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Answer set programming (ASP) is a well-established para-
digm of declarative programming with roots in the stable
model semantics for logic programs (Gelfond and Lif-

schitz 1991, Niemelä 1999, Marek and Truszczynski 1999). The
main goal of ASP is to provide a versatile declarative modeling
framework with many attractive characteristics. These features
allow turning — with little to no effort — problem statements
of computationally hard problems into executable formal spec-
ifications, also called answer set programs. These programs can
be used to describe and reason over problems in a large variety
of domains, such as commonsense and agent reasoning, diag-
nosis, deductive databases, planning, bioinformatics, schedul-
ing, and timetabling. See Brewka, Eiter, and Truszczynski (2012)
for an overview, while for introductory material on ASP, the
reader might refer to Baral (2003) or Eiter, Ianni, and Kren-
nwallner (2009).

ASP has a close relationship to other declarative modeling
paradigms and languages, such as SAT solving, SAT modulo the-
ories (SMTs), constraint handling rules (CHRs), the planning
domain definition language (PDDL), automated theorem prov-
ing, and many others. All these formalisms have in common
that they are built for solving demanding AI problems.1
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n The Answer Set Programming (ASP) Compe-
tition is a biannual event for evaluating declar-
ative knowledge representation systems on hard
and demanding AI problems. The competition
consists of two main tracks: the ASP system
track and the model and solve track. The tradi-
tional system track compares dedicated answer
set solvers on ASP benchmarks, while the mod-
el and solve track invites any researcher and
developer of declarative knowledge representa-
tion systems to participate in an open challenge
for solving sophisticated AI problems with their
tools of choice. This article provides an overview
of the ASP Competition series, reviews its ori-
gins and history, giving insights on organizing
and running such an elaborate event, and
briefly discusses the lessons learned so far.
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A Brief History
In September 2002, participants of the Dagstuhl
Seminar on Nonmonotonic Reasoning, Answer Set
Programming, and Constraints (Brewka et al.
2002) decided to establish an infrastructure for
benchmarking ASP solvers (Borchert et al. 2004),
following good practices already in place in neigh-
boring fields of satisfiability testing and constraint
programming, and with the explicit aim of foster-
ing the development of ASP. A first informal com-
petition took place during the workshop, featuring
five systems: DLV, Smodels, ASSAT, Cmodels, and
Aspps, respectively from Technical University
Vienna and the University of Calabria, University
of Helsinki, Hong Kong University of Science and
Technology, University of Texas, Austin, and the
University of Kentucky. Since then, after a second
informal edition at the Dagstuhl Seminar in 2005,
ASP systems compare themselves in the nowadays
customary ASP Competition.

The fourth ASP Competition will be organized
jointly by the University of Calabria, Italy, and
Technical University Vienna, Austria, and will take
place in the first half of 2013. Former ASP Compe-

titions were held at the University of Potsdam,
Germany (Gebser et al. 2007), at the University of
Leuven, Belgium (Denecker et al. 2009), and at the
University of Calabria, Italy (Calimeri, Ianni, and
Ricca 2012). The competition takes place biennial-
ly, and results are officially announced at the Inter-
national Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR).

The Competition
The ASP Competition format is consolidated into
two tracks: the model and solve track, and the sys-
tem track. Participating systems are compared on a
selected set of benchmarks, and scores are given to
computational performance. The origin of these
tracks and the evolution of the competition format
is shown in figure 1 (numbers denote participant
count in corresponding tracks).

The goal of the model and solve  track is to inte-
grate scientific communities and bring them clos-
er together. This track is thus open to all types of
solvers with declarative modeling capabilities: ASP
systems, SAT solvers, SAT modulo theories solvers,
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Figure 1. Evolution of the ASP Competition.



constraint programming systems, automated theo-
rem provers, description logics reasoners, planning
reasoners, or any other.2 It is worth noting that this
track is not a programming contest: the focus is on
comparing participant systems, and not on the
ability of participant teams to model tricky prob-
lems. To this end, model and solve track competi-
tors receive textual descriptions from a variety of
problem domains, and each team has several
months to produce working and efficient declara-
tive specifications in case they are not available
yet. Contestants are encouraged to exchange their
solutions freely. For a particular benchmark
domain, each team submits solutions in the form
of a domain specification together with a working
system of choice, which can be configured on a per
benchmark basis.

The system track is instead designed for prob-
lems modeled in a fixed language based on the
answer set semantics, and formal domain specifi-
cations together with benchmark instances are
provided by the organizers. The standard language
for this track evolved from the core language spec-
ification drafted in 20043 — called Score in the
first competition in 2007  — to ASP-Core, which

will be extended for the forthcoming fourth ASP
Competition 2013. The explicit purpose of this
track is to foster language standardization and
encourage the merging of various ASP dialects.
Also, different from the model and solve track,
each participating system must have a unique con-
figuration for the whole class of benchmark prob-
lems to compare off-the-shelf system performance.

