping through the CSP shown in figure 2.
In figure 3a, AC-3 selects the blue (dark) arc repre-
senting the constraint that the value selected for B
should be greater than the value selected for E. In fig-
ure 3b, this arc is turned red (light) because it is not
arc consistent (given the value 1 for B, there is no cor-
responding value in E that would satisfy the con-
straint). In figure 3c, the inconsistent value of 1 is
removed from the domain of variable B. (2)  Directly
click an arc to apply all these steps at once. (3) Auto-
matically fine step through the completion of the
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Figure 3. Basic Steps of AC-3.

A

C

B

1 removed from the domain of B because of arc (B, E<B)

problem (auto arc consistency button). (4) Pause auto
arc consistency (stop button). (5) Select a variable to
split on, and specify a subset of its values for further
application of AC-3. Figure 4a shows the domain
splitting dialogue for the variable D, after all arcs in
the CSP in figure 3c have been made consistent. After
3 gets selected in the dialogue box, a new CSP is gen-
erated with that value for D (figure 4b). (6)  Retrieve
alternative subnetworks generated by domain split-
ting (backtrack button). Continuing the example
shown in figure 4, through backtracking the user can
access one of the alternative CSPs resulting from
domain splitting on D, in this case the CSP with D
taking the value 4 (figure 4c). (7) Return the graph to
its initial status (reset button).

As a student steps through a problem, the message
panel above the graph panel reports a description of
each step. Another message panel situated below the
graph panel reports the history of domain splitting



decisions made by the user, that is, which value-vari-
able assignment has been selected at each domain
splitting point. 

It should be noted that there is no specific defini-
tion of correct or incorrect behaviors or solutions
when working with the CSP applet. The student can
play with the simulation at will to see how AC-3
solves the set of available CSPs. The CSP applet cur-
rently does not monitor what its users do, nor does it
provide any explicit support to help students learn at
best from the mechanisms described above. Research
however, shows that some students may benefit from
this explicit support, since unaided exploration of
interactive simulations can fail to help students learn
(Shute 1993). The next section describes a study to
test the performance of the user-modeling framework
described in the previous section when applied to the
CSP applet and its potential to support personalized
interventions that can improve the CSP applet’s
effectiveness for all learners.

Testing the Framework 
on the CSP Applet

In this study, 65 university students interacted with
the CSP applet during sessions of two hours duration.
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Figure 4. Domain Splitting and Backtracking.

The participants were chosen so that they had not
taken an AI course but were familiar with basic graph
theory. During the study, each participant was intro-
duced to the AC-3 algorithm and then took a pretest
on the topic. Next, the participant used the applet on
two CSP problems of increasing difficulty and fin-
ished with a posttest. The resulting data set includes
13,078 actions over 62,752 seconds of interaction.
The features calculated from these logs include usage
frequency of each interface action as well as mean
and standard deviation of latency between actions.
Average latency is an indicator of the time spent
reflecting after each action, while standard deviation
of latency tells if the user was consistent or selective
in the amount of time he or she spent reflecting after
each action. Since we have 7 interface actions, the
calculated feature vectors are 21-dimensional. 

Clustering on the aforementioned data set gener-
ated two clusters (we used C-index as described by
Milligan and Cooper [1985] to determine the optimal
number of clusters for the data). To verify whether
there is any relation between these clusters and stu-
dent learning, we used proportional learning gains
(PLGs) computed from each student’s pre- and
posttests. We found a significant difference in PLG (p
= .03, as per an independent samples t-test), with a
medium effect size (Cohen’s d = .47). We refer to
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Figure 5. Sample CARs for the CSP Applet. 

HL members: 
Use Direct Arc Click action very frequently (R1-HL).  

