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Despite enormous strides in scientific understanding and
medical treatment, cancer still kills millions of people
each year. This article will explore why cancer has

proven to be such a formidable adversary, and how AI and
machine learning (ML) can save lives by helping individual
patients beat the odds. 

Modern molecular biology supports the hypothesis that can-
cer is actually hundreds or thousands of rare diseases, and that
every patient’s tumor is, to some extent, unique (Pleasance et
al. 2010). Although there is a rapidly growing arsenal of target-
ed cancer therapies that can be highly effective in specific sub-
populations,1 especially when used in rational combinations to
block complementary pathways, the pharmaceutical industry
continues to rely on large-scale randomized clinical trials that
test drugs individually in heterogeneous populations. Such tri-
als are an extremely inefficient strategy for searching the com-
binational treatment space, and capture only a small portion of
the data needed to predict individual treatment responses. On
the other hand, an estimated 70 percent of all cancer drugs are
used off label in cocktails based on each individual physician’s
experience, as if the nation’s 30,000 oncologists are engaged in
a gigantic uncontrolled and unobserved experiment, involving
hundreds of thousands of patients suffering from an undeter-
mined number of diseases.2 These informal experiments could
provide the basis for what amounts to a giant adaptive search
for better treatments, if only the genomic and outcomes data
could be captured and analyzed, and the findings integrated and
disseminated. 

Toward this end we are developing Cancer Commons,3 a fam-
ily of web-based rapid-learning communities in which physi-
cians, patients, and scientists collaborate to individualize cancer
therapy (Shrager, Tenenbaum, and Tavers 2011). The goals of
this initiative are to (1) give each patient the best possible out-
come by individualizing his or her treatment based on their
tumor’s genomic subtype, (2) learn as much as possible from
each patient’s response, and (3) rapidly disseminate what is
learned. The key innovation is to run this adaptive search strat-
egy in “real time,” so that the knowledge learned from one
patient is disseminated in time to help the next.

Cancer Commons provides an exciting and important
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n Cancer kills millions of people each year.
From an AI perspective, finding effective treat-
ments for cancer is a high-dimensional search
problem characterized by many molecularly
distinct cancer subtypes, many potential targets
and drug combinations, and a dearth of high-
quality data to connect molecular subtypes and
treatments to responses. The broadening avail-
ability of molecular diagnostics and electronic
medical records presents both opportunities and
challenges to apply AI techniques to personalize
and improve cancer treatment. We discuss these
in the context of Cancer Commons, a “rapid
learning” community where patients, physi-
cians, and researchers collect and analyze the
molecular and clinical data from every cancer
patient and use these results to individualize
therapies. Research opportunities include adap-
tively planning and executing individual treat-
ment experiments across the whole patient pop-
ulation, inferring the causal mechanisms of
tumors, predicting drug response in individuals,
and generalizing these findings to new cases.
The goal is to treat each patient in accord with
the best available knowledge and to continual-
ly update that knowledge to benefit subsequent
patients. Achieving this goal is a worthy grand
challenge for AI.
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domain for the application of AI and ML. Achiev-
ing its goals will require developing models for pre-
dicting individual responses to cancer therapies
and using them to plan and run thousands of
adaptive treatment experiments. The genomic and
clinical response data from each patient can be
analyzed to continuously improve the predictive
models, as well as our understanding of cancer
biology and drugs. Each patient is treated in accord
with the best available knowledge, and that knowl-
edge is continually updated to benefit the next
patient.

In the next section, we review the current para-
digm for translational cancer research, and its lim-
itations, as we enter the new era of genomics and
personalized medicine.4 Then we introduce Cancer
Commons as a new, open-science paradigm for
real-time translational research, with no daylight
between lab and clinic. The fourth section explores
the opportunities and challenges at the intersec-
tion of Cancer and AI research. Finally, we con-
clude with an invitation to participate in the grand
challenge of curing cancer. 

Cancer Research in the 
Era of Genomics and 

Personalized Medicine 

It is unlikely that a single cure will be found for
cancer—it is not a single disease. To a first approx-
imation, cancer is what happens when a normal
cell mutates in such a way that it can reproduce
but no longer control its growth. As genome
sequencing becomes less expensive and more
widespread, scientists are finding a spectacular
variety of mutations that lead to cancerous growth
(Pleasance et al. 2010). Consensus is building that,
because cancer is an individualized disease, it must
be addressed through individualized treatment
(see, for example, McDermott, Downing, and Strat-
ton [2011]). 

Developing and justifying individualized cancer
treatments is a very difficult problem. First, each
organ-specific cancer involves many rare genomic
alterations, thus leading to highly heterogeneous
disease populations. This heterogeneity flows
directly from the underlying biological and genet-
ic complexity of cancer. The mutation history of
each tumor cell is also unique—the result of cas-
cading and compounding errors in the cell’s
machinery for maintaining the integrity of its
DNA, as well as evolutionary adaptations that help
it evade therapy.

Genetic mutations typically manifest them-
selves through cell signaling pathways, chains of
protein-catalyzed reactions that govern basic cel-
lular functions such as cell division, cell move-
ment, how a cell responds to specific external stim-

uli, and even cell death. The proteins in a pathway
often communicate by adding phosphate groups,
which act as “on” or “off” switches, to a neighbor-
ing protein. When one of the oncogenes that codes
for such proteins is mutated, the resulting protein
can be stuck in the “on” or “off” position, leading
to uncontrolled cell growth, and thus cancer.

In contrast to traditional chemotherapy, which
targets all rapid cell growth, modern targeted can-
cer therapies attempt to block specific molecules in
the signaling pathways. Targeted therapies may be
more effective than current treatments and less
harmful to normal cells. However, a given patient
may require a custom cocktail of targeted therapies
to block both the pathways directly affected by an
oncogene as well as secondary pathways that may
enable the cell to evade therapy.

Large-scale clinical trials are problematic in
genomic diseases like cancer because they rely on
population statistics rather than individual
responses. A drug that works on 50 percent of
patients tested may or may not be better for any
given patient than one that works on 20 percent.
This inability to account for individual responses
may explain why so many late-stage trials fail to
demonstrate statistical efficacy, even though a few
individuals do respond. What disease did these
responders have, that used to be called “breast can-
cer” or “melanoma,” for which there is now an
effective drug? How many other cancer patients
have the same genomic disease? Unfortunately,
we’ll never know because when a trial fails, the
drug is, as a rule, abandoned. 

