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Decision Making in
Complex Multiagent Contexts:
A Tale of Two Frameworks

B Decision making is a Kkey feature of
autonomous systems. It involves choosing opti-
mally between different lines of action in vari-
ous information contexts that range from per-
fectly knowing all aspects of the decision
problem to having just partial knowledge about
it. The physical context often includes other
interacting autonomous systems, typically
called agents. In this article, I focus on decision
making in a multiagent context with partial
information about the problem. Relevant
research in this complex but realistic setting has
converged around two complementary, general
frameworks and also introduced myriad spe-
cializations on its way. I put the two frame-
works, decentralized partially observable
Markov decision process (Dec-POMDP) and the
interactive partially observable Markov decision
process (I-POMDP), in context and review the
foundational algorithms for these frameworks,
while briefly discussing the advances in their
specializations. I conclude by examining the
avenues that research pertaining to these frame-
works is pursuing.

Prashant Doshi

referred to as an agent (Russell and Norvig 2010), is the

capability to choose optimally between different lines of
action available to it. This capability of normative decision mak-
ing becomes demanding in diverse informational and physical
contexts, which may range from having precise information
about all aspects of the problem to partial knowledge about it
and multiple interacting agents.

For illustration, consider a toy problem involving an
autonomous unmanned aerial vehicle (AUAV) tasked with inter-
cepting a fugitive in its theater of surveillance that is divided
into a grid of large sectors. Interception requires the AUAV to
move to the sector occupied by the fugitive. Consistent sighting
reports, which may be noisy, could lead the AUAV to the sector
containing the fugitive. However, a false positive intercept in a
proximal sector due to the noise in the sightings would cause
the alarmed fugitive to flee his true sector and reappear in some
other random sector that is further away. Of course, the AUAV’s
objective is to succeed in as many such missions as possible over
a time period.

Clearly, the AUAV faces a tough decision-making problem
because of the uncertainty in sightings and the consequences of
making a bad decision. Furthermore, presence of another AUAV
in the theater — whether the AUAV is helpful or not — could
potentially complicate the decision-making problem. If this

g key feature of an autonomous system, here onwards
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Figure 1. Comparing Two Frameworks.

Both frameworks apply in multiagent contexts with Dec-POMDPs suitable for cooperative interactions only. While I-POMDPS are applica-
ble in both cooperative and noncooperative contexts thereby occupying the remaining volume of the problem space. The parenthesis on

an axis gives analogous environment parameters used by Russell and Norvig (2010).

AUAV is helpful, then both AUAVs must jointly
decide whether to move to intercept the fugitive in
some sector or await more consistent sighting
reports. A premature move by one of the AUAVs in
the team may spoil the chances for both! This
remains true when the other AUAV is neutral in its
intentions toward the subject AUAV.

This illustration provides anecdotal evidence
about the technical difficulty of sequential deci-
sion making in partial information contexts that
are shared by multiple agents. In this article, I
review two formal frameworks that occupy this
problem space. Although relevant Al research has
explored various decision-making models, it has
gradually converged on these complementary,
general frameworks. Both these frameworks are
founded on decision theory as formalized by par-
tially observable Markov decision processes
(POMDPs) (Smallwood and Sondik 1973; Kael-
bling, Littman, and Cassandra 1998) and gener-
ously draw inspiration from game theory. Despite

the inherent complexity, decision-theoretic frame-
works such as POMDPs offer a principled and the-
oretically sound formalism for decision making
under uncertainty with guarantees of optimality of
the solution, which makes them an appealing
choice for extending to multiagent settings.

The first framework that I consider is the decen-
tralized POMDP (Dec-POMDP) (Bernstein et al.
2002), which is applicable in contexts where the
agents are strictly cooperative. In this framework,
we seek an optimal joint behavior for all agents
given an initial state of the problem that is com-
mon knowledge to all and the agents receive a
common reward based on their joint actions. In
contrast, the interactive POMDP (I-POMDP) (Gmy-
trasiewicz and Doshi 2005) models the problem
from the subjective view of an individual agent in
a multiagent context. The framework seeks to find
agent behavior that is individually optimal and
applies to both cooperative and noncooperative
contexts. Figure 1 compares the two frameworks
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based on the problem spaces they occupy. The
information and interaction contexts in figure 1
may be viewed as continuums while the physical
context is discrete but could get arbitrarily large.

Optimally accomplishing tasks using a team of
agents has continually fascinated Al researchers.
The Dec-POMDP was preceded by substantial and
distinct efforts in teamwork such as STEAM (Tambe
1997), which was based on an early formal theory
of joint intentions (Cohen and Levesque 1991). An
alternate theory of teamwork involved the concept
of SharedPlans (Grosz 1996). These elaborate theo-
ries provided logical formalizations of requisite
joint mental states and plans thereby facilitating
teamwork through reasoning. Parallel advances on
a myriad of frameworks that could be linked to a
Dec-POMDP as specializations have also contin-
ued. Building on this past progress, Dec-POMDPs
emphasize quantitative mathematical modeling of
the economics that promotes cooperation and of
realistic uncertainties with the benefit that precise
optimality of behavior can be claimed and the
computational complexity of the problem class be
ascertained. However, Dec-POMDPs champion
offline decision making for every contingency as
opposed to the execution-centered thrust of the
logical teamwork theories, which promoted effi-
ciency.