LL members: 

Use Direct Arc Click sparsely (R3-LL) 

Leave little time between a Direct Arc Click and the next action (R1-LL) 

Are consistent in amount of time they spend between a Direct Arc Click and the next 
action (R2-LL) 

HL cluster: 

 R1-HL: Direct Arc Click frequency = Highest (Conf = 100%, Class Cov = 100%) 

LL cluster: 

 R1-LL:  Direct Arc Click Pause Avg = Lowest (Conf = 100%, Class Cov = 100%) 

 R2-LL:  Direct Arc Click Pause STD =Lowest (Conf = 95.83%, Class Cov = 95.8%) 

 R3-LL R3-LL:  Direct Arc Click frequency = Lowest (Conf = 93%, Class Cov = 93.5%)  

these clusters as high learners (HL, n = 18, M = 61.32,
SD = 27.38) and low learners (LL, n = 47, M = 39.28,
SD = 62.06). We found no significant difference
between the average pretest scores of LL and HL.
Thus, existing student knowledge cannot explain the
difference in learning between the two clusters, leav-
ing the difference in behavior patterns between the
HL and LL group as the factor that affects learning.

Figure 5 shows a subset of the representative rules
identified by association rule mining for the HL and
LL clusters, specifically the subset related to the usage
of the direct arc click functionality. The figure also
shows, for each rule, its value for the two measures
used for selecting the rules that are representative for
a cluster, namely rule’s confidence (conf) that is, the
probability that user u belongs to this cluster if rule
applies to u’s behavior and rule’s support or coverage
within its cluster (class cov), that is, the probability
that this rule applies to the user u, given that u
belongs to this cluster.

The rules in figure 5 were generated by discretizing
the continuous feature vectors in our data set into
seven bins4 (working with continuous features would
generate a large number of fine-grained rules unsuit-
able for classification). 

Direct arc click appears with values in the highest
bin in the preconditions for Rule1-HL for the HL clus-
ter, and in the lowest bin in Rule3-LL for LL cluster,
indicating that LL members use direct arc click much
less than HL members. The high class coverage of
Rule1-HL (100 percent) indicates that high frequency
of arc click pertains to all high learners, and thus it is
a behavior that appears to reliably foster learning. This
result makes sense pedagogically, because direct arc
click requires that a student proactively choose which
arc the AC-3 algorithm should select next, suggesting
that the student is engaged in the exploratory process
as opposed to being a passive spectator of the simula-
tion. Thus, from the point of view of using the out-
come of the student modeling process to generate
didactic interventions that can help students use the
CSP applet more effectively, Rule1-HL and Rule3-LL
directly inform an intervention that encourage stu-
dents to use direct arc click frequently if they do not
so spontaneously. In addition, Rule1 and Rule2 for LL
(which also have high class coverage) show low values
of direct arc click pause average and standard devia-
tion, suggesting that even when LL select arcs proac-
tively, they consistently spend little time thinking
about this action’s outcome. Thus, these rules suggest
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Figure 6. The Overtime Average Accuracy of Different Classifiers Compared to the New Rule-Based Classifier.

Figure 7. Accuracy of the CAR Classifier as a Function of the Percentage of Observed Actions.
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an intervention designed to support low learners in
paying more attention to the outcome of their direct
arc clicks. 

To evaluate the accuracy of the CAR classifier built
upon the outcome of rule association mining, we used
the evaluation component in the framework to com-
pare its performance against the performance of (1) a
baseline that always predicts the most likely label (LL
in our data set); (2) the best achieving classifier among
various complex classifiers available in Weka, namely
the random subspace metaclassifier using C4.5 as the
base classifier. Note that all these three classifiers use
the categories learned through the unsupervised clus-
tering performed using the framework. We also want
to compare our approach against a fully supervised
approach that starts from categories defined based on
the available learning gains. To build this classifier, we
calculated the median of the learning gains and
labeled the students above the median as high learn-
ers and others as low learners. We then trained and
tested a C4.5 classifier with these new labels. C4.5 was
chosen because it was the best performing classifier
among classifiers that provide information on why a
label is assigned to the user, an important feature of
the CAR classifier, and highly valuable for providing
adaptive interventions. Figure 6 shows the overtime
average accuracy of these four classifiers, both in
terms of percentage of correct classifications for the
individual clusters (LL and HL), and overall. The CAR
classifier has the highest overall accuracy, and the dif-
ferences with the other classifiers are statistically sig-
nificant (p < .001), with a large effect size (d > 3). For
each cluster, the accuracy of CAR classifier is compa-
rable with the best competitor, but no other classifier
achieves the same level of accuracy in both clusters.
Figure 7 shows accuracy of the CAR classifier as a func-
tion of the percentage of observed actions, both over-
all and for the individual clusters.