One happy exception to this rule involves
Gleevec (Imatinib), originally developed in 1998
by Novartis for chronic myelogenous leukemia
(CML). Gleevec was among the first of a new gen-
eration of targeted therapies developed to block a
specific enzyme—in this case, BCR-ABL—in a can-
cer signaling pathway. Shortly after its develop-
ment, it was experimentally observed that Gleevec
also blocked a structurally similar enzyme called c-
KIT, which was a primary cause of gastrointestinal
stromal tumors (GISTs), a rare form of sarcoma
(Demetri 2002). Gleevec was subsequently tested
on many forms of cancer, including a 2003 trial for
melanoma that failed (Kim et al. 2008). There
were, however, a handful of responders in that tri-
al, all of whom had two things in common: their
primary tumors were located not on their skin, but
in places where the sun don’t shine (for example
inside the mouth), and their tumors all had a
mutated c-KIT gene. In 2008, results of a definitive
trial testing Gleevec on patients whose tumors had
been pretested for c-KIT mutations demonstrated a
major response (Hodi et al. 2008). A randomized
trial would have needed perhaps a million patients
to demonstrate statistical significance for a drug
that affected at most 3 percent of melanoma
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they pertain to patients who urgently
need new options. Over time, the
answers should lead to MDM models
with increasingly specific molecular
subclasses, linked to increasingly effi-
cacious therapies.

Cancer Commons’ rapid learning
loop is illustrated in figure 1. It applies
the same continuous improvement
philosophy to drug development and
clinical trials that management gurus
like W. Edwards Deming used in the
1980s and 1990s to slash time and costs
in automobile manufacturing and
many other industries. It is also related
to the concept that Andy Grove, the
former CEO of Intel, had in mind when
he advocated, in an influential JAMA
editorial, that the pharmaceutical
industry should strive to achieve the
fast “knowledge turns” achieved by
chipmakers (Grove 2005). According to
The Economist, “A knowledge turn […]
is the time it takes for an experiment to
proceed from hypothesis to results, and
then to a new hypothesis—around 18
months in chipmaking, but 10–20 years
in medicine.”5

In addition to accelerating clinical
research, Cancer Commons also accel-
erates communication of the results and
subsequent collaborations. The MDMs
serve as living review articles, main-
tained online and continuously updat-
ed by top cancer experts. Clinicians and
researchers can post peer-reviewed clin-
ical observations and data, anecdotal
case reports, rational treatment
hypotheses, and actionable research
findings to the relevant MDM sub-
type—preliminary results that are too
early for formal presentation in journals
or at conferences but that may be help-
ful to late-stage patients running out of
options. Physicians and patients who
choose to act on these postings can
then report clinical outcomes and side
effects from their “N of 1” experiments
through the web. Treatment hypotheses
that prove successful in a few patients
can be generalized to a specific molecu-
lar phenotype and validated in proof-of-
concept studies or small clinical trials.
Hypotheses that hold up can ultimately
be incorporated into the guidelines as
the new standard of care. Hypotheses
and observations that don’t hold up can
be quickly rejected or revised based on
the data points from human subjects. 

patients. There’s more to this story, and
we’ll return to it several times.

As we enter the age of personalized
genomic medicine, the Gleevec experi-
ence will become the norm. At the
molecular level, cancer is hundreds if
not thousands of unique diseases. Giv-
en that there are more than 800 thera-
pies in development targeting specific
mutations, and that they will often
have to be used together in cocktails to
ensure a durable response, there simply
isn’t enough time, money, patients, or
specimens to test treatments individu-
ally on large heterogeneous patient
populations. We need a smarter way to
search for effective treatments, one
that utilizes the complete molecular
and clinical profile of every patient to
efficiently decide which drugs are like-
ly to work best in a specific patient. 

Community oncology practices,
where the vast majority of patients are
treated, provide a promising way for-
ward. Every day, thousands of patients
who have exhausted the standard of
care are treated with off-label drugs and
cocktails. These treatment decisions are
based largely on the judgments and
experience of individual physicians,
and the results are seldom reported.
What if we could coordinate these
thousands of ad hoc “N of 1” experi-
ments, capture their results, and inte-
grate them with the evidence from
large-scale controlled trials? Cancer
Commons provides the platform for
doing just that, transforming the
everyday practice of oncology into a
giant adaptive search for better treat-
ments.

Cancer Commons 
Cancer Commons is a family of web-
based rapid learning communities
where physicians, scientists, and
patients collaborate to individualize
therapies based on the molecular pro-
file of each tumor. Cancer Commons
provides physicians with the knowl-
edge and resources to treat each patient
in the best possible way, and to dis-
seminate the resulting data and knowl-
edge as efficiently as possible to help
subsequent patients. Cancer Commons
is, in essence, a huge adaptive clinical
trial, whose goal is to continuously
improve patient outcomes, rather than

to demonstrate the efficacy of a specific
drug for regulatory approval.

Cancer Commons is being devel-
oped one cancer at a time, beginning
with melanoma. At the core of each
Commons is a molecular disease mod-
el (MDM). MDMs are expert-curated
reference models enumerating the
known molecular subtypes of a cancer.
Each subtype is linked to relevant path-
ways, diagnostic tests, approved and
experimental (targeted) therapies, and
clinical trials. At each point in time,
oncologists can use the appropriate
MDM to treat patients with the best
available therapies for their tumors’
molecular subtype. The subtypes and
associated therapies can be continually
refined based on how patients respond.
For example, subtypes can be split cor-
responding to responders and nonre-
sponders, and new subtypes added to
accommodate previously unseen
tumor types. Conceptually, all patients
within Cancer Commons are partici-
pating in a huge, continuously run-
ning, adaptive clinical trial that is con-
stantly testing and refining both the
MDM subtypes and their potential
treatments.

