
Articles

48 AI MAGAZINE

For many years, artificial intelligence research has been
focusing on inventing new algorithms and approaches
for solving similar kinds of problem instances. In some

scenarios, a new algorithm is clearly superior to previous
approaches. In the majority of cases however, a new
approach will improve over the current state of the art for
only some problem instances. This may be because it
employs a heuristic that fails for instances of a certain type or
because it makes other assumptions about the instance or
environment that are not satisfied in some cases. Selecting
the most suitable algorithm for a particular problem instance
aims to mitigate these problems and has the potential to sig-
nificantly increase performance in practice. This is known as
the algorithm selection problem.

The algorithm selection problem has, in many forms and
with different names, cropped up in many areas of artificial
intelligence in the last few decades. Today there exists a large
amount of literature on it. Most publications are concerned
with new ways of tackling this problem and solving it effi-
ciently in practice. Especially for combinatorial search prob-
lems, the application of algorithm selection techniques has
resulted in significant performance improvements that lever-
age the diversity of systems and techniques developed in

Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Algorithm Selection for
Combinatorial Search Problems:

A Survey

Lars Kotthoff

n The algorithm selection problem is con-
cerned with selecting the best algorithm to
solve a given problem instance on a case-by-
case basis. It has become especially relevant
in the last decade, with researchers increas-
ingly investigating how to identify the most
suitable existing algorithm for solving a prob-
lem instance instead of developing new algo-
rithms. This survey presents an overview of
this work focusing on the contributions made
in the area of combinatorial search problems,
where algorithm selection techniques have
achieved significant performance improve-
ments. We unify and organise the vast litera-
ture according to criteria that determine algo-
rithm selection systems in practice. The
comprehensive classification of approaches
identifies and analyzes the different directions
from which algorithm selection has been
approached. This article contrasts and com-
pares different methods for solving the prob-
lem as well as ways of using these solutions.

Articles

FALL 2014 49

recent years. This article surveys the available litera-
ture and describes how research has progressed.

Researchers have long ago recognized that a single
algorithm will not give the best performance across
all problem instances one may want to solve and that
selecting the most appropriate method is likely to
improve the overall performance. Empirical evalua-
tions have provided compelling evidence for this, for
example, Aha (1992) and Wolpert and Macready
(1997).

The original description of the algorithm selection
problem was published by Rice (1976). The basic
model described in the article is very simple — given
a space of instances and a space of algorithms, map
each instance-algorithm pair to its performance. This
mapping can then be used to select the best algo-
rithm for a given instance. The original figure that
illustrates the model is reproduced in figure 1. As Rice
states, “The objective is to determine S(x) [the map-
ping of problems to algorithms] so as to have high
algorithm performance.”

Almost all contemporary approaches employ
machine learning to learn the performance mapping
from problem instances to algorithms using features
extracted from the instances. This often involves a
training phase, where the candidate algorithms are
run on a sample of the problem space to experimen-
tally evaluate their performance. This training data is
used to create a performance model that can be used
to predict the performance on new, unseen instances.
The term model is used only in the loosest sense here;
it can be as simple as a representation of the training
data without any further analysis.

Figure 2 sketches a contemporary algorithm selec-
tion model that corresponds more closely to
approaches that use machine learning. At the heart is
the selection model S, which is trained using
machine-learning techniques. The data for the mod-
el comes from the algorithms A ∈ A and the problems
x ∈ P, which are characterized by features. S is created
either by using training data that contains the per-
formances of the algorithms on a subset of the prob-
lems from the problem space, or feedback from exe-

cuting the chosen algorithm on a problem and meas-
uring the performance. Some approaches use both
data sources.

The model S makes the prediction of a specific
algorithm A given a problem x. This algorithm is
then used to solve the problem. At a high level, this
describes the workings of an algorithm selection
model, but there are many variations. The figure is
meant to give a general idea, not describe every
approach mentioned in this article.

Arguably, one of the most prominent systems to
do algorithm selection is and has been SATzilla (Xu et
al. 2008). There are several reasons for this. It was the
first system to really bring home the point of algo-
rithm portfolios in combinatorial search by domi-
nating the SAT competition1 for years. Furthermore,
it is probably the only system that has been devel-
oped over a period of several years, continuously
improving its performance. Its authors have not lim-
ited themselves to scientific advancements, but also
implemented a number of techniques that make it
viable to run the system in practice.

Figure 3 shows that over the last two decades, there
has been an increasing interest in algorithm selec-
tion, as witnessed by the number of publications in
the field. In particular, the number of publications
has increased significantly after the success of SATzil-
la in the SAT competition in 2007. This is probably
the best indication of its impact on the research com-
munity.

Despite this prominence, other approaches rarely
use SATzilla’s ideas directly. Another set of prominent
systems that have been developed over a number of
years start with ISAC (Kadioglu et al. 2010) and con-
tinue with 3S (Kadioglu et al. 2011) and CSHC (Mal-
itsky et al. 2013). Despite the commonality of the
goal, and indeed application domain, there is no
explicit cross-fertilisation between these approaches
and SATzilla.

In other research areas, innovations implemented
by one system usually make it into other systems
after some time. This is not the case in algorithm
selection. This is partly because of the sheer number

Figure 1. Basic Model for the Algorithm Selection Problem as Published by Rice (1976).

x P x A p Rn

Problem space Selection
mapping

Algorithm space Performance
mapping

Performance
measure space

Norm
mapping

||p|| = Algorithm
performance

S(x) p(A, x)

Articles

50 AI MAGAZINE

of different approaches to solving the problem — a
technique may simply not be applicable in a different
context and completely different methods may be
able to achieve similar performance. In addition,
there is no algorithm selection community in the
same sense in which there is for example a SAT com-
munity. As a result, publications are fragmented and
scattered throughout different areas of AI. This makes
it very hard to get a big picture overview of what the
best techniques are or indeed to simply become
aware of other approaches. As a result, many
approaches have been reinvented with small varia-
tions.

Because there is no clear single line of research, this
survey will look at the different aspects of algorithm

selection and the techniques that have been used to
tackle them. For a different take from a machine-
learning point of view, the interested reader is
referred to the paper by Smith-Miles (2008).

Algorithm Portfolios
For diverse sets of problem instances, it is unlikely
that a single algorithm will be the most suitable one
in all cases. A way of mitigating this restriction is to
use a portfolio of algorithms. This idea is closely relat-
ed to the notion of algorithm selection itself —
instead of making an up-front decision on what algo-
rithm to use, it is decided on a case-by-case basis for
each instance individually.

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

0

5

10

15 publications

Figure 3. Publications by Year.

Data taken from 4c.ucc.ie/~larsko/assurvey. Note that the number for 2013 is not final.

Figure 2. Contemporary Algorithm Selection Model.

Dashed lines show optional connections.