For comparison, we include the overall accuracy of
the baseline, which is the best performing classifier
after CAR. The CAR classifier reaches a relatively high
accuracy in early stages of the interaction, which is
very important when the goal is to provide adaptive
interventions to improve the user experience with the
educational software. The overall accuracy of the CAR
classifier becomes consistently higher than the base-
line before observing 20 percent of user actions, and
accuracy on each cluster goes above 80 percent after
seeing about 50 percent of the actions, while the base-
line consistently misclassifies high learners through-
out.

Discussion and 
Future work

The results presented in the previous section provide
encouraging evidence that it is possible to perform
student modeling at the behavioral level even when
it is difficult to define a priori the behaviors that

should be captured during interaction with an e-
learning environment. The empirical evaluation of
our user-modeling framework on the CSP applet data
set shows that it can both cluster users into groups
reflecting different learning abilities based on the
users’ interaction behaviors, as well as classify new
users accurately based on these behaviors. Further-
more, the framework generates rules that provide a
fine-grained description of common behaviors for
users in different clusters and appear to be suitable to
guide adaptive interventions targeted at improving
these behaviors when they are deemed to be subop-
timal by the CAR classifier. 

We are currently working on designing and
dynamically generating these interventions (Kardan
and Conati 2012a), with the goal of running a user
study to compare a student-adaptive version of the
CSP applet that includes these interventions against
the standard version described earlier. This study will
provide insights on how far the adaptive interven-
tions based on class association rules can go in actu-
ally improving student learning without any assess-
ment of the cognitive and metacognitive factors that
underlie the students’ behaviors. 

These cognitive factors include for instance, the
current student’s knowledge of relevant domain con-
cepts and skills (in case of the CSP applet, the various
components of a CSP problem and of the AC-3 algo-
rithm). Having a student model that includes an
explicit representation of the connection between a
student’s interaction behaviors and her underlying
domain knowledge allows for leveraging the
observed behaviors to perform knowledge assess-
ment. Knowledge assessment can then be used for
providing richer adaptive interventions that go
beyond the strictly behavioral suggestions supported
by our CAR classifier student model, such as reteach-
ing skills that the student model indicates to be poor-
ly understood. In the CSP applet for instance, a stu-
dent may not perform direct arc clicks because she
does not understand how the arcs are selected by AC-
3. If the student model can make this inference, it
can also trigger an intervention to explain to the stu-
dent that arc selection can be made randomly since
selection order does not affect the outcome of arc
consistency. Creating the connections between
knowledge and behaviors however, is usually a labo-
rious and time consuming process, even in relatively
well understood problem-solving domains (for exam-
ple, Kodaganallur, Weitz, and Rosenthal [2005]). Hav-
ing the CAR approach isolate the behaviors that are
important for learning (or lack thereof) in open-end-
ed interactions may facilitate the knowledge engi-
neering process. We want, however, to first evaluate
the performance of lightweight didactic interven-
tions based solely on behaviors, and move to more
sophisticated knowledge assessment once the limita-
tions of this approach have been clearly established.