While a focus on cooperation admits some sim-
plifications such as common initial state and
reward, adopting an agent’s view of a multiagent
context does the opposite. Although the focus is
on individual behavior, issues such as considering
what the other agent(s) thinks that the subject
agent will do and about the subject agent’s
thought on others’ actions confound the decision
making in general. -POMDPs elegantly tie recur-
sive thinking to the process of decision making
using modeling approaches initially explored in
game theory (Harsanyi 1967, Brandenburger and
Dekel 1993, Aumann 1999). I-POMDPs, too, build
upon previous efforts in Al such as the recursive
modeling method (Gmytrasiewicz and Durfee
2000), which targets individual decision making in
simpler contexts.

Recent applications of the two frameworks testi-
fy to their significance and growing appeal. Dec-
POMDPs are finding applications in coordinating
scans in sensor networks exhibiting various con-
figurations (Kim et al. 2006), in emerging smart
energy grids, and in coordinating AUAVs in a team.
[-POMDPs are being used to explore strategies for
countering money laundering by terrorists (Ng et
al. 2010, Meissner 2011) and enhanced to include
trust levels for facilitating defense simulations
(Seymour and Peterson 2009a, 2009b). They have
been used to produce winning strategies for play-
ing the lemonade stand game (Wunder et al. 2011)
and even modified to include empirical models for

84 AI MAGAZINE

simulating human behavioral data pertaining to
strategic thought and action (Doshi et al. 2010).

In the remainder of this article, I acquaint the
reader with the two frameworks while keeping in
mind their important foundations. Then, I review
the early algorithmic developments that built a
solid platform for continuing research in each
framework. Throughout this article, I compare the
two frameworks, pointing out some similar and
some differing facets, and conclude this article
with a discussion of some research directions that
this article did not touch upon and those that are
ripe for pursuing.

Dual Basis:
Decision and Game Theories

As I mentioned previously, both Dec- and I-
POMDP are founded on decision theory, which has
its own roots in the axioms of probability theory
and of von Neumann and Morgenstern’s utility
theory (1947). In particular, the frameworks gener-
alize an instantiation of the principles of decision
theory for partial information contexts called the
partially observable Markov decision process.
Although POMDPs first appeared in the operations
research literature (Smallwood and Sondik 1973),
they were later cast into the AI spotlight (Kael-
bling, Littman, and Cassandra 1998) as a frame-
work for optimal control of single agents.

An agent, say i, in the POMDP framework acts
and makes observations in a sequential cycle, as I
show in figure 2. The partial information context
results from agent i receiving observations that do
not reveal the current physical state precisely. Nev-
ertheless, we seek the actions that agent i should
perform in order to maximize the reward it can get
or its preferences.

A POMDP models the decision-making problem
for agent i using the following tuple:

POMDP =S, A, T, Q, O, R, OC))

Here, S is the set of physical states of the agent
and its environment that are relevant to the deci-
sion making. In the realm of my previous illustra-
tive example, the states could be the different sec-
tors in the AUAV’s grid. A; is the set of actions
available to the agent, such as the AUAV’s maneu-
vering and sensory actions. T; is the transition
function that models the dynamism and part of
the uncertainty in the problem. It does this by
mapping each transition from one state to anoth-
er given the agent’s action to its probability. Q, is
the set of observations that the agent makes, such
as the AUAV spotting the fugitive and receiving
sighting reports. O, is the observation function that
gives the likelihood of making an observation on
performing an action and moving to the subse-
quent state. It models another source of uncertain-



ty in the problem, one that manifests due to noise
in the agent’s observation sensors. Together, 4, T,
Q, and O, in the tuple, represent the capabilities of
the agent; R; is the quantitative reward or prefer-
ence function that models the preference structure
of the agent; and OC, is the agent’s optimality cri-
terion, which typically takes the form of maximiz-
ing cumulative rewards over a finite number of
time steps or maximizing cumulative discounted
rewards over an infinite number of steps in the
limit.

The solution of a POMDP is a function called the
policy, which maps the agent’s history of observa-
tions and an action to the probability with which
the action should be performed. We may compress
the representation of a policy by noting that a
probability distribution over the states, called the
agent’s belief, is a sufficient statistic for the agent’s
observation history. While POMDPs offer princi-
pled optimality in near-real contexts, their useful-
ness is inhibited by the high complexity of solving
them. In particular, the POMDP problem whose
optimality criterion involves maximizing reward
over a finite number of time steps that is less than
the number of states is PSPACE-complete
(Papadimitriou and Tsitsiklis 1987), otherwise it is
incomputable for an infinite number of steps
(Madani, Hanks, and Condon 2003). A factor that
drives up the complexity is the disproportionate
growth in the size of the belief space over which
the solution is optimized as the number of states
increase, which I call the belief space complexity.
The other predominant factor is the policy space
complexity, which is the exponential growth in
the number of policies to search over with time,
and is also affected by the action and observation
spaces. Due to this, approximate solutions that
make solving POMDPs feasible are crucial. Various
insights have led to a multitude of approximation
techniques. Notable among these is a group that
utilizes a subset of belief points over which to opti-
mize the solution instead of over the entire sim-
plex. These point-based approximations (Pineau,
Gordon, and Thrun 2006; Kurniawati, Hsu, and
Lee 2008) now allow POMDPs to scale to reason-
ably large domains thereby facilitating applica-
tions.