The power in the Cancer Commons
approach lies in the rapid feedback
loop that is generated when a patient is
rationally treated based on his or her
molecular subtype but does not
respond as predicted. Armed with state
of the art genomics technology,
researchers can attempt to uncover
why that individual failed to respond
and apply the findings to the next
patient with the same molecular sub-
type. Studying response outliers can be
particularly informative. Earlier, we dis-
cussed the example of a handful of
melanoma patients who responded to
Gleevec in a trial that failed to meet its
clinical end points. The flip side is the
subset of patients who fail to respond
in a successful trial. For those patients
that were directed to the trial through
Cancer Commons, one can go back to
the scientists on whose research the
molecular disease model was based and
ask them to revise the model based on
the new molecular and clinical data
from the subset of nonresponding
patients. What disease subtype did
they have and how should it be treat-
ed? These questions are not academic;
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A Melanoma Molecular 
Disease Model (MMDM) 
Figure 2 depicts a portion of the current MDM for
melanoma, created by CollabRx, Inc. (Vidwans et
al. 2011) This expert-curated model summarizes
what is currently known about each molecular
subtype of melanoma—which biochemical path-
ways are disrupted, their prevalence, their genetic
markers, and, critically, how they respond to ther-
apeutic interventions.6 Figure 2a illustrates the
major signaling pathways implicated in
melanoma, including the map kinase (MAPK)
pathway (on the left) and the AKT/PI3K pathway
(on the right), which regulate cell growth, cell pro-
liferation, and cell death. There is a lot of crosstalk
between these pathways and their downstream
effectors. Figure 2b is a table summarizing the sub-
types of melanoma and linking them to these
pathways. Each subtype is defined based on the
mutational status of a key oncogene or tumor sup-
pressor gene in a given pathway (such as BRAF for
subtypes 1.1 to 1.4 and c-KIT for subtype 2.1). Each
subtype is then further divided by mutations that
may coexist in genes that play a supportive role
(such as PTEN, AKT, and CDK4 in the case of sub-
types 1.2, 1.3, and 1.4). The subtypes are ordered
by their prevalence and potential for therapeutic
intervention. All told, the model currently distin-
guishes eight actionable subtypes. Melanomas that
do not fit into these subtypes are parked in subtype
9 (TBD) pending further research.

The MMDM represents the current state of
knowledge about melanoma subtypes and their
associated molecular diagnostics and targeted ther-
apies. It connects information about pathways, tar-
gets, tests, drugs, and trials previously scattered
across hundreds of publications and databases, not
to mention information that previously existed
only in the heads of a few experts. It is clearly a
work in progress. As oncologists use the MDM to
treat patients, the subtypes and their associated
therapies will be continually refined based on how
individual patients respond. Subtypes will be split
corresponding to responders and nonresponders,
and new subtypes added to accommodate previ-
ously unseen tumor types. Over time, it would not
be surprising to see the model grow to encompass
dozens of subtypes and sub-subtypes with distinct
therapeutic options.

The MMDM appeared in a peer-reviewed scien-
tific journal (Vidwans et al. 2011). The PDF, con-
taining many tables, charts, literature references,
and supporting data, is also available online,7 host-
ed on a semantic media wiki (SMW) platform.8

SMW is an extension of MediaWiki—the wiki
application best known for powering Wikipedia.
The semantic extensions transform the MMDM
into a hyperdocument that can be rapidly navigat-
ed to find all information relevant to a given topic

(such as subtype, test, drug, or trial) as well as addi-
tional information on the web. Moreover, the
SMW adds semantic annotations that make the
content of the MMDM understandable by a com-
puter. The MMDM can thus function as a collabo-
rative database, whose contents can be accessed
through the semantic web. 

While valuable to medical and AI researchers,
few practicing physicians or patients are likely to
use the MMDM in either of the above forms to
guide treatment decisions. What is needed are
user-friendly web-based applications that trans-
form the knowledge in the MMDM into personal-
ized, actionable information. 

The Cancer Commons 
Platform and Applications
Cancer Commons participants can interact with
the molecular disease model through web-based
and mobile applications (apps), each designed to
do one task well (see figure 3). The first such app is
a targeted therapy finder (TTF) for melanoma. It
was developed by CollabRx, Inc.,9 and released at
the end of 2010 (see figure 4). The CollabRx TTF
guides advanced melanoma patients and their
physicians through a series of molecular tests to
determine their tumor’s subtype, and then
describes experimental therapies based on the best
available knowledge. Additional apps, under devel-
opment, will support outcomes capture and analy-
sis, adaptive treatment planning, and collaborative
updating of the MMDM based on the latest clini-
cal and laboratory findings. 

Learn Test

TreatAnalyze

Figure 1. Cancer Commons “Rapid Learning” Loop.
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Figure 2. A Portion  of  the  Current  MDM  for  Melanoma, Created by  CollabRx, Inc.

(a) A highly simplified depiction of cell signaling pathways known to be active in melanoma. The MAPK pathway communicates a signal
from growth factor receptors on the surface of the cell to the DNA in the nucleus of the cell, triggering cell division. A defect in this pathway
can lead to uncontrolled cellular proliferation. The PI3K pathway is involved in a range of cellular functions implicated in cancer, including
cell growth, proliferation, differentiation, motility, and survival. Interactions between the MAPK and PI3K/AKT pathways lead to prolifera-
tion and survival of melanoma cells. The CDK pathway, shown in blue, regulates progression through the cell cycle, which includes stages
for DNA replication, inspection (checkpoints), and repair. The P53 pathway plays several critical anticancer roles, initiating DNA repair when
DNA has sustained damage, and apoptosis (programmed cell death) if the damage proves to be irreparable. One or more of these pathways
are mutated in the vast majority of melanoma cells. (b) A subset of the table relating the biochemical pathways to subtypes of melanoma
and their possible treatments.
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The Cancer Commons application platform has
open APIs for third-party developers to create
sophisticated medical decision support apps that,
like the TTF, combine the science in the MMDM
with relevant clinical and personal considerations
(for example, the patient’s state of health and
response to prior treatments, the availability of
reimbursement). Since the platform is web based,
such apps can also access a rich ecosystem of med-
ical and research resources, including molecular
diagnostics laboratories, specimen and data repos-
itories, and high-throughput drug screening and
animal testing facilities. 