S
Selection model Prediction

Problem space Algorithm space
FeatureExtraction

x P’ P,
A A :
p(A, x)

Training Data
Feedback

Performance
measure

x P A A

p Rn
S(x) = A

Articles

FALL 2014 51

The idea of algorithm portfolios was first present-
ed by Huberman, Lukose, and Hogg (1997). They
describe a formal framework for the construction and
application of algorithm portfolios and evaluate their
approach on graph coloring problems. However, the
work cited more frequently in the artificial intelli-
gence community is the later paper by Gomes and
Selman (1997), which draws on the ideas presented
by Huberman, Lukose, and Hogg (1997). The tech-
nique itself however had been described under dif-
ferent names by other authors at about the same time
in different contexts, for example, “algorithm fami-
ly” (Allen and Minton 1996).

Beyond the simple idea of using a set of algorithms
instead of a single one, there is a lot of scope for dif-
ferent approaches. There are two main types of port-
folios. Static portfolios are constructed offline before
any problem instances are solved. While solving an
instance, the composition of the portfolio and the
algorithms within it do not change. Dynamic port-
folios change in composition, configuration of the
constituent algorithms, or both during solving.

Static Portfolios
Static portfolios are the most common type. They
have been used in the earliest papers, for example,
Huberman, Lukose, and Hogg (1997). The number of
algorithms or systems in the portfolio is fixed. This
approach is used for example in the systems SATzilla
(Xu et al. 2008), AQME (Pulina and Tacchella 2007),
and CPhydra (O’Mahony et al. 2008).

As the algorithms in the portfolio do not change,
their selection is crucial for its success. Ideally, the
algorithms will complement each other such that
good performance can be achieved on a wide range
of different problem instances. Hong and Page (2004)
report that portfolios composed of a random selec-
tion from a large pool of diverse algorithms outper-
form portfolios composed of the algorithms with the
best overall performance. In the same spirit, Samu-
lowitz and Memisevic (2007) use a portfolio of
heuristics for solving quantified Boolean formulae
problems that have specifically been crafted to be
orthogonal to each other. Xu, Hoos, and Leyton-
Brown (2010) automatically engineer a portfolio with
algorithms of complementary strengths. In the paper
by Xu and colleagues (2012), the authors analyze the
contributions of the portfolio constituents to the
overall performance and conclude that not algo-
rithms with the best overall performance but those
with techniques that set them apart from the rest
contribute most.

Most approaches make the composition of the
portfolio less explicit. Many systems use portfolios of
solvers that have performed well in solver competi-
tions with the implicit assumption that they have
complementing strengths and weaknesses and the
resulting portfolio will be able to achieve good per-
formance. This is true for example for SATzilla. Part

of the reason for composing portfolios in this man-
ner may be that publications indicating that this may
not be the best way are little known. Furthermore, it
is of course very easy to take an existing set of algo-
rithms.

Dynamic Portfolios
Static portfolios are necessarily limited in their flexi-
bility and diversity. Being able to modify the portfo-
lio algorithms or create entirely new ones is an idea
that emerged soon after the first applications of port-
folios, leveraging earlier ideas on modifying algo-
rithms dynamically.

The Strategy Acquisition Governed by Experimen-
tation (SAGE) system (Langley 1983) specializes
generic building blocks for the instance to solve. It
starts with a set of general operators that can be
applied to a search state. These operators are refined
by making the preconditions more specific based on
their utility for finding a solution. The Multi-Tactic
Analytic Compiler (Multi-TAC) system (Minton
1996) similarly specializes a set of generic heuristics
for the constraint problem instance to solve.

The same principle of combining algorithmic
building blocks can be applied to algorithm portfo-
lios. An example of this is the Adaptive Constraint
Engine (ACE) (Epstein and Freuder 2001). The build-
ing blocks are so-called advisors, which characterize
variables of the constraint problem instance and give
recommendations as to which one to process next.
ACE combines these advisors into more complex
ones. Also based on these ideas is CLASS (Fukunaga
2002), which combines heuristic building blocks to
form composite heuristics for solving SAT problems.

In these approaches, there is no strong notion of a
portfolio — the algorithm or strategy used to solve a
problem instance is assembled from lower-level com-
ponents and never made explicit.

Problem Solving with Portfolios
Once an algorithm portfolio has been constructed,
the way in which it is to be used has to be decided.
There are different considerations to take into
account. We need to decide what to select and when
to select it.

Given the full set of algorithms in the portfolio, a
subset has to be chosen for solving the problem
instance. This subset can consist of only a single algo-
rithm that is used to solve the instance to comple-
tion, the entire portfolio with the individual algo-
rithms interleaved or running in parallel or anything
in between.

The selection of the subset of algorithms can be
made only once before solving starts or continuous-
ly during search. If the latter is the case, selections
can be made at well-defined points during search, for
example at each node of a search tree, or when the
system judges it to be necessary to make a decision.

What to Select
A common and the simplest approach is to select a
single algorithm from the portfolio and use it to solve
the problem instance completely. This single algo-
rithm has been determined to be the best for the
instance at hand. For example SATzilla (Xu et al.
2008), ArgoSmart (Nikolic, Maric, and Janicic 2009),
SALSA (Demmel et al. 2005), and Eureka (Cook and
Varnell 1997) do this. The disadvantage of this
approach is that there is no way of mitigating a
wrong selection. If an algorithm is chosen that
exhibits bad performance on the instance, the system
is “stuck” with it and no adjustments are made, even
if all other portfolio algorithms would perform much
better.

An alternative approach is to compute schedules
for running (a subset of) the algorithms in the port-
folio. In some approaches, the terms portfolio and
schedule are used synonymously — all algorithms in
the portfolio are selected and run according to a
schedule that allocates time slices to each of them.
The task of algorithm selection becomes determining
the schedule rather than to select algorithms. In the
simplest case, all of the portfolio algorithms are run
at the same time in parallel. This was the approach
favoured in early research into algorithm selection
(Huberman, Lukose, and Hogg 1997).

More sophisticated approaches compute explicit
schedules. Roberts and Howe (2006) rank the portfo-
lio algorithms in order of expected performance and
allocate time according to this ranking. Pulina and
Tacchella (2009) investigate different ways of com-
puting schedules and conclude that ordering the
algorithms based on their past performance and allo-
cating the same amount of time to all algorithms
gives the best overall performance.

Gomes and Selman (1997) also evaluate the per-
formance of different candidate portfolios, but take
into account how many algorithms can be run in
parallel. They demonstrate that the optimal schedule
(in this case the number of algorithms that are being
run) changes as the number of available processors
increases. Gagliolo and Schmidhuber (2008) investi-
gate how to allocate resources to algorithms in the
presence of multiple CPUs that allow to run more
than one algorithm in parallel. Yun and Epstein
(2012) take this approach a step further and craft
portfolios with the specific aim of running the algo-
rithms in parallel.

None of these approaches has emerged as the
prevalent one so far — contemporary systems select
both single algorithms as well as compute schedules.
Part of the reason for this diversity is that neither has
been shown to be inherently superior to the other
one so far. Computing a schedule adds robustness,
but is more difficult to implement and more compu-
tationally expensive than selecting a single algo-
rithm.