Although POMDPs lay down the groundwork,
the bridge to multiagent contexts is built on
insights from game theory. Oddly, both coopera-
tive and noncooperative interaction contexts are
studied in the noncooperative branch of game the-
ory. Both Dec- and [-POMDP frameworks make an
analogy to the use of types while modeling the
multiple agents. Specifically, agent models include
sufficient information to predict the agent’s
actions. This is consistent with Harsanyi’s stance
(1967), which describes a type as an attribute vec-
tor summarizing the physical, social, and psycho-
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Figure 2. A Schematic Diagram of the POMDP Framework.

Actions of the agent affect its own physical state and that of its environ-
ment. As is often the case in the real world, the agent’s observations do not
reveal the possibly changed physical state precisely. This makes meeting the
objective of finding actions that maximize the agent’s reward or preferences
challenging.

logical attributes of the agent including its payoffs
and beliefs, all of which are relevant to its actions.
Efforts to concretely define the type have con-
verged on a coherent infinite hierarchy of beliefs
with topological assumptions on the state space
(Mertens and Zamir 1985, Brandenburger and
Dekel 1993), as representing the agent’s type.
These beliefs, while not computable, play an
important role in individual decision making in
multiagent contexts, and indeed, they find a place
in the I-POMDP framework.

Surprisingly, the game-theoretic solution con-
cept of Nash equilibrium finds little consensus as a
solution for Dec- and I-POMDP frameworks. A
Nash equilibrium (Fudenberg and Tirole 1991) is a
profile of behaviors for the different agents such
that each behavior is best for the corresponding
agent given others’ behaviors. While equilibria-
based solution techniques for Dec-POMDPs were
proposed (Nair et al. 2003), recent focus has been
firmly on computing globally optimal solutions
instead of settling for the locally optimal strategies
that Nash equilibria provide, of which there could
be many. Of course, the globally optimal solution
is a Pareto-optimal Nash equilibrium in the coop-
erative context. Other limitations such as the pos-
sible existence of multiple Nash equilibria with no
clear way to choose between them and the inabil-
ity of an equilibrium-based solution to account for
behaviors outside the steady state, make equilibria
inappropriate for I-POMDDPs as well.
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Decision Making
in Multiagent Contexts

If it is common knowledge that the two AUAVs in
my previous illustrative example are cooperative,
then we would be interested in how each chooses
its action given its observations such that their
joint behavior is optimal in intercepting the fugi-
tive. On the other hand, an individual AUAV’s
deliberation about what the other AUAV might do
and its own subsequent action in the setting also
interests us, and more so if cooperation is not a giv-
en or if the initial belief state of the AUAVs is uncer-
tain. Both these directions of investigation are crit-
ical to a holistic understanding of decision making.

Two Sides of the Same Coin

Although the Dec- and I-POMDP differ in their
perspectives and in the interaction contexts, both
offer a framework for normative decision making
in multiagent contexts and share procedural ele-
ments. Figure 3 shows schematic diagrams for both
frameworks that detail how the different compo-
nents of the processes interact. Fach agent acts and
makes an observation, which influences its belief.
Expectedly, actions of both agents affect the phys-
ical state of the problem and the rewards that each
agent receives. Keeping track of the physical state
becomes relevant because it may influence the
rewards as well. Therefore, the interaction between
the agents manifests not only in the rewards that
each gets but also in the dynamic physical state of
the problem. Indeed, this makes for an expressive
but complex interaction model between agents.

As is shown in figure 3, the I-.POMDP perspec-
tive merges the physical state with how the other
agent(s) acts and observes into an interactive state.
An agent in this perspective keeps track of the
dynamic interactive state of the problem. This
offers an agent’s point of view to the interaction
and allows the agent to deliberate and decide at its
own individual level. In comparison, the Dec-
POMDP’s focus is on both agents who share a com-
mon reward function.

Joint Cooperative Decision Making

Guiding a team of agents in order to accomplish
tasks is a classic Al problem with implications in
many fields such as in robotics. However, the prob-
lem is infamously hard in realistic contexts. A Dec-
POMDP provides a framework within which we
may formalize this problem in partially observable
information contexts. In such contexts, even
knowledge of all agents’ observations is not suffi-
cient to precisely determine the physical state.
Although a Dec-POMDP models the cooperative
decision-making problem expressively, it stays
silent on how the team should behave when faced
with adversarial agents sharing its environment.
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For the sake of readability, I define the Dec-
POMDP for a two-agent context, but it is applica-
ble to more agents as well. It generalizes the
POMDP outlined previously to a multiagent con-
text using the following tuple:

Dec-POMDP = (S, 5, A, T, Q, O, R, OC)

While § is analogous to that in a POMDP, s, is the
initial state; A is the set of joint actions of both
agents, A = A; x A; where A; and A; are the action
sets of agents i and j, respectively; T is the joint
transition function and maps each transition
between states given the joint actions of the two
agents to its probability; Q is the set of joint obser-
vations, Q = Q. x Qi where Q; and Q. are the obser-
vation sets of agents i and j, respectively; the joint
observation function, O, gives the likelihood of
both agents jointly making their observations giv-
en their joint actions and the resulting state; R is
the common reward function that maps joint
actions and the state to a real number representing
the reward shared by the agents. In some cases, the
reward may also be associated with a complete
state transition; and OC is the optimality criterion
analogous to that for POMDPs. Given the partial
observability of the state space, the initial state is
often replaced with an initial belief over the state
space that is known to all agents. Dec-POMDPs are
usually solved in advance of the actual problem
occurrence. Techniques for solving Dec-POMDPs
often internally make use of a multiagent belief
state, which is a distribution over the physical
states and possible policies of the other agent.