The Cancer Commons platform—encompass-
ing the MDMs, apps, and services ecosystem—pro-
vides the computational framework for the rapid
learning loop illustrated in figure 1. Expert
hypotheses about subtypes and their potential
treatments, codified in the MMDM, can be tested
in the clinic as appropriate patients present.
Hypotheses can also be tested in the laboratory on
appropriate cell lines or animal models. The result-
ing clinical and laboratory observations may give
rise to new hypotheses, which can be vetted by
the experts and added to the model for future val-
idation. 

The Cancer Commons Network
Cancer Commons is being developed one cancer
at a time in partnership with leading professional
and patient advocacy organizations, pharmaceuti-
cal companies, medical centers, and health infor-
matics companies. These disease commons form a
network (figure 5) that will exploit the significant
economies of scale and opportunities for cross
learning (for example, common pathways and
drugs) that come from rethinking cancer as a
molecular disease. 

Following the process developed in melanoma,
each new Commons begins by recruiting a panel of
experts. The panel develops an MDM for that can-
cer. The knowledge in the MDM is then represent-
ed in a semantic media wiki, so it can be accessed
through apps. Several new commons are currently
in various stages of development, including sarco-
ma, breast, and lung cancer. 

Linking these Commons into a knowledge net-
work occurs naturally through shared concepts
such as subtypes, pathways, targets, tests, drugs,
and trials. For example, while many cancer path-
ways have been identified, a dozen or so appear
over and over again, including the MAPK, PI3K,

Apps
Platform

Adaptive Therapy PlannerResearch Apps Outcomes Analyzer Targeted Therapy Finder

PayersPharma’sLabsSpecimens Hospitals Clinical Trials

Figure 3. Schematic of the Cancer Commons Platform. 

At the center is an applications platform and knowledge hub that draws from, and feeds, the semantically represented MDM (center right).
Specific applications (and example users) are depicted at the top, and examples of services are depicted along the bottom. 
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CDK, c-KIT, and P53 pathways. These play a promi-
nent role in melanoma and many other solid
tumors. When cancers share a common pathway
or subtype, much of the information, experimen-
tation, and hard-won research results can poten-
tially be leveraged across them. In particular, tar-
geted therapies that prove successful in one of
these cancers might also work in the other. The
aforementioned example of Gleevec is an excellent
case in point; yts effectiveness against c-KIT muta-
tions was first demonstrated on GISTs (a form of
sarcoma), and it was subsequently successfully
applied to c-KIT mutated melanomas. The hope
and expectation is that many such synergies will
emerge from Cancer Commons’ knowledge net-
work—slashing years off the decade-long process it
took to establish the efficacy of Gleevec—first for
GISTs, and then for melanoma. 

Many experts believe that cancers will one day
be characterized as molecular diseases (for exam-
ple, c-KIT or BRAF disease) rather than organ-based
ones. The Cancer Commons network could accel-
erate that future.

AI Opportunities and Challenges
From an AI perspective, finding effective treat-
ments for cancer is a very high-dimensionality

search problem, guided by our rapidly increasing
knowledge of cancer biology and drugs. The num-
ber of potential hypotheses about the causes and
associated treatments of the disease is huge, espe-
cially when complete genomic profiles and combi-
national therapies are considered—exponentially
larger than the number of patients that could rep-
resent each possible combination of factors. It is
therefore essential to use knowledge to focus the
search on promising opportunities, learn as much
as possible from every patient, and generalize that
knowledge to benefit future patients. 

Cancer Commons is an ideal framework for cre-
ating human–machine knowledge systems to effi-
ciently conduct this search for better treatments.
Think of the networked MDMs as a web-based
blackboard and the apps as knowledge sources. The
MDMs organize the world’s knowledge about can-
cer subtypes, pathways, tests, drugs, and trials, and
that knowledge is made available in a semantic
web–compatible format. The human–machine
knowledge system that is Cancer Commons gener-
ates and tests hypotheses, creates plans, and learns.
This shared human-machine approach is essential
because although the complexity of the search
demands computational management, it is ulti-
mately human medical specialists who interact
with patients and who are responsible for carrying
out treatment plans. It is imperative that the physi-
cians and patients understand the general ration-
ale behind all decisions and inferences. 

The overarching challenges for the AI commu-
nity are to use the Cancer Commons framework to
(1) organize the world’s collective knowledge of
cancer and use it to predict treatment responses for
a given patient; (2) use these predictions to devel-
op treatment plans that provide high expected val-
ue for each patient, while simultaneously maxi-
mizing the potential for new learning; and (3)
learn as much as possible from each patient’s
molecular and clinical data to improve future pre-
dictions while advancing the community’s knowl-
edge of cancer. The remainder of this section focus-
es on AI opportunities and challenges in these
three areas.

Knowledge Challenge
Organize the world’s collective knowledge of cancer
and transform it into personalized, actionable infor-
mation that can be used to guide treatment deci-
sions.

The molecular disease model approach taken by
Cancer Commons posits that a great deal is actual-
ly already known about how to treat many genom-
ic subtypes of cancer, but this knowledge is scat-
tered across hundreds of thousands of
publications, clinical and biological datasets, and
knowledge bases. Medicine has traditionally relied
upon the publication of review papers or clinical

Figure 4. Screen Shot of the Melanoma Targeted Therapy Finder App10

Developed by CollabRx, Inc., Based on the Melanoma MDM. 

Selecting characteristics of a patient’s specific tumor and pressing “SEARCH”
will report clinical trails and literature that are possibly appropriate for this
individual patient.
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guidelines for dissemination of important results,
but these compilations have two important limita-
tions: they quickly become dated, especially
regarding the latest undocumented results that
may only be known to a few experts; and their
results are not computationally accessible and so
cannot be efficiently utilized. 

MDMs are a step forward. As previously noted,
they are living review articles, continuously updat-
ed by top cancer experts, and their results are avail-
able to computers as Resource Description Frame-
work (RDF) triples.11 However it’s a safe bet that
much of what is currently known about cancer as
codified in MDMs is incomplete, inconsistent,
uncertain, or downright wrong. Cancer Commons
participants can post case reports, laboratory find-
ings, news articles, hypotheses, and the like that
support or refute specific MDM hypotheses and
recommendations. MDMs can serve as a common
point of reference at scientific meetings and in
publications to facilitate collaborative research. 