Participants’ systems are compared on problems
in which declarativity plays a central role. Take, as
an example, the classic Towers of Hanoi planning
problem with three pegs and n disks. Initially, all
disks are on the leftmost peg. The goal of this prob-
lem is to move all n disks to the rightmost peg by
temporarily placing the disks on the other pegs,
complying with the following rules: (1) move
exactly one disk at a time; (2) only the topmost
disk on a peg can be moved; and (3) larger disks
cannot be placed on top of smaller ones. This prob-
lem has known optimal solution length, that is,
the plan of moving all n disks from the leftmost
peg to the rightmost peg consists of 2n – 1 moves.
The ASP Competition uses a variant of this prob-
lem: instead of three, we consider four pegs with n
disks. In this case, no known formula for the solu-
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% read data: N is on M at time 0
on ( 0 ,M,N) : on0 (N,M) .
onG(K,M,N) : ongoal (N,M) , steps (K ) .

% specify valid arrangements of disks:
% smaller disks are on larger ones
: time (T ) , on (T ,M,N) , M > = N.

% specify a valid move (only for T < K)
% pick a disk to move
move (T ,N) | noMove(T ,N) : disk (N) ,

time (T ) ,
steps (K) ,
T < K.

: move (T ,N) , move (T ,M) , N != M.
diskMoved (T ) : move (T ,X ) .
: time (T ) , steps (K) , T < K,

not diskMoved (T ) .

% pick a disk onto which to move
where (T ,N) | noWhere (T ,N) : disk (N) ,

time (T ) ,
steps (K) ,
T < K.

: where (T ,N) , where (T ,M) , N != M.
diskWhere (T ) : where (T ,X ) .
: time (T ) , steps (K) , T < K,

not diskWhere (T ) .

% pegs 1..4 cannot be moved
: move (T ,N) , N < 5 .
% move only top-most discs
: on (T ,N,M) , move (T ,N) .

% place disks on top only
: on (T ,N,M) , where (T ,N) .

% no disk is moved in two consecutive
% moves
: move (T ,N) , move ( S ,N) , T = S 1 .

% specify effects of a move
on ( S ,M,N) : move (T ,N) , where (T ,M) ,

S = T + 1 .
on ( S ,N,M) : time (T ) , steps (K) , T < K,

on (T ,N,M) , not move (T ,M) ,
S = T + 1 .

% goal description
: not on (K,N,M) , onG(K,N,M) , steps (K ) .
: on (K,N,M) , not onG(K,N,M) , steps (K ) .

% solution: put disk N on top of M at
% step T
put (T ,M,N) : move (T ,N) , where (T ,M) ,

steps (K) , T < K.

Figure 2. ASP Encoding of Towers of Hanoi with Four Pegs.
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tion length exists, and no (proven) effi-
cient algorithm for this kind of puzzle
is known. The declarative specification
of this problem from the ASP Competi-
tion 2011, encoded in the ASP-Core
language, is in figure 2. Essentially, the
ASP input format is constituted by a set
of (implicitly) universally quantified
sentences, where syntax is mostly
inherited from the Prolog language.

Declarative specifications are not
limited to the standard ASP-Core lan-
guage within the model and solve
track. In the ASP Competition 2011,
each participating team provided its
own custom specifications: solutions
ranged from ASP-based (from the
Aclasp and Potassco teams), constraint
programming-based (from BPSolver,
and EZCSP, a lightweight integration of
ASP and constraint programming),
planning-based (from Fast Downward,
a planning domain definition language
solver), to first-order logic with induc-
tive definitions (from the LDP team,
using the FO(ID) formalism).

Concerning evaluation techniques
of ASP solvers, the state-of-the-art sys-
tems feature an input processing work
flow composed of a grounding module,
generating a propositional theory, cou-
pled with a subsequent propositional
solver module (Brewka, Eiter, and
Truszczynski 2012; Gebser et al. 2011;
Faber, Leone, and Perri 2012; Alviano
et al. 2011; Giunchiglia, Lierler, and
Maratea 2006; Simons, Niemelä, and
Soininen 2002; Janhunen, Niemelä,
and Sevalnev 2009). The latter module
generates an answer set according to
the stable model semantics, or proves
inconsistency. The ASP solvers that
entered the system track of the last edi-
tion belong to different categories
depending on the inherent evaluation
strategy of their solver module: SAT-
based, employing translation tech-
niques to enforce correspondence
between answer sets and satisfying
assignments of SAT formulas, so that
state-of-the-art SAT solvers can be used
to compute answer sets; difference log-
ic-based, exploiting a translation from
propositional ASP programs to differ-
ence logic theories, in order to perform
the computation of answer sets
through satisfiability modulo theories
solvers; and native ASP solvers, which
feature customized propositional

search techniques often inspired by
work done in the areas of constraint
programming and SAT solving.