Simplifications to facets of the Dec-POMDP defi-
nition motivated by the problem domains on hand
abound: If observations of the agents are condi-
tionally independent of each other given the joint
action and state, as is sometimes the case, we may
factor the joint observation function, although this
is not a requirement for Dec-POMDPs. Each com-
ponent focuses on the likelihood of an individual
agent’s observation given the joint action and state.
Another simplification, observation independence,
further trims down the observation function com-
ponents by assuming that the likelihood of an
agent’s observation depends on its own action and
the resulting state only. Analogously, an assump-
tion of transition independence allows the transi-
tion function to be factored into components that
map the local transitions of each agent — between
its local states given its own action — to a proba-
bility. These simplifications are desirable because,
through an ingenious reduction from the tiling
problem, Bernstein et al. (2002) showed that solv-
ing the Dec-POMDP is NEXP-complete for the
finite time steps case. For the first time, this result
explicitly illustrates how hard it really is for agents
to engage in principled and optimal cooperation in
uncertain contexts.

Behavior of a team of two AUAVs tasked with
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Figure 3. Schematic Diagrams for the Dec- and I-POMDP Frameworks.
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This figure shows the procedural similarities in their setup and highlights the key differences between their perspectives. In each frame-

work, decisions of the agent(s) in bold are sought.

intercepting the fugitive could be modeled as a
Dec-POMDP. The physical state space would be
possible combinations of the sector locations of
the AUAVs and the fugitive. The joint action and
observation spaces would be combinations of the
two AUAVs’ individual actions and observations
mentioned previously in the context of POMDPs.
Because a false positive intercept by any of the
AUAVSs causes the fugitive to reappear in a random
sector, the problem interestingly exhibits neither
transition nor observation independences.

An independent framework shown to be equiv-
alent to the Dec-POMDP under the condition that
agents perfectly remember their past history of
actions and observations (Seuken and Zilberstein
2008) is the Markov team decision process (MTDP)
(Pynadath and Tambe 2002). While the underlying
condition is a de facto assumption in both the
frameworks discussed in this article, its violation
exacerbates the uncertainty in the information
context; decision making in such situations
remains as yet unexplored.
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Specializations

Of course, the information context, in general,
need not always be partially observable, and Gold-
man and Zilberstein (2004) explore various flavors
of the information context ranging from joint par-
tial observability to local full observability catego-
rizing the complexity of the cooperative decision-
making problem in each. One of these problems is
an important specialization called the decentral-
ized MDP, which applies when the physical state is
jointly fully observable. This specialization is of
significance because if the information context for
each agent in the decentralized MDP is additional-
ly locally fully observable, and the problem
exhibits both transition and observation indepen-
dences, its complexity lessens to being NP-com-
plete (Becker et al. 2004), although it is still gener-
ally intractable.

Problem domains such as cooperative sensing by
sensor networks where adjacency of the sensor
motes defines interaction motivate frameworks
that could be perceived as specializations of Dec-
POMDPs. One such framework is the networked
and distributed POMDP (ND-POMDP) (Nair et al.
2005) that exploits the locality and sparseness of
the interaction between agents in solving the
cooperative decision-making problem. This locali-
ty is modeled using an interaction hypergraph,
and additional efficiency of the decision making is
enabled by utilizing transition and observation
independences between the interacting agents.
While the locality allows a factorization of the
reward function, the physical state space may also
be factored into a set of variables and the condi-
tional independence between the variables is
exploited to represent problems more efficiently
(Oliehoek et al. 2008).

Individual Decision Making

The external, objective perspective — as adopted
by Dec-POMDPs — is suitable for controlling
agents in cooperative contexts, but is more appro-
priate for an analysis rather than control of agents
in noncooperative contexts. On the other side of
the coin, an individual, subjective perspective as
adopted by I-POMDPs offers a single approach
toward control of agents in interaction contexts
where the other agents are cooperative, noncoop-
erative, or a mixture of both. In the game theory
literature, this approach has been previously rec-
ognized as the decision-theoretic approach to
game theory (Kadane and Larkey 1982). However,
the elegance of a single approach comes with the
cost of maintaining explicit belief systems that
should be continually updated, and these belief
systems could become noncomputable in general.