When to Select
In addition to whether they choose a single algo-
rithm or compute a schedule, existing approaches
can also be distinguished by whether they operate
before the problem instance is being solved (offline)
or while the instance is being solved (online). The
advantage of the latter is that more fine-grained deci-
sions can be made and the effect of a bad choice of
algorithm is potentially less severe. The price for this
added flexibility is a higher overhead, as algorithms
need to be selected more frequently.

Both approaches have been used from the very
start of research into algorithm selection. The choice
of whether to make predictions offline or online
depends very much on the specific application and
performance improvements have been achieved
with both.

Examples of approaches that only make offline
decisions include the papers by Xu et al. (2008),
Minton (1996), and O’Mahony et al. (2008). In addi-
tion to having no way of mitigating wrong choices,
often these will not even be detected. These
approaches do not monitor the execution of the cho-
sen algorithms to confirm that they conform with
the expectations that led to them being chosen.
Purely offline approaches are inherently vulnerable
to bad choices. Their advantage however is that they
only need to select an algorithm once and incur no
overhead while the instance is being solved.

Moving toward online systems, the next step is to
monitor the execution of an algorithm or a schedule
to be able to intervene if expectations are not met.
Much of this research started as early as algorithm
portfolio research itself. Fink (1997) investigates set-
ting a time bound for the algorithm that has been
selected based on the predicted performance. If the
time bound is exceeded, the solution attempt is
abandoned. More sophisticated systems furthermore
adjust their selection if such a bound is exceeded.
Borrett, Tsang, and Walsh (1996) try to detect behav-
ior during search that indicates that the algorithm is
performing badly, for example visiting nodes in a
subtree of the search that clearly do not lead to a
solution. If such behavior is detected, they propose
switching the currently running algorithm accord-
ing to a fixed replacement list.

The approaches that make decisions during
search, for example at every node of the search tree,
are necessarily online systems. Brodley (1993) recur-
sively partitions the classification problem to be
solved and selects an algorithm for each partition.
Similarly, Arbelaez, Hamadi, and Sebag (2009) select
the best search strategy at checkpoints in the search
tree. In this approach, a lower-level decision can lead
to changing the decision at the level above. This is
usually not possible for combinatorial search prob-
lems, as decisions at a higher level cannot be
changed easily.

Figure 4 shows the relative numbers of publica-

Articles

52 AI MAGAZINE

tions that use online and offline predictions by year.
In the first half of the graph, the behavior is quite
chaotic and no clear trend is visible. This is certainly
partly because of the relatively small number of rele-
vant publications in these years. In the second half of
the graph, a clear trend is visible however. The share
of online systems steadily decreases — the over-
whelming majority of recent publications use offline
approaches.

This may be in part because, as solvers and systems
grow in complexity, implementing online approach-
es also becomes more complex. Whereas for offline
approaches existing algorithms can be used
unchanged, making online decisions requires infor-
mation on how the algorithm is progressing. This
information can be obtained by instrumenting the
system or similar techniques, but requires additional
effort compared to offline approaches.

Another explanation is that at the beginning of
this trend, SATzilla achieved noteworthy successes in
the SAT competition. As SATzilla is an offline system,
its success may have shifted attention toward those,
resulting in a larger share of publications.

Portfolio Selectors
Research on how to select from a portfolio in an algo-
rithm selection system has generated the largest
number of different approaches within the frame-
work of algorithm selection. There are many different
ways a mechanism to select from a portfolio can be
implemented. Apart from accuracy, one of the main
requirements for such a selector is that it be relative-
ly cheap to run — if selecting an algorithm for solv-
ing a problem instance is more expensive than solv-
ing the instance, there is no point in doing so.

There are several challenges associated with mak-
ing selectors efficient. Algorithm selection systems
that analyze the problem instance to be solved, such
as SATzilla, need to take steps to ensure that the
analysis does not become too expensive. One such

measure is the running of a presolver (Xu et al.
2008). The idea behind the presolver is to choose an
algorithm with reasonable general performance from
the portfolio and use it to start solving the instance
before starting to analyze it. If the instance happens
to be very easy, it will be solved even before the
results of the analysis are available. After a fixed time,
the presolver is terminated and the results of the
algorithm selection system are used. Pulina and Tac-
chella (2009) use a similar approach and run all algo-
rithms for a short time in one of their strategies.
Only if the instance has not been solved after that,
they move on to the algorithm that was actually
selected. A number of additional systems implement
a presolver in more or less explicit form, for example,
Kadioglu et al. (2011). As such, it is probably the
individual technique that has found the most wide-
spread adaptation, even though this is not explicitly
acknowledged.

The selector is not necessarily an explicit part of
the system. Minton (1996) compiles the algorithm
selection system into a Lisp programme for solving a
constraint problem instance. The selection rules are
part of the programme logic. Fukunaga (2008)
evolves selectors and combinators of heuristic build-
ing blocks using genetic algorithms. The selector is
implicit in the evolved programme.

Performance Models
The way the selector operates is closely linked to the
way the performance model of the algorithms in the
portfolio is built. In early approaches, the perform-
ance model was usually not learned but given in the
form of human expert knowledge. Borrett, Tsang,
and Walsh (1996) use handcrafted rules to determine
whether to switch the algorithm during solving.
Allen and Minton (1996) also have handcrafted
rules, but estimate the run-time performance of an
algorithm. More recent approaches sometimes use
only explicitly specified human knowledge as well.

A more common approach today is to automati-

Articles

FALL 2014 53

1991 1993 1996 1998 2000 2002 2004 2006 2008 2009 2010 2011 2012 2013

of�ine

online

Figure 4. Publications by Time of Prediction by Year.

Offline is distinguished by dark gray; online by light gray. The width of each bar corresponds to the number of publications that year (com-
pare with figure 3). Data taken from 4c.ucc.ie/~larsko/assurvey. Note that the number for 2013 is not final.

cally learn performance models using machine learn-
ing on training data. The portfolio algorithms are run
on a set of representative problem instances and
based on these experimental results, performance
models are built. This approach is used by Xu et al.
(2008), Pulina and Tacchella (2007), O’Mahony et al.
(2008), Kadioglu et al. (2010), and Guerri and Milano
(2004), to name but a few examples. A drawback of
this approach is that the time to collect the data and
the training time are usually large.

Models can also be built without a separate train-
ing phase, but while the instance is solved. This
approach is used by Gagliolo and Schmidhuber
(2006), for example. While this significantly reduces
the time to build a system, it can mean that the result
is less effective and efficient. At the beginning, when
no performance models have been built, the deci-
sions of the selector might be poor. Furthermore, cre-
ating and updating performance models while the
instance is being solved incurs an overhead.

The choice of machine-learning technique is
affected by the way the portfolio selector operates.
Some techniques are more amenable to offline
approaches (for example, linear regression models
used by Xu et al. [2008]), while others lend them-
selves to online methods (for example, reinforce-
ment learning used by Gagliolo and Schmidhuber
[2006]).