Essentially all systems competing in
the first editions of the competition had
international academic backgrounds,
but recently industrial research teams
such as Microsoft and Kodak have
joined the game. The overall number of
participants is following an increasing
trend with up to 22 participant systems
in the 2011 edition. The events so far
have shown a steady trend of perform-
ance improvement of the competitors:
the winners of a competition outper-
form — usually by far — their predeces-
sor’s top-ranking participants. Notably,
variants of the clasp system (Gebser,
Kaufmann, and Schaub 2012), which
were developed by the winning team of
the ASP Competition 2011, continue to
perform excellently in related competi-
tions such as the CADE Automated The-
orem Proving System Competitions
(CASC-11, CASC-12), the Mancoosi
International Solver Competition
(MISC-11), the Pseudo-Boolean Compe-
titions (PB-09, PB-11, PB-12), and SAT
competitions such as SAT-09, SAT-11,
and the SAT Challenge 2012.

The benchmark suite of the compe-
tition is maintained and updated by
the organizers, who choose benchmark
instances from common planning
domains, temporal and spatial sched-
uling problems, known combinatory
puzzles, classic graph problems, and a
number of industrial domains that are
taken, for example, from the database,
information extraction, circuit layout,
and natural sciences fields. Problems
are classified into search, query, and
optimization, and, according to the
computational complexity of the
underlying decision problem, into the
categories polynomial, NP, and
beyond-NP. The scoring system com-
bines the number of solved instances,
the running time performance, and the
quality of the found solutions for opti-
mization problems, and awards are
assigned to the winners of each track
and to the best performing participants
of each subcategory. Technical details
and more references concerning evalu-
ation strategies, benchmarks, and scor-
ing can be found in the report of the
third ASP Competition held in 2011
(Calimeri, Ianni, and Ricca 2012).

Lessons Learned
The answer set programming commu-
nity is following a steadily growing
trend in terms of number of scientists,
theoretical results, and developed sys-
tems. Notably, ASP has recently
appeared as a core technology in sever-
al industrial applications (Brewka, Eit-
er, and Truszczynski 2012; Grasso et al.
2011). A key outcome of the competi-
tion series is the standardization of the
input format, which is now reaching
maturity; the organization of each
competition had been an opportunity
for pushing language standardization
within the community. A second note-
worthy effect of the competition con-
cerns the effort of attracting neighbor
communities. A by-product of the
model and solve track is indeed a com-
parison across several axes: (1) among
heterogeneous systems, even from dif-
ferent communities; (2) among partici-
pant systems, state-of-the-art solutions,
and ad hoc algorithms purposely cho-
sen for selected problems; and (3)
among purely declarative solutions
and custom-tailored approaches. Con-
cerning (2) and (3), purely declarative
approaches have the reputation for
nonoptimal performance, but we
learned that they are often very effi-
cient, and sometimes outperform com-
paratively custom approaches and ad
hoc algorithms (Calimeri, Ianni, and
Ricca 2012).

Comparison and interaction across
communities are definitely required.
One initiative that pushes into this
directions is StarExec,4 a cross commu-
nity logic-solving service. The ASP
Competition chairs are part of the advi-
sory committee of StarExec, whose aim
is to provide the computational back-
bone for competitions in knowledge
representation and set a common
infrastructure for these. This way com-
petitions and benchmarking will
become easier to set up and make com-
putational power more accessible.

A Glimpse 
at the Next Event

The fourth ASP Competition 2013 will
again feature both the model and solve
and the system tracks. The submission
deadline for the next ASP Competition



is March 1, 2013. Detailed regulations
and further information can be found
at the competition website.5
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Notes
1. Concerning ASP, the comprehensive sur-
vey of Dantsin et al. (2001) gives an
overview on complexity and expressiveness
results for ASP and other formalisms related
to logic programming.

2. To avoid bias, comparisons are made in
benchmark domains in which there is some
degree of overlap in the application area of
the systems at hand.

3. ASP Standardization Steering Committee.
2004. Core Language for ASP Solver Com-
petitions. Minutes of the steering commit-
tee meeting at LPNMR 2004. Available at
www.mat.unical.it/aspcomp2011/files/Core
lang2004.pdf. 

4. www.starexec.org.

5. aspcomp2013.mat.unical.it/
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