An I-POMDP for an agent i sharing its environ-
ment with one other agent, j, is formalized using
the following tuple of parameters:
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I-POMDPi = (IS, A, @, T, O, R, OC))

Here, IS; is the set of interactive states: the physical
states of the problem, S, augmented with models,
M, of the other interacting agent, IS; = S x M. For
the sake of operationalizing the framework, the
models are limited to be computable. While mod-
els need not be just intentional, the focus so far has
been on such models. An intentional model, Gi X
©,, is analogous to a type in game theory and
encapsulates all the private information about the
agent relevant to its actions. This is formalized in
terms of the agent’s beliefs capabilities, and pref-
erences: G = (b A, Q R OcC, >, where b is a
dlstnbutlon over IS, d] the remalmng parameters
have their standard 1nterpretat10ns Next, A is the
set of joint actions of the agents, A = A; x A;, where
A; and A; are the action sets of agents 7 and j,
respectively. Q, is the set of observations made by
agent i; T; and O, are analogous to those defined in
POMDPs, with the exception that a transition or
an observation usually depends on the joint
action. Despite being a part of the interactive state,
models do not appear in the transition and obser-
vation functions because the framework assumes
that models, especially other’s beliefs, cannot be
directly altered nor observed. Features that could
be altered or directly observed should be included
in §; R, gives the reward of agent i based on the
physical state and the joint actions; and OC, is the
optimality criterion analogous to that for
POMDPs. I show the problem setting for the I-
POMDP framework in figure 4.

Agent i's belief is a probability distribution over
IS,. Because the interactive state space includes mod-
els that contain j’s beliefs, agent i’s belief is a distri-
bution over different j’s beliefs, each of which itself
could be a distribution over i’s beliefs. Figure 4 also
shows this nested modeling for agent i. Several
researchers, including Binmore (1982) and Bran-
denburger (2007), have pointed out the existence of
self-contradicting, and therefore impossible, beliefs
when complete infinite hierarchies are considered,
tying the result to other well-known impossibility
results such as the Russell Paradox. This, combined
with the noncomputability of operating on infi-
nitely nested beliefs, makes I-POMDPs generally not
computable and motivates a logical approximation:
bounding the nesting to finite levels by assuming a
“level 0” belief. Not only does this make the beliefs
computable, it also precludes the existence of
impossible beliefs alluded to previously. However, as
we shall see, this approximation is not without its
own limitations. Consequently, finitely nested I-
POMDPs additionally include a strategy level, 1, that
defines the level of nesting with a level 0 model
being a POMDP containing a belief that distributes
probability over the physical states only. L[POMDPs
with increasing strategy levels lead to actions that
are more strategic, and the general rule of thumb is
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Figure 4. An Agent in the I-POMDP Framework Maintains Explicit Beliefs About the
States and Models of Other Agent(s), About Other’s Beliefs over States and Models of Others.

In cooperative contexts, a common initial belief as used in a Dec-POMDP collapses the initial belief hierarchy into a single branch of prob-
ability 1 at each level. Nevertheless, as the agents act and observe the candidate models grow due to the uncertainty.

to utilize as high a strategy level as we can. While
the asymptotic complexity of finitely nested I-
POMDPs has not been formally established as yet, it
is thought that they are at least as hard to solve as
Dec-POMDPs.

Two differences complicate the belief update in
multiagent contexts compared to the POMDP
belief update. First, since the physical state
depends on the actions performed by both agents
the prediction of how it changes has to be made
based on the probabilities of various actions of the
other agent. Probabilities of other’s actions are
obtained by solving its models. Thus we need not
assume that actions are fully observable by others.
Rather, agents can attempt to infer what actions
other agents have performed by sensing their
results on the environment. Second, changes in
the models of other agents have to be included in
the update. The changes reflect the other’s obser-
vations and, if they are modeled intentionally, the
update of other agent’s beliefs. In this case, the
agent has to update its beliefs about the other
agent based on what it anticipates the other agent
observes and how it updates.

The decision making of each AUAV in my illustra-
tive example may be modeled as a finitely nested
[-POMDP, particularly if the AUAV is unsure about
the type of the other. In this case, M; would include

possible models that ascribe different shades of
cooperation, noncooperation and neutrality to the
other AUAV using appropriate reward functions in
the models. Based on the computational resources
available to the AUAYV, it would benefit from utiliz-
ing a strategy level that is as high as possible.

Relationships

Both Dec- and I-POMDPs solve decision-making
problems that are instances of partially observable
stochastic games as they are referred to in the
game-theoretic realm. Stochastic games are
sequential games additionally involving a dynam-
ic state of the game. While these games are well
studied, their partially observable generalizations
have received scant attention from game-theoretic
researchers. Specifically, Dec-POMDPs focus on
solving a type of the partially observable stochas-
tic game, which involves identical payoff func-
tions for the agents. I-POMDPs solve the general
game but from an individual agent’s perspective,
transforming the physical state space that is a part
of the game’s definition into an interactive state
space by including others’ models. Consequently,
advances in Dec- and I-POMDPs have the poten-
tial to inform game theory as well.

Because the two frameworks generalize
POMDPs, decision-making problems modeled by
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Dec-POMDP
MTDP

Partially Observable Stochastic Games

[-POMDP
(finitely-nested)

Figure 5. Each Set in the Venn Diagram Represents the Class(es)
of Problems that the Corresponding Framework Can Solve.

Gray area in the intersecting region of Dec- and [-POMDP indicates the current uncertainty about whether team behav-
ior as produced by a Dec-POMDP could be obtained from a finitely nested I-POMDP for certain problems, as well. Still,
this region may not be empty and is a topic of ongoing investigations.