Still, organizing the world’s knowledge of cancer
is easier said than done. The genomics revolution
and associated technologies are driving exponen-
tial increases in all medical knowledge and data,
far outpacing the ability of physicians and patients
to keep up. A few examples will illuminate the
scale of the problem. PubMed, the definitive med-
ical information retrieval service run by the
National Library of Medicine indexes about 20 mil-
lion medical abstracts. Approximately 750,000
new articles are published annually in medical
journals. ClinicalTrials.gov lists about 100,000
active clinical trials. From 80 to 100 trial results are
reported daily. The Gene Expression Omnibus
(GEO) database includes some 450,000 data sets
from gene array experiments. Approximately 25
percent of all these figures involve cancer. 

The American Society for Clinical Oncology
(ASCO) holds its annual meeting each June in
Chicago’s McCormick Hall. It is the only venue
large enough to accommodate the 35,000 oncolo-

Sarcoma

Breast

Colorectal

Melanoma

Lung

Prostate

Figure 5. Figurative Depiction of the Cancer Commons Network.

Tripartite icons represent knowledge hubs (for example, MDMs; see figure 3). Circles represent applications and other services that both
draw from and feed into the hubs.
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the next patient. This analysis must be
distributed across all patients. A key
challenge is balancing these planning
objectives given the inherent tension
between treating patients (do every-
thing you can to make this patient bet-
ter) and populations (learn as much as
you can now to help better treat future
patients). The planning challenge sub-
divides into separate challenges in the
areas of clinical treatment and
research.

Treatment Planning. Treatment plan-
ning for an individual is a classic prob-
lem of planning under uncertainty and
constraints. The basic treatment
options could come from standard
treatment guidelines, an MDM, or oth-
er predictive models. Ideally, each
option would be accompanied by a pri-
ori likelihoods of success that depend
on the molecular subtype of the
patient’s tumor. Usually, there will also
be constraints, including cost, avail-
ability (for example, can the patient get
into a trial), and general health consid-
erations that might contraindicate a
treatment. Sometimes the planner can
refine the odds by ordering additional
tests, but these carry their own costs
and constraints—for example, can the
patient afford to defer treatment, are
there suitable tumor specimens avail-
able for testing. 

The planning process must include
not just the science, as reflected in
today’s MDMs, but also qualitative
clinical judgments and patient prefer-
ences. Even among drugs that “work,”
there are still judgments that go into
decision making that aren’t universal.
For example, many of today’s single-
agent targeted therapies have a high
likelihood of response in the short
term, but the patients are prone to
relapse. Immune therapies (for exam-
ple, Interferon or a cancer vaccine), on
the other hand, typically have less than
a 20 percent response rate, but those
responses tend to be durable. Applying
what is known scientifically to individ-
ual patients is challenging. 

The planning process becomes even
more interesting, and (a lot!) more com-
plicated, when it includes combination
and sequential therapies. Where more
than one drug is involved questions
arise concerning dosing and sequenc-
ing, for which answers might not be

gists and cancer researchers who
attend. Over the course of 4 days, some
4000 abstracts are presented, summa-
rizing the results of cancer clinical trials
concluded in the past year. About a
dozen of those abstracts are deemed
important enough to be practice
changing and are presented in plenary
sessions. One can often read about
these in the New York Times. The rest
effectively never see the light of day. It
is likely, however, that many other
abstracts, while not practice changing,
might be life saving for the right
patients; even failed trials often have
some responders, just not enough for
statistical significance. If only we could
figure out what clinical or molecular
features characterized these subpopula-
tions and get the lifesaving abstracts in
front of those patients and their physi-
cians who might benefit. These are cen-
tral objectives of Cancer Commons,
and AI is essential for achieving them! 

Medical advances are also stymied
by the serendipity of scientific commu-
nications. It can take decades to con-
nect the dots among what is already
known to infer a new treatment. The
story leading up to the successful test-
ing of Gleevec on c-KIT melanomas
actually began in 1991 when Ruth Hal-
aban, a melanoma researcher at Yale,
discovered that c-KIT mutations were
responsible for the uncontrolled
growth of a few percent of melanomas.
At the time, there was nothing anyone
could do about it. She published a
paper in Cancer Metastasis Review and
moved on (Haliban 1991). In 1998, a
team led by Brian Druker at the Oregon
Health Sciences University demonstrat-
ed that an experimental signal trans-
duction inhibitor known as STI571 was
effective in treating CML, a blood can-
cer caused by a single oncogene (BCR-
ABL) (Mauro and Druker 2001). In
2001 Druker and others published an
abstract at the ASCO Annual Meeting
demonstrating that STI571 was also
effective in controlling gastrointestinal
stromal tumors expressing mutated c-
KIT (Blanke et al. 2001), a protein struc-
turally similar to that produced by
BCR-ABL. There was now a promising
investigational drug for c-KIT tumors.
Three years later, an Italian researcher
named Giammaria Fiorentini heard
about using STI571 to treat GISTs at an

Italian oncology meeting. He recalled
Halaban’s 1991 paper associating c-KIT
with some melanomas and published a
letter to the editor describing a few iso-
lated cases of c-KIT mutated
melanomas that they had successfully
treated using Gleevec (Fiorentini et al.
2003). Five years later, Stephen Hodi
and colleagues at the Dana Farber pub-
lished a definitive paper in the Journal
of Clinical Oncology titled “Major
Response to Imatinib Mesylate
(Gleevec) in KIT-Mutated Melanoma”
(Hodi et al. 2008). It took 17 years to
connect three dots from Halaban to
Hodi, and it will likely take 17 more
before this result is widely disseminat-
ed to community oncologists. 

A human expert like Fiorentini can
connect a few dots and experience a
“Eureka!” moment. But this only
invites the question of how many oth-
er effective treatments might be found
if one were to systematically (that is,
computationally) follow similar con-
nections through the millions of
PubMed abstracts and other online
knowledge resources. How many sub-
types of cancer might already be cured,
or at least manageable, if we only knew
what we know? AI can help! Table 1
outlines some important AI opportuni-
ties in data and knowledge manage-
ment for Cancer Commons.

Planning Challenge
Adaptively plan individual treatment
protocols to achieve optimal outcomes
while maximizing the learnings for
other patients and cancer research.