What type of performance model and what kind
of machine learning to use is the area of algorithm
selection with the most diverse set of different
approaches, sometimes entirely and fundamentally
so. There is no consensus as to the best technique at
all. This is best exemplified by SATzilla. The perform-
ance model and machine learning used in early ver-
sions (Xu et al. 2008) was replaced by a fundamen-
tally different approach in the most recent version
(Xu et al. 2011). Nevertheless, both approaches have
excelled in competitions.

Recently, research has increasingly focused on tak-
ing into account the cost of making incorrect predic-
tions. Whereas in standard classification tasks there is
a simple uniform cost (for example, simply counting
the number of misclassifications), the cost in the
algorithm selection context can be quantified more
appropriately. If an incorrect algorithm is chosen, the
system takes more time to solve the problem
instance. This additional time will vary depending
on which algorithm was chosen — it may not matter
much if the performance of the chosen algorithm is
very close to the best algorithm, but it also may mean
a large difference. SATzilla 2012 (Xu et al. 2011) and
CSHC (Malitsky et al. 2013) are two examples of sys-
tems that take this cost into account explicitly.

Per Portfolio Models
One automated approach is to learn a performance
model of the entire portfolio based on training data.
Usually, the prediction of such a model is the best
algorithm from the portfolio for a particular problem

instance. There is only a weak or no notion of an
individual algorithm’s performance.

This is used for example by Pulina and Tacchella
(2007), O’Mahony et al. (2008), and Kadioglu et al.
(2010). Again there are different ways of doing this.
Lazy approaches do not learn an explicit model, but
use the set of training examples as a case base. For
new problem instances, the closest instance or the set
of n closest instances in the case base is determined
and decisions made accordingly. Pulina and Tacchel-
la (2007) and O’Mahony and colleagues (2008) use
nearest-neighbour classifiers to achieve this.

Explicitly learned models try to identify the con-
cepts that affect performance on a given problem
instance. This acquired knowledge can be made
explicit to improve the understanding of the
researchers of the application domain. There are sev-
eral machine-learning techniques that facilitate this,
as the learned models are represented in a form that is
easy to understand by humans. Carbonell et al. (1991),
Brodley (1993), and Vrakas et al. (2003) learn classifi-
cation rules that guide the selector. Vrakas and col-
leagues (2003) note that the decision to use a classifi-
cation rule leaner was not so much guided by the
performance of the approach, but the easy inter-
pretability of the result. A classification model can be
used to gain insight into what is happening in addi-
tion to achieving performance improvements. This is
a relatively unexplored area of algorithm selection
research — in many cases, the performance models are
too complex or simply not suitable for this purpose.

Ideally, a performance model could be analyzed
and the knowledge that enables the portfolio to
achieve performance improvements made explicit
and be leveraged in creating new algorithms or adapt-
ing existing ones. In practice, this is yet to be tackled
successfully by the algorithm selection community.
A system that allowed to do this would certainly be a
major step forward and take algorithm selection to
the next level.

Per Algorithm Models
A different approach is to learn performance models
for the individual algorithms in the portfolio. The
predicted performance of an algorithm on a problem
instance can be compared to the predicted perform-
ance of the other portfolio algorithms and the selec-
tor can proceed based on this. The advantage of this
approach is that it is easier to add and remove algo-
rithms from the portfolio — instead of having to
retrain the model for the entire portfolio, it suffices to
train a model for the new algorithm or remove one of
the trained models. Most approaches only rely on the
order of predictions being correct. It does not matter
if the prediction of the performance itself is wildly
inaccurate as long as it is correct relative to the other
predictions. In practice, the predictions themselves
will indeed be off by orders of magnitude in at least
some cases, but the overall system will still be able to
achieve good performance.

Articles

54 AI MAGAZINE

Models for each algorithm in the portfolio are used
for example by Allen and Minton (1996), Xu et al.
(2008), and Gagliolo and Schmidhuber (2006). A
common way of doing this is to use regression to
directly predict the performance of each algorithm.
Xu et al. (2008),Leyton-Brown, Nudelman, and
Shoham (2002), and Haim and Walsh (2009) do this,
among others. The performance of the algorithms in
the portfolio is evaluated on a set of training
instances, and a relationship between the character-
istics of an instance and the performance of an algo-
rithm derived. This relationship usually has the form
of a simple formula that is cheap to compute at run
time.

Silverthorn and Miikkulainen (2010), however,
learn latent class models of unobserved variables to
capture relationships between solvers, problem
instances, and run durations. Based on the predic-
tions, the expected utility is computed and used to
select an algorithm. Weerawarana et al. (1996) use
Bayesian belief propagation to predict the run time of
a particular algorithm on a particular instance.
Bayesian inference is used to determine the class of a
problem instance and the closest case in the knowl-
edge base. A performance profile is extracted from
that and used to estimate the run time.

One of the main disadvantages of per algorithm
models is that they do not consider the interaction
between algorithms at all. It is the interaction how-
ever that makes portfolios powerful — the entire idea
is based on the fact that a combination of several
algorithms is stronger than an individual one.
Despite this, algorithm selection systems that use per
algorithm models have demonstrated impressive per-
formance improvements. More recently however,
there has been a shift toward models that also con-
sider interactions between algorithms.

Hybrid Models
A number of recently developed approaches use per-
formance models that draw elements from both per
portfolio models and per algorithm models. The
most recent version of SATzilla (Xu et al. 2011) uses
models for pairs of algorithms to predict one which
is going to have better performance. These predic-
tions are aggregated as votes and the algorithm with
the overall highest number of votes is chosen. This
type of performance model allows to explicitly mod-
el how algorithms behave with respect to other algo-
rithms and addresses the main conceptual disadvan-
tage in earlier versions of SATzilla.

An orthogonal approach is inspired by the
machine-learning technique stacking (Kotthoff
2012). It combines per algorithm models at the bot-
tom layer with a per portfolio model at the top layer.
The bottom layer predicts the performance of each
algorithm individually and independently and the
top layer uses those predictions to determine the
overall best algorithm.

Hierarchical models are a similar idea in that they

make a series of predictions where the later models
are informed by the earlier predictions. Xu, Hoos,
and Leyton-Brown (2007) use sparse multinomial
logistic regression to predict whether an SAT prob-
lem instance is satisfiable and, based on that predic-
tion, use a logistic regression model to predict the
run time of each algorithm in the portfolio. Here, the
prediction of whether the instance is satisfiable is
only used implicitly for the next performance mod-
el and not as an explicit input.

In all of these examples, a number of performance
models are combined into the overall performance
model. Such hybrid models are similar to per portfo-
lio models in the sense that if the composition of the
portfolio changes, they have to be retrained. They do
however also encapsulate the notion of an individ-
ual algorithm’s performance.