Metacognitive factors that may be useful to repre-
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sent in a student model for explorato-
ry and open-ended interactions
include self-explanation (one’s tenden-
cy to clarify and elaborate the available
instructional material in terms of the
underlying domain knowledge [Chi et
al. 1994]), as well as other self-regula-
tory processes (for example, self-moni-
toring, goal setting, summarizing
[Winne 2011]) that can help students
structure their learning. Conati and
Merten (2007) started investigating
how to model students’ self-explana-
tion during an exploratory task by
using as a test bed a simulation
designed to help students understand
simple mathematical functions. This
work showed that it is possible to accu-
rately assess students’ tendency to self-
explain the outcome of their
exploratory actions by tracking both
latency between actions as well as
attention patterns indicative of reflec-
tion on action outcomes. Conati and
Merten (2007) also showed that assess-
ment of self-explanation, in turn,
improves the model’s accuracy in
assessing the effectiveness of a student
exploration. The student model used
by Conati and Merten (2007) is a
Bayesian network that explicitly repre-
sents the connections between explo-
ration and self-explanation, as well as
between self-explanation and its pre-

dictors (action latency and gaze pat-
terns). The conditional probabilities
defining these connections were
learned from interaction and gaze data
hand-labeled for instances of self-
explanation by means of laborious
protocol analysis (Conati et al. 2005).
The gaze information tracked by this
model relates to the occurrence of a
simple gaze pattern defined a priori as
being relevant for learning with this
particular simulation: a gaze shift
between two panels, one showing a
function equation and one showing
the related plot (see figure 8). The main
exploratory action available in this
simulation is to change either the
equation or the plot, and see how the
change affects the other component.
Hence the definition of the aforemen-
tioned gaze shift as a relevant pattern
to indicate self-explanation in this
learning environment.

Having a student model that repre-
sents a student’s self-explanation ten-
dency, its defining behaviors, and its
connection with exploration effective-
ness enables an ITS to generate inter-
ventions that explicitly target this
metacognitive skill (Conati 2004). But
once again, this detailed student mod-
el is very laborious to build, and the
process used to build it may not scale
up to more complex learning environ-

ments, in which it is not as intuitive to
predefine gaze patterns and interaction
behaviors that reflect self-explanation.
Furthermore, even when patterns can
be specified, they are task specific and
may not directly transfer to a different
application. We are currently working
on a more lightweight and generaliz-
able approach that relies on applying
the CAR framework described earlier to
data that include both interaction
events and eye tracking of users inter-
acting with the CSP applet. The goal is
to investigate whether we can obtain
clusters of user types and a related CAR
classifier that provide a representation
of user effective and ineffective behav-
iors in terms or both actions and atten-
tion patterns. This approach is more
general than the knowledge-intensive
approach described earlier because the
gaze data, like the action data, is
expressed in terms of standard features
that are either task independent (for
example, fixation rate, average and
standard deviation of fixation dura-
tions), or based solely on identifying
the main components of the target
interface (for example, average number
of transitions between any two of such
components) (Kardan and Conati
2012b). It is left to the CAR classifier to
identify gaze patterns that are indica-
tive of users’ learning with that inter-
face. The resulting student model does
not have an explicit representation of a
learner’s metacognitive behaviors and
tendencies. However, it may still pin
down attention and action behaviors
that implicitly relate to whether a
learner is engaging or not in relevant
metacognitive activities. We plan to
investigate whether generating adap-
tive interventions to stimulate these
behaviors may indirectly foster rele-
vant metacognition. 

We expect the approach of going for
more shallow but faster to build data-
based student models to become more
and more prominent as the increased
popularity of online learning tools will
facilitate the collection of large
amounts of data. For instance, in rela-
tion to providing personalized support
to problem solving, researchers have
been experimenting with moving
away from student models that per-
form knowledge tracing, to rely
instead on data mining to learn pat-

Figure 8. Sample Gaze Shift.
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terns that can be leveraged to provide tutoring sup-
port, such as selecting the next problem for the stu-
dent to solve (for example, Mayo and Mitrovic
[2001]). Extensive research on data-based approach-
es has also been done for student modeling at the
affective level, to leverage the availability of sensors
that can detect a variety of evidential data related to
affective reactions, such as increased heart rate, spe-
cific postures and facial expressions, spikes in skin
conductance (for example, Arroyo et al. [2009];
D’Mello and Graesser [2010]; Muldner, Burleson, and
VanLehn [2010]). 