POMDPs are also instances of Dec- and I-POMDPs
with the number of agents as one. Figure 5 shows
a Venn diagram displaying the relationships
between the members of the different frameworks
that I have discussed so far in this article. Note that
the diagram is by no means exhaustive in the
frameworks that it includes. Its purpose is suc-
cinctly to align the classes of problems and per-
spectives modeled by the different frameworks in
order to promote clarity.

Foundational Algorithmic
Developments

Algorithms for solving Dec-POMDPs and finitely
nested [-POMDPs have drawn heavy inspiration
from past algorithms for solving POMDPs. Some of
them have also looked toward game theory for
direction. Recall that the solution to a Dec-POMDP
is a joint policy, which is a vector of policies, one
for each agent. On the other hand, solution of an
[-POMDP is a single policy for the subject agent in
the multiagent context. A policy in both frame-
works may be represented using directed trees if
the number of time steps are finite; otherwise a
finite-state machine is appropriate.

Exact solutions retain the attractive guarantee of
optimality. A caveat is that exact solutions of
finitely nested I-POMDPs are technically com-
putable approximations of the full I-POMDP
framework. However, solving for exactness faces
the barrier of high computational complexity. This
complexity is partly due to the very large spectrum
of policies that must be searched, which is further
exacerbated in multiagent contexts where policies
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for all agents must be considered. Nevertheless,
exact solution techniques exist for both frame-
works. Analogous to POMDPs, we may define val-
ue functions that provide the expected reward for
a joint policy in a Dec-POMDP or an individual
policy in an I-POMDP, albeit the functions are
more complex.

A dynamic programming operator introduced
by Hansen, Bernstein, and Zilberstein (2004) kick-
started investigations into feasible algorithms for
Dec-POMDPs. In an iterative two-step process, the
operator first exhaustively generates policies of
increasing length in a bottom-up manner starting
with a single action. This is followed by pruning
those policies for each agent that are very weakly
dominated by other policies. We illustrate the
dynamic programming operator in figure 6. Of
course, the pruned policy should be dominated at
any belief over the state space and no matter the
policies of the other agents. This is accomplished
by testing for dominance over all multiagent belief
states, each of which, as we may recall, is a distri-
bution over the physical state and possible policies
of the other agents. Consequently, the operator
enables a reduced but sufficient set of policies to be
searched at each step. This is analogous to iterated
elimination of very weakly dominated behavioral
strategies — a well-known technique for compact-
ing games — in the context of partially observable
stochastic games. Among the remaining policies
for each agent, the joint policy with the largest val-
ue is the exact solution of the Dec-POMDP.
Although this approach consumes a fraction of the
resources that an exhaustive search needs, it fails to
solve small toy problems beyond time steps as
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Figure 6. Generic Example of Dynamic Programming for Dec-POMDPs.

To illustrate dynamic programming for Dec-POMDDPs, I consider a simple and generic example involving two agents, i and j, each with two
actions, a, and a,, and two observations, 0, and o,. (a) Beginning with single actions for each agent, which are optimal, the operator gen-
erates possible policies (trees) of increased length for each agent, as shown in (b). Here, I show just a small subset of all possible policies of
increased length. Note that the policies differ in the action selected initially or on receiving the two observations, or in both. (c) In the prun-
ing step, two of agent i’s policies are found to be very weakly dominated by the remaining over all of i’s multiagent belief states, thereby
removing them from consideration. The dominance test is iterated for agent j as well given the residual set of i’s policies, and this step is

iteratively repeated until no more policies get pruned for either agent.

short as four. A top-down technique, different
from the previous bottom-up dynamic program-
ming, applies A* search where subsequent nodes of
the search tree represent joint policies of longer
time steps (Szer, Charpillet, and Zilberstein 2005).
Of course, an admissible heuristic that is optimistic
and never undervalues the complete policies at
any time step is needed. A simple approach is to
assume reduced uncertainty in the problem such
as full observability of the physical states and com-
pute the value. Improved heuristics that make the
search more efficient rely on tighter approxima-
tions of the joint policy values by, say, collapsing
the joint decision problem into a POMDP with
joint actions. These heuristics are plugged into a
generalized version of the A* search (Oliehoek,
Spaan, and Vlassis 2008).

The large model space in finitely nested I-
POMDPs is the predominant barrier against exact
solutions. Rather than imposing ad hoc restric-
tions on candidate models, a method for compact-
ing the general space is needed. One way of doing
this is to group together models that are behav-
iorally equivalent (Pynadath and Marsella 2007). If
the models are intentional — they are POMDPs or
[-POMDPs with differing beliefs — we may utilize
their solutions, starting at level O and climbing up
the strategy levels, to partition the model space
into a discrete number of equivalence classes at
each level (Rathnasabapathy, Doshi, and Gmy-

trasiewicz 2006). This provides a tractable foothold
on the model space with which we may solve I-
POMDPs exactly.