Types of Predictions
The way of creating the performance model of a
portfolio or its algorithms is not the only choice
researchers face. In addition, there are different pre-
dictions the performance model can make to inform
the decision of the selector of a subset of the portfo-
lio algorithms. The type of decision is closely related
to the learned performance model however. The pre-
diction can be a single categorical value — the best
algorithm. This type of prediction is usually the out-
put of per portfolio models and used for example by
Guerri and Milano (2004), Pulina and Tacchella
(2007), and Gent et al. (2010). The advantage of this
simple prediction is that it determines the choice of
algorithm without the need to compare different
predictions or derivefurther quantities. One of its
biggest disadvantages however is that there is no
flexibility in the way the system runs or even the
ability to monitor the execution for unexpected
behavior.

A different approach is to predict the run time of
the individual algorithms in the portfolio. This
requires per algorithm models. For example Horvitz
et al. (2001), Petrik (2005), and Silverthorn and
Miikkulainen (2010) do this. Allen and Minton
(1996) estimate the run time by proxy by predicting
the number of constraint checks. Lobjois and
Lemaître (1998) estimate the run time by predicting
the number of search nodes to explore and the time
per node. Xu et al. (2009) predict the penalized aver-
age run-time score, a measure that combines run
time with possible timeouts used in the SAT compe-
tition. This approach aims to provide more realistic
performance predictions when run times are cen-
sored.

Some types of predictions require online
approaches that make decisions during search. Bor-
rett, Tsang, and Walsh (1996), Sakkout, Wallace, and
Richards (1996), and Carchrae and Beck (2004) pre-
dict when to switch the algorithm used to solve a
problem instance. Horvitz et al. (2001) predict

Articles

FALL 2014 55

whether a run will complete within a certain number
of steps to determine if to restart the algorithm.
Lagoudakis and Littman (2000) predict the cost to
solve a subinstance. However, most online approach-
es make predictions that can also be used in offline
settings, such as the best algorithm to proceed with.

The choice for type of prediction depends on the
application in many scenarios. In a competition set-
ting, it is usually best to use the scoring function used
to evaluate entries. If the aim is to utilize a machine
with several processors as much as possible, predict-
ing only a single algorithm is unsuitable unless that
algorithm is able to take advantage of several proces-
sors by itself. As the complexity of the predictions
increases, it usually becomes harder to make them
with high accuracy. Kotthoff, Gent, and Miguel
(2012) for example report that using statistical rela-
tional learning to predict the complete order of the
portfolio algorithms on a problem instance does not
achieve competitive performance.

Features
The different types of performance models described
in the previous sections usually use features to
inform their predictions. Features are an integral part
of systems that do machine learning. They charac-
terize the inputs, such as the problem instance to be
solved or the algorithm employed to solve it, and
facilitate learning the relationship between these
inputs and the outputs, such as the time it will take
the algorithm to solve the problem instance.

A side effect of the research into algorithm selec-
tion has been that researchers have developed com-
prehensive feature sets to characterize problem
instances. This is especially true in SAT. Whereas
before SAT instances would mostly be described in
terms of number of variables and clauses, the authors
of SATzilla developed a large feature set to character-
ize an instance with a high level of detail.

Determining features that adequately characterize
a new problem domain is often difficult and labori-
ous. Once a good set of features has been established,
it can be used by everybody. The determination of
features is likely the single area associated with algo-
rithm selection where most of the traditional science
cycle of later approaches building on the results of
earlier research occurs. The feature set used by SATzil-
la (Xu et al. 2008) is also used by 3S (Kadioglu et al.
2011) and Silverthorn and Miikkulainen (2010) for
example. Gent et al. (2010) include features described
by Guerri and Milano (2004) in their feature set.

The selection of the most suitable features is an
important part of the design of algorithm selection
systems. There are different types of features
researchers can use and different ways of computing
these. They can be categorized according to two main
criteria.

First, they can be categorized according to how

much domain knowledge an algorithm selection
researcher needs to have to be able to use them. Fea-
tures that require no or very little knowledge of the
application domain are usually very general and can
be applied to new algorithm selection problems with
little or no modification. Features that are specific to
a domain on the other hand may require the
researcher building the algorithm selection system to
have a thorough understanding of the domain. These
features usually cannot be applied to other domains,
as they may be non-existent or uninformative in dif-
ferent contexts.

The second way of distinguishing different classes
of features is according to when and how they are
computed. Features can be computed statically, that
is, before the search process starts, or dynamically,
that is, during search. These two categories roughly
align with the offline and online approaches to port-
folio problem solving.

Low and High-Knowledge Features
In some cases, researchers use a large number of fea-
tures that are specific to the particular problem
domain they are interested in, but there are also pub-
lications that only use a single, general feature — the
performance of a particular algorithm on past prob-
lem instances. Gagliolo and Schmidhuber (2006),
Streeter, Golovin, and Smith (2007), and Silverthorn
and Miikkulainen (2010), to name but a few exam-
ples, use this latter approach to build statistical per-
formance models of the algorithms in their portfo-
lios. The underlying assumption is that all problem
instances are similar with respect to the relative per-
formance of the algorithms in the portfolio — the
algorithm that has done best in the past has the high-
est chance of performing best in the future.

Other sources of features that are not specific to a
particular application domain are more fine-grained
measures of past performance or measures that char-
acterize the behavior of an algorithm during search.
Langley (1983) for example determines whether a
search step performed by a particular algorithm is
good, that is, leading toward a solution, or bad, that
is, straying from the path to a solution if the solution
is known or revisiting an earlier search state if the
solution is not known. Gomes and Selman (1997) use
the run-time distributions of algorithms over the size
of a problem instance, as measured by the number of
backtracks.

Most approaches learn models for the performance
on particular problem instances and do not use past
performance as a feature, but to inform the predic-
tion to be made. Considering instance features facil-
itates a much more nuanced approach than a broad-
brush general performance model. This is the classic
supervised machine-learning approach — given the
correct label derived from the behavior on a set of
training instances, learn a model that allows to pre-
dict this label on unseen data.

Articles

56 AI MAGAZINE

The features that are considered to learn the mod-
el are specific to the application domain or even a
subset of the application domain to varying extents.
For combinatorial search problems, the most com-
monly used basic features include the number of
variables, properties of the variable domains, that is,
the list of possible assignments, the number of claus-
es in SAT, the number of constraints in constraint
problems, the number of goals in planning, the num-
ber of clauses/constraints/goals of a particular type
and ratios of several of those features and summary
statistics.

Static and Dynamic Features
In most cases, the approaches that use a large num-
ber of domain-specific features compute them
offline, that is, before the solution process starts.
Examples of publications that only use such static
features are the papers by Leyton-Brown, Nudelman,
and Shoham (2002), Pulina and Tacchella (2007),
and Guerri and Milano 2004). Examples of such fea-
tures are the number of clauses and variables in a SAT
instance, the number of a particular type of con-
straint in a constraint problem instance, or the num-
ber of operators in a planning problem instance.

An implication of using static features is that the
decisions of the algorithm selection system are only
informed by the performance of the algorithms on
past problem instances. Only dynamic features allow
to take the performance on the current problem
instance into account. This has the advantage that
remedial actions can be taken if the instance is unlike
anything seen previously or the predictions are wild-
ly inaccurate for another reason.