From a planning perspective, the
fundamental question is: How do you
best treat the patient in front of you
based on facts about that patient (such
as medical history, genomic informa-
tion), the state of knowledge in the
field (results of clinical trials, published
facts, and so on), domain expertise
(experience of the physicians), and
prospective goals (planning of patient’s
treatment and optimizing learning
across the field)? This problem has
both retrospective and prospective
challenges, the former being classifying
the patient and choosing the appropri-
ate therapy, and the latter being the
problem of determining what knowl-
edge and data are missing that would
help optimize the treatment plan for
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readily available because the drugs were never test-
ed together in a trial. Indeed, if either of the thera-
pies is still experimental, it may not be available for
use in a cocktail. This situation arises frequently
with targeted therapies for melanoma and is highly
frustrating in the face of compelling evidence that
multiple mutated pathways, for which experimen-
tal drugs exist, need to be blocked.

Most cancer patients require a sequence of treat-
ments and multiple treatment modalities (such as
surgery, radiation, chemotherapy). A treatment
may work for a while, but ultimately will have to
be augmented or replaced by a second- or third-
line therapy when the cancer develops resistance.
Good treatment plans maximize “shots on goal.”
Picking one treatment can preclude future options
(for example, taking drug A can exclude a patient
from a trial for drug B, so to preserve options, drug
B should be tried first). There is thus a need to con-
sider potential interactions and plan ahead. One
should also take into account responses to previ-
ous treatments as they can be important clinical
predictors of how a patient will respond to a future
therapy. Doctors find this kind of optimization dif-
ficult, but it is a simple matter for a constraint-

based planner, given the right constraints or the
ability to learn them. 

Research Planning. Treatment planning for indi-
viduals takes place within a larger scientific con-
text. Here the goal is to coordinate planning across
all patients to efficiently explore treatment alter-
natives and fill in knowledge and data gaps. Plan-
ning at this level is complicated by the ambiguity
and noisy data inherent in medical experiments. It
is also strongly constrained by ethics and the inter-
ests and incentives of individual physicians. 

Balancing treatment and research planning
involves the classic exploration-exploitation
dilemma from the reinforcement-learning com-
munity (Sutton and Barto 1998) but with some
important new (ethical) constraints: one would
like to do as much exploration as possible while
maximizing the outcome for the current patient
and respecting that patient’s treatment prefer-
ences. It is an important open question as to
whether the degree of exploration possible under
these constraints will be adequate. 

In principle, one could coordinate treatment
planning over a population to optimize informa-

Modeling 

Build or learn models of cancer biology and care that are capable of representing both causal and probabilistic knowledge about
diseases, pathways, targets, and drugs.  

Use these models to organize the copious information about cancer now scattered across the web for ef!cient use by people and 
computers (including data, scienti!c literature, social media, case reports, electronic medical records, and even speculative 
hypotheses). Given the state of medical knowledge, the models must be capable of encompassing inconsistent and contradictory 
information. 

Knowledge Acquisition 

Populate the models by mining major cancer information sources (for example, journals, websites, blogs, and databases). These miners 
will identify relevant content and tag it with metadata, thereby linking the content to elements of the disease models (for example, 
subtypes, pathways, targets, drugs, and trials).  

Use domain-speci!c natural language processing (NLP) to extract knowledge from published content and informal communications 
(for example, transform a paper on pharmacogenomics into a set of probabilistic assertions about how various mutated genes alter the 
chemosensitivity of drugs; extract inclusion and exclusion criteria from clinical trial announcements; mine case reports and associated 
discussions for evidence to support alternative treatment hypotheses).  

Search and Question Answering 

Use the models to guide deep, vertical search for cancer-related information (for example, !nd and organize all the information a 
patient might need in order to evaluate the safety and ef!cacy of a drug or trial).  

Provide direct answers to frequently asked questions (for example, “!nd the best trials for my cancer subtype” should return a table of 
ranked candidates). 

Inference 

Develop domain-speci!c inference engines that “connect the dots” across knowledge sources to discover new knowledge (for example, 
discover new uses for existing targeted therapies by searching for subtypes of other cancers that are structurally similar targets; discover 
new cancer mechanisms by linking two previously disjoint cancer signaling pathways that share a common protein).  

Use probabilistic inference to rank targets, drugs, and trials by integrating evidence pro and con from experimental data, the literature, 
and the Cancer Commons community. 

Collective Intelligence  

Develop crowd-sourcing approaches that augment automated NLP (for example, community tools for submitting, tagging, ranking, 
reviewing, commenting on, and recommending content). 

Develop tools that make it easy for experts to edit the models and to add or annotate content (for example, suggest new hypotheses 
and link them to supporting evidence in the models).  

Build interactive web forms that enable authors to codify the key concepts in their papers and postings and connect them to concepts 
in the models. Also, enable them to correct errors introduced by others (for example, NLP and crowd sourcing). 

Build tools for collective decision making (for example, enabling physicians to collaborate on a treatment plan that synthesizes their 
individual experiences and knowledge from the model). 

  

Table 1. Data and Knowledge Management Opportunities.
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tion gain. Imagine, for example, running a defini-
tive set of treatment experiments to systematically
rule out an entire family of drugs or drug targets as
viable therapeutic candidates, rather than forever
revisiting the same dead ends (as is all too often the
case today). In practice, it could be hard to con-
vince a group of physicians, with individual inter-
ests and incentives, to go along with such a plan.
Table 2, summarizing the opportunities for auto-
mated planning in Cancer Commons, suggests
some ethical strategies for exploiting the daylight
between individual benefit and group knowledge
acquisition. 

Learning Challenge
Use data from thousands of individual treatment
experiments to infer the causal mechanisms of
tumors and drugs, and develop predictive models
for individualizing therapy. Generalize the results
so they can be applied to new cases.