Researchers however, are also exploring the option
of combining the knowledge-based and the data-
based approaches to student modeling, as in Conati
and Merten (2007). This option has been extensively
investigated to refine existing knowledge-tracing
models by using data to fine-tune model parameters
(for example, Baker et al. [2010]; Gong, Beck, and
Heffernan [2011]; Koedinger et al. forthcoming). It
has also been explored to define affective student
models that can provide information on the causes of
a learner’s emotional reactions, in addition to detect-
ing these reactions (Conati and Maclaren 2009a,
2009b). This option is obviously the most labor
intensive and requires having both a good theoreti-
cal understanding of the learner’s states and process-
es to be modeled, as well as data to instantiate the
details of the model. It is however, the option that
can generate the most precise and informative mod-
els. Whether the added cost is worth the effort is an
open research question.

Related Work 
The student modeling framework described here
evolved from previous versions devised in our group.
Amershi and Conati (2009) present a version that
does not include association rule mining of behav-
iors, and thus cannot identify which behaviors are
responsible for user classification and should be the
target of personalized tutorial interventions. Bernar-
dini and Conati, (2010) present a proof of concept
version that includes association rule mining and
CAR classification. The work presented here refines
that proof of concept into a comprehensive user-
modeling framework that streamlines the phases nec-
essary to generate a user classifier from an initial data
set of raw interaction logs. 

Association rules have been widely used for offline
analysis of learners’ interaction patterns with educa-
tional software; for example, to discover (1) error pat-
terns that can help improve the teaching of SQL
(Merceron and Yacef 2003); (2) similarities among
exercises for algebra problem solving in terms of solu-
tion difficulty (Freyberger, Heffernan, and Ruiz
2004); (3) usage patterns relevant for revising a web-
based educational system spanning a complete uni-
versity course (García et al. 2009a). More relevant to

the work described here is the work done by Romero
et al. (2010). They applied rare association rule min-
ing to find the relation between the online activities
of students in a learning management system and
their final mark. Similarly, Perera et al. (2009) used k-
means clustering and sequential pattern mining to
find interesting patterns for stronger and weaker stu-
dents in a collaborative software development tool.
However, neither of the last two works attempts to
build a classifier and predict the performance of
users. For additional review of works that use associ-
ation rule mining for educational purposes the read-
er is referred to Romero and Ventura (2010). 

Most work on using association rules for online
adaptation has been done within research on recom-
mender systems. In Changchien and Lu (2001), for
instance, association rule mining is used to match
the user type with appropriate products. In this work,
however, there is no online classification of new
users. Associative classification is also used by Zhang
and Jiao (2007) to classify user requirements and gen-
erate personalized item recommendation in an e-
commerce application. The main difference with our
work is that the approach of Zhang and Jiao (2007)
needs labeled data, while ours can work with unla-
beled data sets. Kim and Yum (2011) used association
rule mining on click stream and other interaction
data in an e-commerce system for recommending
items to users.

In educational context, the work by Romero et al.
(2009) is the most relevant to the research described
here, in that the authors aim to use clustering and
sequential pattern mining to recognize how students
navigate through a web-based learning environment,
classify them, and use some teacher-tuned rules for
recommending further navigation links accordingly.
The evaluation of this work focused on analyzing the
quality of the rules generated by different algorithms,
but no results have yet been presented on the classi-
fication accuracy of the proposed approach.

Conclusions
In this article, we presented research on creating stu-
dent models that can support student-adaptive
instruction during e-learning activities beyond prob-
lem solving. Student modeling is a difficult AI prob-
lem in general, because it requires endowing a tutor-
ing agent with the ability to understand a student’s
states and processes relevant for learning from often
limited and ambiguous information on how the stu-
dent interacts with the target learning environment.
Student modeling for problem-solving activities can
at least rely on some understanding of which solu-
tions should be represented in the model, what con-
stitutes a correct problem-solving step, and which
cognitive processes and states the model should be
able to assess. Educational technology, however, con-
tinues to produce novel environments often consist-
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ing of activities not as well structured and under-
stood as problem solving, making the student mod-
eling problem increasingly challenging. 