A more flexible approach than to rely purely on
static features is to incorporate features that can be
determined statically, but which estimate the per-
formance on the current problem instance. Such fea-
tures are computed by probing the search space. This
approach relies on the performance probes being suf-
ficiently representative of the entire problem
instance and sufficiently equal across the different
evaluated algorithms. If an algorithm is evaluated on
a part of the search space that is much easier or hard-
er than the rest, a misleading impression of its true
performance may result.

Examples of systems that combine static features
of the instance to be solved with features derived
from probing the search space are described in the
papers by Xu et al. (2008), Gent et al. (2010), and
O’Mahony et al. (2008). There are also approaches
that use only probing features. We term this semi-sta-
tic feature computation because it happens before
the actual solving of the instance starts, but parts of
the search space are explored during feature extrac-
tion. This approach is used for example by Allen and
Minton (1996), Beck and Freuder (2004), and Lobjois
and Lemaître (1998). The features that can be extract-
ed through probing include the number of search

tree nodes visited, the number of backtracks, or the
number and quality of solutions found.

Another way of computing features is to do so
online, that is, while search is taking place. These
dynamic features are computed by an execution
monitor that adapts or changes the algorithm dur-
ing search based on its performance. The type of the
dynamic features, how they are computed and how
they are used depends on the specific application.
Examples include the following. Carchrae and Beck
(2004) monitor the solution quality during search.
They decide whether to switch the current algorithm
based on this by changing the allocation of
resources. Stergiou (2009) monitors propagation
events in a constraint solver to decide whether to
switch the level of consistency to enforce. Caseau,
Laburthe, and Silverstein (1999) evaluate the per-
formance of candidate algorithms in terms of num-
ber of calls to a specific high-level procedure. They
note that in contrast to using the run time, their
approach is machine-independent. Kadioglu, Malit-
sky, and Sellmann (2012) base branching decisions
in MIP search on features of the subproblem to solve.

Summary
Over the years, there have been many approaches to
solving the algorithm selection problem. Especially
in artificial intelligence and for combinatorial search
problems, researchers have recognised that using
algorithm selection techniques can provide signifi-
cant performance improvements with relatively little
effort. Most of the time, the approaches involve
some kind of machine learning that attempts to
learn the relation between problem instances and
the performance of algorithms automatically. This is
not a surprise, as the relationship between an algo-
rithm and its performance is often complex and hard
to describe formally. In many cases, even the design-
er of an algorithm does not have a general model of
its performance.

Despite the theoretical difficulty of algorithm
selection, dozens of systems have demonstrated that
it can be done in practice with great success. In some
sense, this mirrors achievements in other areas of
artificial intelligence. SAT is formally a problem that
cannot be solved efficiently, yet researchers have
come up with ways of solving very large instances of
satisfiability problems with very few resources. Simi-
larly, some algorithm selection systems have come
very close to always choosing the best algorithm.

This survey presented an overview of the algo-
rithm selection research that has been done to date
with a focus on combinatorial search problems. A
categorization of the different approaches with
respect to fundamental criteria that determine algo-
rithm selection systems in practice was introduced.
This categorization abstracts from many of the low
level details and additional considerations that are

Articles

FALL 2014 57

presented in most publications to give a clear view of
the underlying principles. We furthermore gave
details of the many different ways that can be used to
tackle algorithm selection and the many techniques
that have been used to solve it in practice.

This survey can only show a broad and high-level
overview of the field. Many approaches and publica-
tions are not mentioned at all for reasons of space. A
tabular summary of the literature that includes many
more publications and is organized according to the
criteria introduced here is available.2 The author of
this survey hopes to add new publications to this
summary as they appear.

Algorithm Selection in Practice
Algorithm selection has many application areas and
researchers investigating algorithm selection tech-
niques come from many different backgrounds. They
tend to publish in venues that are specific to their
application domain. This means that they are often
not aware of each others’ work. Even a cursory exam-
ination of the literature shows that many approach-
es are used by different people in different contexts
without referencing the relevant related work. In
some cases, the reason is probably that many tech-
niques can be lifted straight from machine learning,
for example, and different researchers simply had the
same idea at the same time.

Even basic machine-learning techniques often
work very well in algorithm selection models. If the
available algorithms are diverse, it is usually easy to
improve on the performance of a single algorithm
even with simple approaches. There is no single set of
approaches that work best — much depends on the
application domain and secondary factors, such as
the algorithms that are available and the features that
are used to characterize problem instances.

To get started, a simple approach is best. Build a
classification model that, given a problem instance,
selects the algorithm to run. In doing so, you will
gain a better understanding of the relationship
between your problem instances, algorithms, and
their performance as well as the requirements for
your algorithm selection system. A good under-
standing of the problem is crucial to being able to
select the most suitable technique from the litera-
ture. Often, more sophisticated approaches come
with much higher overheads both in terms of imple-
mentation and running them, so a simple approach
may already achieve very good overall performance.

Another way to get started is to use one of the sys-
tems which are available as open source on the web.
Several versions of SATzilla, along with data sets and
documentation, can be downloaded.3 ISAC is avail-
able as MATLAB code.4 The R package LLAMA5

implements many of the algorithm selection tech-
niques described in this article through a uniform
interface and is suitable for exploring a range of dif-
ferent approaches.6

Future Directions
Looking forward, it is desirable for algorithm selec-
tion research to become more coordinated. In the
past, techniques have been reinvented and approach-
es reevaluated. This duplication of effort is clearly not
beneficial to the field. In addition, the current pletho-
ra of different approach is confusing for newcomers.
Concentrating on a specific set of techniques and
developing these to high performance levels would
potentially unify the field and make it easier to apply
and deploy algorithm selection systems to new appli-
cation domains.

Much of algorithm selection research to date has
been driven by competitions rather than applica-
tions. As a result, many techniques that are known to
work wellin competition settings are used and sys-
tems becoming more and more specialised to com-
petition scenarios. Lacking prominent applications,
it remains to be shown which techniques are useful
in the real world.

There are many directions left to explore. Using
algorithm selection research as a means of gaining an
understanding of why particular algorithms perform
well in specific scenarios and being able to leverage
this knowledge in algorithm development would be
a major step. Another fruitful area is the exploitation
of today’s massively parallel, distributed, and virtu-
alised homogeneous resources.

If algorithm selection techniques were to become
widespread in mainstream computer science and
software development, a major paradigm shift would
occur. It would become beneficial to develop a large
number of complementary approaches instead of
focusing on a single good one. Furthermore, less time
would need to be spent on performance analysis —
the algorithm selection system will take care of it.

Acknowledgements
Ian Miguel, Ian Gent, and Helmut Simonis provided
valuable feedback that helped shape this article. I also
thank the anonymous reviewers whose detailed com-
ments helped to greatly improve it, and Barry O’Sul-
livan who suggested submitting to AI Magazine. This
work was supported by an EPSRC doctoral prize and
EU FP7 grant 284715 (ICON).

Notes
1. www.satcompetition.org.

2. 4c.ucc.ie/~larsko/assurvey.