Cancer Commons is quintessentially about
learning. So far, the focus has been on human
learning—tapping the collective intelligence of
physicians and patients. However, machine learn-
ing can complement human learning by seeking
higher-level patterns in the clinical and genomic
data that Cancer Commons will collect. Addition-
al insights can be gleaned by mining the massive
amounts of drug response data that are becoming
available from laboratory experiments.12

Knowledge about cancer exists at many other
levels of abstraction, such as causal models of
tumorigenesis and pathway signaling. Connecting

the dots between these causal models and empiri-
cal models of drug response—and filling in the
missing knowledge gaps—is hard to do directly. It
helps to decompose the overall search into man-
ageable subproblems using intermediate-level
models. The molecular disease models at the heart
of Cancer Commons are an interesting case in
point: MDMs link molecular subtypes of a cancer,
which are rooted in causal pathway models, to
promising drugs and clinical trials, often selected
on the basis of empirical data. MDMs can be used
to seed ML algorithms that classify tumors into
molecular subtypes (for example, through cluster-
ing), as well as algorithms that predict therapy
response based on clinical and laboratory data. 

There are many other models that are common-
ly used in cancer research, ranging from the causal
models of cancer pathways used in systems biolo-
gy13 to clinical guidelines. The challenge is first to
use machine learning to improve these models
independently, and then to chain them together
to obtain a consistent understanding of cancer at
multiple levels. If these challenges can be met, it
may one day be possible to use a tumor’s biology to
predict drug response in individual patients.

Table 3 proposes some relevant machine-learn-
ing projects for Cancer Commons. In addition,
there is a rich literature of AI and machine learning
applications in cancer biology and medicine that
would be interesting to integrate into Cancer Com-
mons. We invite potential collaborators to contact
us regarding these and other opportunities.

Cancer Commons provides a rich context for

Treatment Planning—Develop an incremental planning method that optimizes treatment plans (that is, a sequence of tests, therapies, 
and trials) for individual patients, based on evolving information and constraints, including: 

The patient’s clinical history, including diagnoses, treatments and responses. 

Evolving clinical guidelines for standards of care, and MMDM recommendations (based on the tumor’s subtype) for patients beyond 
the standards of care. 

Patient preferences (for example, chemotherapy versus immunotherapy, geographic location, risk tolerance). 

Availability of drugs (for example, through a trial, or through compassionate use); trial exclusion criteria may dictate the order in 
which treatments are tried. 

Availability of tumor specimens for molecular testing (to predict therapy response). 

Financial considerations, including insurance coverage for tests and drugs. 

Complicating factors include, for example, dosing and sequencing of combination therapies, prioritizing trials to maximize shots on 
goal. 

The planner should support shared decision making by the patient and physician.  

Research Planning—Coordinate individual treatment plans to ef!ciently !nd the best therapy for each cancer subtype. Overcome 
ethical con"icts that may arise in treating individual patients by:  

Randomizing patients to trials or drugs that are deemed equivalent, or whose ef!cacy is unknown; as evidence mounts, adaptively 
direct patients toward the more effective therapies. 

Trying alternative therapies when the best choice is excluded by externalities such as the patient’s state of health, personal preferences, 
prior treatments, or drug availability (for example, the patient can’t get into a trial because of brain metastases). 

Utilizing historical controls and observational data to assess trials and drugs that are under-represented in existing Cancer Commons 
“N of 1” experiments. 

Globally coordinating the search to ensure adequate coverage of all major drug classes and targets, while minimizing redundant 
testing of the most popular ones. 

Table 2. Planning Opportunities.
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ML projects like those proposed in table 3. There
will be opportunities to cross-validate results from
human and machine learning, as well as from
causal and empirical models. There will be “trans-
fer learning” opportunities across different organ-
based cancers through the Cancer Commons net-
work—using an approved cancer drug off label to
treat a different cancer with a similar molecular
tumor profile. The goal is to generalize the findings
from a few patients to a much larger group of
patients like them. Opportunities like these will
drive research in both ML and cancer and, we
hope, save lives. 

Conclusion
Cancer Commons is the harbinger of a new
patient-centered paradigm for cancer research in
which every patient receives individualized thera-
py based upon the best available knowledge and
where the resulting data contributes as efficiently
as possible to improved treatment for each subse-
quent patient. AI and machine learning will be
essential to realizing this vision. 

Cancer, as a domain, presents the AI and ML
communities with extraordinary challenges and,
hence, opportunities. These include (1) managing
the sheer quantity and heterogeneity of the data
and knowledge involved—encompassing millions
of medical records, genomewide datasets, and doc-
uments; (2) planning thousands of complex, mul-
tistep treatment strategies that ethically balance

the needs of the individual with those of science;
(3) capturing and analyzing the results of these
treatment experiments in diverse causal and
empirical models of cancer biology and drug
response; (4) continuously testing and refining
these models to account for new clinical and labo-
ratory findings; (5) generalizing the models across
patients and cancers and integrating them to
improve decision making; and (6) integrating
human and machine planning, learning, and deci-
sion making to exploit their respective strengths. 

Taken together, these challenges add up to the
grand challenge of curing cancer. This challenge is
a worthy heir to the succession of grand chal-
lenges—from chess to unmanned vehicles—that
have driven so much progress in AI over the years.
While AI may not be able to cure cancer any time
soon, it may soon make life or death differences in
outcomes for individual patients. Please join us
and the Cancer Commons community in rising to
this challenge. 

Grand Challenge
Develop AI applications that tap the world’s collec-
tive knowledge and data on cancer to improve
patient outcomes and save lives.

To learn more about this grand challenge, please
visit www.cancercommons.org.
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“N of 1” Experiments—Given clinical and genomic data from a series of patients with a given type of cancer. 

Apply hierarchical clustering techniques to determine subtypes and validate them against those in the expert-curated MDM. 

Determine the optimal therapy for each individual, based on previous clinical outcomes and therapy responses for patients with the 
same subtype. 

Replace clustering with more sophisticated approaches to tumor subtyping, such as using genomewide expression and sequence data 
to infer dysfunctional upstream pathways and then clustering patients with the same aberrant pathways. 

Replace subtyping with a similarity metric that matches patients directly, based on their molecular tumor pro!les and responses to 
previous therapies; use this metric to recommend future therapies, based on what worked in similar patients. 

Clinical Trials—Reanalyze clinical and molecular data on individual patients in population-based trials.  

Analyze the biological differences between responders and nonresponders to discover predictive biomarkers. Use them to salvage drugs 
that were effective in subpopulations. Meta-analyze data from multiple trials to enhance statistical power. 