While exact solutions serve as important bench-
marks of solution quality, their lack of scalability pre-
cludes their usefulness. Needless to say, the bulk of
algorithmic development for both frameworks has
focused on approximations. These trade the solution
quality for greater scalability and often exhibit prop-
erties such as monotonically improving solutions as
more computational resources are allocated and, less
frequently, an upper bound on the loss in optimali-
ty given a parametric measure of the resources. Even
S0, a negative result that the lower-bound complex-
ity of finding an approximate solution of Dec-
POMDP within ¢ of the exact continues to remain in
the NEXP class (Rabinovich, Goldman, and Rosen-
schein 2002) puts a theoretical damper on the ben-
efits of approximations.

An approximation of the exact dynamic pro-
gramming operator allowed Dec-POMDP-based
solutions of toy problems to scale tremendously
but without any quality guarantees: up to four
orders of magnitude in time steps (Seuken and Zil-
berstein 2007). While it generates all new policies
of increasing length that are possible from the
solution of the previous iteration for each agent, it
limits the number of new joint policies retained at
each step based on the available memory and uti-
lizes a subset of the multiagent belief space, as in
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point-based approximations for POMDPs, over
which to test for dominance of a policy. A portfo-
lio of different heuristics enables a focus on possi-
bly relevant belief points. An improvement on this
technique avoids generating all possible policies in
the first place by heuristically estimating good
quality joint policies that would then be evaluated
on the belief points (Dibangoye, Mouaddib, and
Chaib-draa 2009). Notice that these techniques are
motivated by the efficacy of point-based algo-
rithms in the context of POMDPs, and they affect
finitely nested [-POMDPs as well. A generalized
version of point-based value iteration (Doshi and
Perez 2008) allows the use of select belief points
over which to optimize behavior, at each level of
the nested modeling. The net effect is an improve-
ment of more than an order of magnitude in the
length of the policies that are possible to compute,
although the problem sizes remained limited to
few physical states.

The A* search may be approximated by viewing
the cooperative joint decision-making problem
modeled by a Dec-POMDP as a sequence of
Bayesian games, which are games generalized to
condition an agent’s payoff on its private informa-
tion called its type (Harsanyi 1967). Here, the types
of an agent are its different action-observation his-
tories. In order to solve Bayesian games, we need a
joint distribution over the types of all agents. This
distribution, which is assumed to be common
knowledge, is computed by solving the Bayesian
games in the previous time steps to obtain the
agents’ actions. A Bayes-Nash equilibrium or the
Pareto-optimal equilibrium that is also the optimal
joint solution, could be computed given the pay-
offs. The sequential approach avoids backtracking
because a single, optimal solution is obtained from
the Bayesian games. As the general type space is
exponential in the number of time steps, low prob-
ability types are pruned to reduce the type space,
thereby approximating the solution (Emery-Mon-
temerlo et al. 2004). Furthermore, the intractabili-
ty of using the optimal expected rewards as payoffs
motivates heuristic values, which are explored by
Oliehoek, Spaan, and Vlassis (2008). Another algo-
rithm also embracing game-theoretic solution con-
cepts conducts a search for joint policies in Nash
equilibrium (Nair et al. 2003) for a team of agents.
The existence of multiple equilibria opens up the
possibility that the decentralized agents in these
techniques may choose policies in different equi-
libria, which diminishes the value of the joint
behavior. This pitfall is not unique to equilibria-
based solutions as multiple globally optimal joint
solutions may also be present. It is avoided by solv-
ing the decision problem in advance, as is usual,
and fixating on policies in a single equilibrium or
optima, which are then distributed to the agents.

Approximate representations of the nested
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beliefs in finitely nested I-POMDPs make the inter-
active state space more tractable. One such repre-
sentation utilizes samples, called particles, where
each particle contains a physical state and the oth-
er agent’s model (Doshi and Gmytrasiewicz 2009).
Particles are obtained by Monte Carlo sampling of
the state space based on the subject agent’s belief.
Other agent’s belief in each particle is itself repre-
sented using a sampled set of particles resulting in
a nested particle set. The agent’s belief is updated
approximately by projecting the entire nested par-
ticle set in time using a two-step approach of sam-
pling the next physical state followed by using the
observation likelihood, at each level of nesting.
This technique takes an order of magnitude less
time in solving I-POMDPs in comparison to the
exact, with a controlled loss in optimality. Doshi
(2007) showed how the nested particle set may be
modified and propagated when the physical state
space is continuous or very large.

Previous algorithms all focus on computing
solutions when the optimality criterion requires
maximizing the expected reward over a finite
number of time steps. This allows the policies to
manifest as trees of finite height. However, if the
optimality criterion specifies infinite steps, trees
are no longer feasible; instead the policies manifest
as stochastic finite-state machines as I mentioned
previously. We may progressively improve the
joint controllers, one at a time and holding the
other fixed, while taking care not to exceed a
bound on the number of nodes, until no more
improvement is possible. In cooperative contexts,
Bernstein, Hansen, and Zilberstein (2005) show
that a shared correlation device could also be help-
ful in improving the quality of the joint controller.
Although such improvements of the joint con-
trollers could get mired in local optima, the tech-
nique scales favorably to problems involving a
large number of physical states and actions. Specif-
ically, small controllers of reasonably good quality
may be obtained for two-agent problem domains
exhibiting up to a hundred physical states, five
actions, and a similar number of observations. Iter-
ative improvement of the joint controllers and its
subsequent convergence to a local optimum could
be avoided by reformulating the problem as a non-
linear program whose optimization has the poten-
tial to immediately generate the globally optimal
controllers of given size (Amato, Bernstein, and Zil-
berstein 2010). However, practical nonlinear pro-
gram solvers are unable to exclude local optima,
though experiments reveal that the solution qual-
ity is high.