3. www.cs.ubc.ca/labs/beta/Projects/SATzilla.

4. 4c.ucc.ie/~ymalitsky/Code/ISAC-Portfolio_v2.zip.

5. cran.r-project.org/web/packages/llama/index.html.

6. Disclaimer: The author of this article is the primary
author of LLAMA.

References
Aha, D. W. 1992. Generalizing from Case Studies: A Case
Study. In Proceedings of the 9th International Workshop on

Articles

58 AI MAGAZINE

Machine Learning, 1–10. San Francisco, CA: Morgan Kauf-
mann Publishers Inc.

Allen, J. A., and Minton, S. 1996. Selecting the Right Heuris-
tic Algorithm: Runtime Performance Predictors. In Proceed-
ings of the 11th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, 41–53. Berlin: Springer-
Verlag.

Arbelaez, A.; Hamadi, Y.; and Sebag, M. 2009. Online
Heuristic Selection in Constraint Programming. Paper pre-
sented at the Symposium on Combinatorial Search, Lake
Arrowhead, CA, July 8–10.

Beck, J. C., and Freuder, E. C. 2004. Simple Rules for Low-
Knowledge Algorithm Selection. In Proceedings of the First
International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems, 50–64. Berlin: Springer. dx.doi.org/10.1007/978-3-
540-24664-0_4

Borrett, J. E.; Tsang, E. P. K.; and Walsh, N. R. 1996. Adaptive
Constraint Satisfaction: The Quickest First Principle. In Pro-
ceedings of the 12th European Conference on Artificial Intelli-
gence (ECAI), 160–164. Chichester, UK: John Wiley and
Sons.

Brodley, C. E. 1993. Addressing the Selective Superiority
Problem: Automatic Algorithm/Model Class Selection. In
Proceedings of the International Conference on Machine Learn-
ing, 17–24. San Francisco: Morgan Kaufmann Publishers,
Inc.

Carbonell, J.; Etzioni, O.; Gil, Y.; Joseph, R.; Knoblock, C.;
Minton, S.; and Veloso, M. 1991. Prodigy: An Integrated
Architecture for Planning and Learning. SIGART Bulletin
2(2): 51–55. dx.doi.org/10.1145/122344.122353

Carchrae, T., and Beck, J. C. 2004. Low-Knowledge Algo-
rithm Control. In Proceedings of the 19th National Conference
on Artificial Intelligence, 49–54. Palo Alto, CA: AAAI Press.

Caseau, Y.; Laburthe, F.; and Silverstein, G. 1999. A Meta-
Heuristic Factory for Vehicle Routing Problems. In Proceed-
ings of the 5th International Conference on Principles and Prac-
tice of Constraint Programming, 144–158. Berlin:
Springer-Verlag.

Cook, D. J., and Varnell, R. C. 1997. Maximizing the Bene-
fits of Parallel Search Using Machine Learning. In Proceed-
ings of the 14th National Conference on Artificial Intelligence,
559–564. Palo Alto, CA: AAAI Press.

Demmel, J.; Dongarra, J.; Eijkhout, V.; Fuentes, E.; Petitet,
A.; Vuduc, R.; Whaley, R. C.; and Yelick, K. 2005. Self-Adapt-
ing Linear Algebra Algorithms and Software. In Proceedings
of the IEEE 93(2): 293–312. dx.doi.org/10.1109/JPROC.
2004.84084

Epstein, S. L., and Freuder, E. C. 2001. Collaborative Learn-
ing for Constraint Solving. In Proceedings of the 7th Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, 46–60. Berlin: Springer-Verlag.

Fink, E. 1997. Statistical Selection Among Problem-Solving
Methods. Technical Report CMU-CS-97-101, Carnegie Mel-
lon University, Pittsburgh, PA.

Fukunaga, A. S. 2008. Automated Discovery of Local Search
Heuristics for Satisfiability Testing. Evolutionary Computation
16: 31–61.

Fukunaga, A. S. 2002. Automated Discovery of Composite
SAT Variable-Selection Heuristics. In Proceedings of the 18th
National Conference on Artificial Intelligence, 641–648. Menlo
Park, CA: AAAI Press. dx.doi.org/10.1162/evco.2008.16. 1.31

Gagliolo, M., and Schmidhuber, J. 2008. Towards Distrib-
uted Algorithm Portfolios. In International Symposium on
Distributed Computing and Artificial Intelligence, Advances In
Soft Computing. Berlin: Springer.

Gagliolo, M., and Schmidhuber, J. 2006. Learning Dynam-
ic Algorithm Portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4): 295–328. dx.doi.org/10.1007/s10472-
006-9036-z

Gent, I.; Jefferson, C.; Kotthoff, L.; Miguel, I.; Moore, N.;
Nightingale, P.; and Petrie, K. 2010. Learning When To Use
Lazy Learning In Constraint Solving. In Proceedings of the
19th European Conference on Artificial Intelligence, 873–878.
Amsterdam, The Netherlands: IOS Press.

Gomes, C. P., and Selman, B. 1997. Algorithm Portfolio
Design: Theory Versus Practice. In Proceedings of the Thir-
teenth Conference on Uncertainty in Artificial Intelligence, 190–
197. San Francisco: Morgan Kaufmann Publishers.

Guerri, A., and Milano, M. 2004. Learning Techniques for
Automatic Algorithm Portfolio Selection. In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, 475–
479. Amsterdam, The Netherlands: IOS Press.

Haim, S., and Walsh, T. 2009. Restart Strategy Selection
Using Machine Learning Techniques. In Proceedings of the
12th International Conference on Theory and Applications of
Satisfiability Testing, 312–325. Berlin: Springer-Verlag.

Hong, L., and Page, S. E. 2004. Groups of Diverse Problem
Solvers can Outperform Groups of High-Ability Problem
Solvers. In Proceedings of the National Academy of Sciences of
the United States of America 101(46): 16385–16389.
dx.doi.org/10.1073/pnas.0403723101

Horvitz, E.; Ruan, Y.; Gomes, C. P.; Kautz, H. A.; Selman, B.;
and Chickering, D. M. 2001. A Bayesian Approach To Tack-
ling Hard Computational Problems. In Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence, 235–
244. San Francisco: Morgan Kaufmann Publishers Inc.

Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An Eco-
nomics Approach to Hard Computational Problems. Science
275(5296): 51–54. dx.doi.org/10.1126/science.275.5296.51

Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm Selection and Schedul-
ing. In Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming, Lecture
Notes in Computer Sciencem 454–469. Berlin: Springer.

Kadioglu, S.; Malitsky, Y.; and Sellmann, M. 2012. Non-
Model-Based Search Guidance for Set Partitioning Prob-
lems. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence. Palo Alto, CA: AAAI Press.

Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K. 2010.
ISAC — Instance-Specific Algorithm Configuration. In Pro-
ceedings of the 19th European Conference on Artificial Intelli-
gence, 751–756. Amsterdam, The Netherlands: IOS Press.