Design “intelligent” adaptive Bayesian trials14 that use AI techniques such as reinforcement learning (RL) to ef!ciently test molecular 
diagnostic and targeted therapy candidates. Unlike traditional trials, which test one or two drugs on a population, the goal here is to 
predict responses and maximize outcomes for individuals for a continuously evolving set of drug and biomarker candidates.  

Laboratory Studies—Given results of high throughput drug screens on cancer cell lines.  

Build a predictive model of drug response based on the molecular pro!les of the cells (for example, from microarray data).15 

Use the model to recommend therapies for patients, based on the drugs that worked best for genomically similar tumor cells in the 
laboratory. If resources permit, validate the prediction in vitro or in vivo as appropriate. 

Use laboratory and clinical results to continually re!ne the predictive model. 

Literature Studies—Given a corpus of PubMed articles reporting on various interactions among genes, proteins, and drugs. 

Infer network (pathway) models of cancer biology by integrating fragments of evidence on gene-protein and protein-protein 
interactions from the literature or from actual experiments (for example, Bonetta [2010]).  

Meta-analyze the extensive literature on pharmacogenomics (the effect of genes and gene expression on drug response and drug-drug 
interactions) to create predictive models for drugs (that is, what are the optimal drugs for a patient whose tumor cells express 
particular genes and proteins) (for example, Mocellin et al. [2010] and Theobald, Shah, and Shrager [2009]). 

Test predictions in the laboratory and ultimately in patients.  

Table 3. Potential Machine-Learning Projects for Cancer Commons.



IAAI Articles

26 AI MAGAZINE

G. R.; Bignell, G. R.; Ye, K.; Alipaz, J.; Bauer,
M. J.; Beare, D.; Butler, A.; Carter, R. J.;
Chen, L.; Cox, A. J.; Edkins, S.; Kokko-Gon-
zales, P. I.; Gormley, N. A.; Grocock, R. J.;
Haudenschild, C. D.; Hims, M. M.; James, T.;
Jia, M.; Kingsbury, Z.; Leroy, C.; Marshall, J.;
Menzies, A.; Mudie, L. J.; Ning, Z.; Royce, T.;
Schulz-Trieglaff, O. B.; Spiridou, A.; Steb-
bings, L. A.; Szajkowski, L.; Teague, J.;
Williamson, D.; Chin, L.; Ross, M. T.; Camp-
bell, P. J.; Bentley, D. R.; Futreal, P. A.; and
Stratton, M. R. 2010. A Comprehensive Cat-
alogue of Somatic Mutations from a Human
Cancer Genome. Nature 463 (14 January):
191–196.

Shrager, J.; Tenebaum, J. M.; and Travers, M.
2011. Cancer Commons: Biomedicine in
the Internet Age. In Collaborative Computa-
tional Technologies for Biomedical Research,
ed. by S. Elkins, M. Hupcey, and A. Williams.
New York: Wiley. 

Sutton, R., and Barto, A. 1998. Reinforcement
Learning: An Introduction. Cambridge, MA:
The MIT Press. 

Theobald, M.; Shah, N. H.; and Shrager J.
2009 Extraction of Conditional Probabilities
of the Relationships between Drugs, Dis-
eases, and Genes from PubMed Guided by
Relationships in PharmGKB. Paper present-
ed at the AMIA Summit on Translational
Bioinformatics, San Francisco, March 15–17.

Vidwans, S.; Flaherty, K. T.; Fisher, D. E.;
Tenebaum, J. M.; Travers, M. D., and
Shrager, J. 2011. A Melanoma Molecular
Disease Model. PLoS ONE 30 6(3): e18257.
doi:10. 1371/journal.pone.0018257. 

Jay M. “Marty” Tenenbaum, Ph.D., was
educated at the Massachusetts Institute of
Technology and Stanford University in the
1960s. He spent the 1970s doing artificial
intelligence research at SRI, the 1980s man-
aging computer science research for
Schlumberger, and the 1990s pioneering
Internet commerce. He’s currently focused
on using AI and the web to transform med-
icine.

Jeff Shrager, Ph.D., is the CTO of CollabRx
and a consulting associate professor in the
Symbolic Systems program at Stanford Uni-
versity. His research focuses on understand-
ing how science works and how computers
can facilitate scientific discovery. Shrager
has cofounded several scientific-computing
startups and is the inventor of BioBike, a
web-based biological knowledge platform
enabling biologists to develop, run, and
share symbolic analyses of genomic infor-
mation.

editorial board, especially Smruti Vid-
wans, Allan Schiffman, David Fisher,
MD, and Keith Flaherty, MD, for their
contributions to the melanoma molec-
ular disease model and therapy finder
application. We also acknowledge the
thoughtful input we received from col-
leagues in machine learning and com-
putational biology, particularly Atul
Butte, David Haussler, and Daphne
Kohler who compose the Cancer Com-
mons computational advisory board,
and Michael Littman and Sriraam
Natarajan who helped organize a work-
shop and team proposal on AI and can-
cer.

Notes
1.  See www.cancer.gov/cancertopics/fact-
sheet/Therapy /targeted.

2. See www.alternet.org/health/140234.

3. See www.CancerCommons.org.

4. “Translational research” is defined as the
translation of scientific discoveries into
practical applications (commonfund.nih.
gov/clinicalresearch/overview-translation-
al.aspx).

5. See www.economist.com/node/14299624.

6. The MMDM was curated by a panel of 11
melanoma experts led by cochief editors
David Fisher, MD, head of dermatology, and
Keith Flaherty, MD, head of experimental
therapeutics, at MGH.

7.  See mmdm.cancercommons.org/smw/
index.php/A_Melanoma_Molecular_Dis-
ease_Model.

8. See semantic-mediawiki.org.

9. See collabrx.com. 

10. See therapy.collabrx.com.

11. Resource Description Framework (RDF)
triples are used in the semantic web to
encode knowledge in the form of subject-
predicate-object expressions. 

12. See, for example, sagebase.org.

13. See, for example, Ingenuity.com.

14. See, for example, www.sciencenews.org/
view/generic/id/58401/title/BATTLE_trial_p
ersonal izes_lung_cancer_treatment,
http://www.ispy2.org.

15. See www.broadinstitute.org/cmap.
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