Developments outlined in this section provide a
firm algorithmic foundation for both Dec- and I-
POMDPs on which advances could take place. In
table 1, I list techniques that have played a key role
in this regard. Seuken and Zilberstein (2008) pro-



Dynamic programming
Behavioral equivalence
Memory-boundedness
Point-based optimization
Sampling states and observations
Locality of interaction

Belief Space  Policy Space  Multiple Agents

4
v
4
4
4
4

Table 1. A Tabulation of Some Core Techniques and the Types of Complexity That Affect Both Frameworks.

Recall that the belief space complexity refers to the disproportionate growth in the space of beliefs as the physical states
increase, the policy space complexity is due to the exponential growth in the number of policies that must be consid-
ered with time, both of which are exacerbated as the number of interacting agents increase. A [] indicates that the tech-
nique in that row helps in mitigating the type of complexity specified in the column.

vide more details on some of the approaches dis-
cussed here, and numerous collections of publica-
tions related to the two frameworks exist on the
web, one of which is currently available at
rbr.cs.umass.edu/"camato/decpomdp. Indeed,
newer techniques, not discussed here, continue to
push the scalability envelope for both frameworks.
This is critically needed to facilitate more real-
world applications.

Discussion

Automated decision making in multiagent con-
texts is a crucial research frontier in our quest for
designing intelligent agents because of its wide
applicability in problem solving. Although we may
not see the Dec- or [-POMDP frameworks being a
part of field trials of AUAVs anytime soon, steady
progress is being made in making them scalable.
These frameworks, along with their specializations
that I discussed here, are model-based ways of
computing optimal behavior. An equally impor-
tant research direction investigates in parallel mul-
tiagent decision making without presupposing a
model by relying on repeated problem simulations
to acquire data; this direction generalizes single-
agent reinforcement learning. Hybrid approaches
that learn incompletely specified models also exist.

An important facet of multiagent contexts,
which I did not discuss in this article, is commu-
nication between the agents. This is because the
topic demands a detailed treatment in itself, part-
ly due to its importance in cooperative decision
making. In the context of Dec-POMDPs, relevant
research has mostly focused on the potential of
communication mitigating the high computation-
al complexity of the decision-making process by

reducing the interagent uncertainty (for a recent
example, see Wu, Zilberstein, and Chen [2011]).
Communicative extensions of Dec-POMDPs and
other frameworks have been introduced, most of
which model communication as a distinguished
act. On the other side of the coin, an intentional
agent modeled using finitely nested [-POMDP aug-
mented with communicative acts exhibits a sur-
prising rational behavior: it will choose not to
communicate or to respond to any requests. At the
heart of this observation is the simple insight that
at the lowest level (level 0), an intentional agent is
modeled as having no understanding of others in
its environment. Consequently, such an agent
does not view sending a message (to nobody in its
perspective) beneficial, nor is it able to rationalize
an observed request other than attributing it to
noise. Reasoning that the other agent (at level 0)
will not engage in communication, the level 1
agent does not see any benefit in communicating
either. We may apply this argument upward in the
nesting and thereby conclude that the (boundedly)
rational level 1 agent may not engage in commu-
nication. This paradoxical result is primarily due to
bottoming out the nesting — a consequence of
computability. I do not think that this paradox is
an artifact of the particular framework. However, it
does motivate changes to how we model other
agents and suggests that models that additionally
incorporate learning are needed, as realized in the
context of Dec-POMDDPs as well (Spaan, Gordon,
and Vlassis 2006).

Future Advances

While the frameworks have drawn insights from
game theory, they may, in return, advance game
theory as well. One way is by helping to explain
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the equilibration process in complex
settings, which as Binmore (1982)
pointed out, continues to remain a
key gap in game theory. A focus on the
procedural aspects of decision making
by I-POMDPs allows us to understand
optimal behavior, and the computa-
tional difficulty in satisfying sufficien-
cy conditions for equilibration (Doshi
and Gmytrasiewicz 2006) informs us
as to why equilibrium is a perplexing
concept.

As Seuken and Zilberstein (2008)
note, reconciling the behaviors pre-
scribed by Dec- and I-POMDP in coop-
erative contexts is worthwhile because
each one represents a different ap-
proach to decision making in multia-
gent contexts. In particular, I-POMDPs
provide a fertile ground for investigat-
ing the interaction between com-
putability and intentionality, and its
possibly negative implications on
asymptotic agent behaviors (for exam-
ple, see again Doshi and Gmytrasiewicz
[2006] and references therein), in the
backdrop of global optimality as pre-
scribed by Dec-POMDPs.

Finally, as applications of decision-
making frameworks emerge, an
important one is in decision support
systems that are part of mixed human-
agent teams. Using models of the task
at hand, the frameworks may provide
normative recommendations to the
human who may choose to act on
them. Furthermore, the frameworks
could additionally utilize descriptive
models of human behavior on the task
at hand and perform actions that sup-
port those of the human as a true
teammate, though this application is
more challenging.
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