Kotthoff, L. 2012. Hybrid Regression-Classification Models
for Algorithm Selection. In Proceedings of the 20th European
Conference on Artificial Intelligence, 480–485. Amsterdam,
The Netherlands: IOS Press.

Kotthoff, L.; Gent, I. P.; and Miguel, I. 2012. An Evaluation
of Machine Learning in Algorithm Selection for Search
Problems. AI Communications 25(3): 257–270.

Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm
Selection Using Reinforcement Learning. In Proceedings of
the 17th International Conference on Machine Learning, 511–
518. San Francisco: Morgan Kaufmann Publishers Inc.

Articles

FALL 2014 59

Langley, P. 1983. Learning Search Strategies Through Dis-
crimination. International Journal of Man-Machine Studies
18(6): 513–541. dx.doi.org/10.1016/S0020-7373(83)80030-

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2002.
Learning the Empirical Hardness of Optimization Problems:
The Case of Combinatorial Auctions. In Proceedings of the
8th International Conference on Principles and Practice of Con-
straint Programming, 556–572. Berlin: Springer-Verlag.

Lobjois, L., and Lemaître, M. 1998. Branch and Bound Algo-
rithm Selection by Performance Prediction. In Proceedings of
the 15th National Conference on Artificial Intelligence, 353–
358. Menlo Park, CA: AAAI Press.

Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann, M.
2013. Algorithm Portfolios Based on Cost-Sensitive Hierar-
chical Clustering. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press.

Minton, S. 1996. Automatically Configuring Constraint Sat-
isfaction Programs: A Case Study. Constraints 1(1–2): 7–43.
dx.doi.org/10.1007/BF00143877

Nikolic, M.; Maric, F.; and Janicic, P. 2009. Instance-Based
Selection of Policies for SAT Solvers. In Proceedings of the
12th International Conference on Theory and Applications of
Satisfiability Testing, SAT ‘09, 326–340. Berlin: Springer-Ver-
lag.

O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using Case-Based Reasoning in an Algo-
rithm Portfolio for Constraint Solving. In Proceedings of the
19th Irish Conference on Artificial Intelligence and Cognitive Sci-
ence. Lecture Notes in Computer Science. Berlin: Springer.

Petrik, M. 2005. Statistically Optimal Combination of Algo-
rithms. Paper presented at the 31st Conference on Current
Trends in Theory and Practice of Computer Science. Lip-
tovsky Jan, Slovakia, January 22–28.

Pulina, L., and Tacchella, A. 2009. A Self-Adaptive Multi-
Engine Solver for Quantified Boolean Formulas. Constraints
14(1): 80–116.

Pulina, L., and Tacchella, A. 2007. A Multi-Engine Solver for
Quantified Boolean Formulas. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science, 574–589.
Berlin: Springer. dx.doi.org/10.1007/s10601-008-9051-2

Rice, J. R. 1976. The Algorithm Selection Problem. Advances
in Computers 15: 65–118. dx.doi.org/10.1016/S0065-
2458(08)60520-3

Roberts, M., and Howe, A. E. 2006. Directing A Portfolio
With Learning. Paper presented at the AAAI 2006 Workshop
on Learning for Search, Boston, MA, July 16.

Sakkout, H. E.; Wallace, M. G.; and Richards, E. B. 1996. An
Instance of Adaptive Constraint Propagation. In Proceedings
of the Second International Conference on Principles and Practice
of Constraint Programming, Lecture Notes in Computer Sci-
ence, 164–178. Berlin: Springer Verlag.

Samulowitz, H., and Memisevic, R. 2007. Learning to Solve
QBF. In Proceedings of the 22nd National Conference on Artifi-
cial Intelligence, 255–260. Palo Alto, CA: AAAI Press.

Silverthorn, B., and Miikkulainen, R. 2010. Latent Class
Models for Algorithm Portfolio Methods. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence. Palo Alto,
CA: AAAI Press.

Smith-Miles, K. A. 2008. Cross-Disciplinary Perspectives on
Meta-Learning for Algorithm Selection. ACM Computing Sur-
veys 41(1), Article 6. dx.doi.org/10.1145/1456650.1456656

Stergiou, K. 2009. Heuristics for Dynamically Adapting
Propagation In Constraint Satisfaction Problems. AI Com-
munications 22(3): 125–141.

Streeter, M. J.; Golovin, D.; and Smith, S. F. 2007. Combin-
ing Multiple Heuristics Online. In Proceedings of the 22nd
National Conference on Artificial Intelligence, 1197–1203. Palo
Alto, CA: AAAI Press.

Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas, I.
2003. Learning Rules for Adaptive Planning. In Proceedings of
the 13th International Conference on Automated Planning and
Scheduling, 82–91. Menlo Park, CA: AAAI Press.

Weerawarana, S.; Houstis, E. N.; Rice, J. R.; Joshi, A.; and
Houstis, C. E. 1996. Pythia: A Knowledge-Based System to
Select Scientific Algorithms. ACM Transactions on Mathemat-
ical Software 22(4): 447–468. dx.doi.org/10.1145/235815.
235820

Wolpert, D. H., and Macready, W. G. 1997. No Free Lunch
Theorems for Optimization. IEEE Transactions on Evolution-
ary Computation 1(1): 67–82. dx.doi.org/10.1109/4235.
585893

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2012.
Evaluating Component Solver Contributions to Portfolio-
Based Algorithm Selectors. In Proceedings of the 15th Interna-
tional Conference on Theory and Applications of Satisfiability
Testing (SAT’12), Lecture Notes in Computer Science 228–
241. Berlin: Springer.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011.
Hydra-Mip: Automated Algorithm Configuration and Selec-
tion for Mixed Integer Programming. Paper presented at the
RCRA Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion at the
International Joint Conference on Artificial Intelligence,
Barcelona, Spain, July 16.

Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hydra:
Automatically Configuring Algorithms for Portfolio-Based
Selection. In Proceedings of the 24th Conference of the Associa-
tion for the Advancement of Artificial Intelligence (AAAI-10),
210–216. Palo Alto, CA: AAAI Press.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2009.
SATzilla2009: An Automatic Algorithm Portfolio for SAT.
Paper presented at the 2009 SAT Competition, Swansea,
Wales, UK, 30 June – 3 July.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-Based Algorithm Selection for SAT. Jour-
nal of Artificial Intelligence Research 32: 565–606.

Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2007. Hierarchi-
cal Hardness Models for SAT. In Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science, 696–711.
Berlin: Springer

Yun, X., and Epstein, S. L. 2012. Learning Algorithm Port-
folios for Parallel Execution. In Proceedings of the 6th Inter-
national Conference Learning and Intelligent Optimisation Lion,
323–338. Berlin: Springer.

Lars Kotthoff is a postdoctoral researcher at Cork Con-
straint Computation Centre, Ireland, where he works on
automated algorithm configuration and selection, uses opti-
misation techniques for data mining and machine learning,
and finds ways to incentivize people to install solar power
panels. His Ph.D. work at St Andrews, Scotland, focused on
ways of solving the algorithm selection problem in practice.

Articles

60 AI MAGAZINE