The user-modeling framework presented in this
article is an attempt to address this challenge. It uses
clustering and class associating rule mining to dis-
cover and recognize relevant interaction patterns
during student interaction with educational soft-
ware. An empirical evaluation with an interactive
simulation for solving constraint satisfaction prob-
lems provided initial evidence that this framework
can both (1) cluster users into meaningful groups;
and (2) classify new users accurately by using classifi-
cation rules that appear to be suitable to guide adap-
tive interventions targeted at improving interaction
effectiveness. The approach is in principle applicable
to a wide variety of educational environments
because it does not require detailed knowledge of the
pedagogical and design principles underlying each
specific system and related educational activities. The
potential drawback is that the interventions at the
strictly behavioral level that an ITS can provide with-
out this knowledge may not be sufficient to make a
difference in student learning. Only extensive empir-
ical studies with a variety of different e-learning envi-
ronments can clearly identify the strengths and lim-
itations of this student modeling approach.
Nonetheless, we argue that this approach is worth
exploring because even if it proves to be unsuitable to
directly support real-time adaptive tutoring, it can
help identify the relevant behaviors that affect stu-
dent performance with a specific e-learning system,
possibly providing the basis for more sophisticated
knowledge-based learner modeling.

Given our society’s increasing need for high quali-
ty teaching and training, e-learning and online learn-
ing are becoming increasingly critical to comple-
menting human tutoring in a large variety of fields
and settings. The research presented in this article is
a step toward providing comprehensive student
modeling and personalized instruction for a range of
e-learning activities that can foster student under-
standing at different stages of the learning process
and for learners with different preferences and abili-
ties. In this paper, we focused on activities related to
exploring interactive simulations. Other new forms
of intelligent computer-based tutoring that are being
investigated include, among others, support for col-
laborative learning (for example, Isotani and
Mizoguchi [2008]), teachable agents that can help
students learn by acting as peers that students can
tutor (for example, Leelawong and Biswas [2008])
intelligent support for learning from educational
games (for example, Johnson [2010]; Manske and
Conati [2005]), and intelligent tutoring for ill-
defined domains (for example, Lynch et al. [2008]).
Providing these forms of intelligent tutoring, like
providing intelligent support for exploring interac-
tive simulations, poses unique challenges for student

modeling, because it requires understanding and for-
malizing domains as well as student behaviors and
mental states often not as well understood as those
involved in traditional problem solving. Advances in
AI techniques for reasoning under uncertainty,
machine learning, decision-theoretic planning, as
well as the increasing availability of rich interaction
and sensor data that can help capture the relevant
user states, are promising means for the field to tack-
le these challenges and contribute online personal-
ized instruction to our society’s ever-increasing need
for high-quality teaching and training.

Notes
1. Another approach is to create data points from sequence
mining. This approach has been successfully applied when
there are few high-level types of actions (for example, a suc-
cessful attempt on the first step of a problem, asking for
hints, and so on), and when action order is unambiguously
important (for example, attempt a problem step before ask-
ing for help). In contrast, we are interested in interactions
encompassing finer-grained interface actions that can be
done in any order, which makes looking for recurring action
sequences computationally expensive without a clear added
value.

2. The functionalities used from Weka are standard algo-
rithms that can be replaced by any other standard tool or
implemented internally. They are transparent to the final
user of the framework.

3. AIspace is available at www.aispace.org.

4. The framework includes a functionality that selects the
optimal number of bins by computing the cross-validated
classification accuracy of a simple rule-based classifier
known to be sensitive to feature discretization (decision-
table), using different numbers of bins.
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