
Intelligent robots could provide the key to improving quali-
ty of life. For example, baby boomers are aging. Home-based
robots that assist with housekeeping tasks enable more of the

population to remain in their homes while reducing health-care
costs. Using robots to survey, surveil, and secure regions of inter-
est requires intelligent algorithms that can act and react
autonomously in dynamic regions. Unfortunately this vision is
quite distant from the current reality where deployed military
unmanned vehicles can require teams of three to four operators.
Researchers are actively pursuing interdisciplinary research that
enables robots to function autnomously within arbitrary envi-
ronments alongside people.

The goal of the AAAI 2010 Workshop on Enabling Intelli-
gence through Middleware was to examine both the successes
and opportunities to provide tools that enable a larger pool of
researchers to experiment with embodied, intelligent algo-
rithms. The half-day workshop, attended by over 80 people, was
held as part of the Twenty-Fourth AAAI Conference on Artificial
Intelligence in Atlanta Georgia on July 12, 2010. The workshop
consisted of two parts: (1) invited talks and (2) middleware pre-
sentations. Robert Kohout (DARPA), Sven Koenig (NSF) and
Dustin Heaton (Alabama) delivered the invited talks, which
focused on the perceptions of the current issues and possible
research approaches. Middleware presenters, selected to encom-
pass a wide range of views on middleware development, repre-
sented six frameworks: ROS (Stanford/Willow Garage), YARP
(Italian Institute of Technology), CAST (University of Birming-
ham), LCM (University of Michigan), Tekkotsu (Carnegie Mel-
lon University), and BotSense (Road Narrows/SIU-Edwardsville).

Invited Talks
Robert Kohout’s and Sven Koenig’s talks centered on how to
include middleware and its impact on integration in the scien-
tific discussion. Kohout stated his belief that we will only be able
to create truly intelligent machines by integrating a wide vari-
ety of intelligent competencies in a single system, grounded in

Reports

SPRING 2011 87Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Enabling Intelligence
through Middleware: Report of

the AAAI 2010 Workshop

Monica Anderson and Andrea L. Thomaz

n The AAAI 2010 Workshop on Enabling
Intelligence through Middleware (held during
the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence) focused on the issues and
opportunities inherent in the robotics middle-
ware packages that we use. The workshop con-
sisted of three invited speakers and six middle-
ware research presenters. This report presents
the highlights of that discussion and the pack-
ages presented.

perception and control. He believes that progress
in robotics research has been hindered by the fact
that most system-level results cannot be repeated
outside of the laboratories in which they are
achieved. Kohout presented a view of science as an
effort in which a community builds up a shared
understanding of empirical phenomena over time.
From this perspective, the repeatability of research
efforts is fundamental. If results cannot be repeat-
ed, they cannot be built upon or extended, and
this limits the community’s ability to understand
and leverage new ideas.

Science, in the narrowest definition, also suffers.
The fundamentals of good science are repro-
ducibility. In biological sciences, reproducibility is
key to verification and leveraging the work of oth-
ers. Unfortunately, when trying to reproduce
results in robotics papers, it is often unclear if fail-
ure to duplicate results is due to incorrect verifica-
tion, missing information or spuriousness of origi-
nal results. When published results cannot be
reproduced, is it good science? Koenig expanded
this idea in his talk by redefining dissemination in
grant proposals to include sharing of software in
addition to results as a mechanism for enabling
verification and leveraging prior work.

Koenig acknowledged that barriers exist to get-
ting middleware research funded as it is considered
engineering. The key to securing funding is to
focus on the science inherent in making the pieces
work together. He also presented some National
Science Foundation programs that could be key to
securing funding. In addition to the Robust Intel-
ligence program, which is a main funder for robot-
ics research, he mentioned the Computing
Research Infrastructure program (CRI). This pro-
gram can support middleware proposals that assist
larger groups with conducting research.

Kohout stressed the need to share platforms and
software as a step toward a coherent science of
integration. The reality is that as each research
effort chooses a middleware or framework on
which to conduct research, researchers on other
frameworks are no longer able to readily validate or
leverage that work. A balance between flexibility of
choosing hardware and software should be
weighed against the importance of sharing with
the community. A narrowing of choices to enable
sharing requires that we look at three to four basic
platforms and frameworks that support 95 percent
of research needs. It may be that over time, the
strongest paradigms will emerge as de facto stan-
dards. Meeting the needs of the largest number of
researchers with the fewest middleware packages
could improve the ability of researchers to collab-
orate and readily share software.

Dustin Heaton and Jeff Carver (The University
of Alabama) highlight the larger community that is
not being served. Robotics also engages a large ”cit-

izen science” community. The magnitude of the
community can be seen through the number of
local and Internet-based special interest groups.
The impact of contributions from citizen-based sci-
entific societies is well documented. For 111 years,
citizen scientists have assisted academics with
assessing the health of the bird population
through the Audubon Society’s Christmas bird
count. Just as the success of this endeavor requires
engagement from researchers through providing
materials such as bird guides and checklists, mid-
dleware could provide citizen roboticists with tools
that encourage intelligent robot design and imple-
mentation. Surveys of likely users have highlight-
ed integrated sensor systems (that is, GPS and visu-
al object identification); those that are low-cost,
open source, and easy to use are of a particular
interest. Given that over 50 percent of citizen
roboticists surveyed used either C or C++ as a
development language, the sophistication of these
users can be better leveraged with more accessible
tools and interfaces.

Middleware Packages
Although there may be agreement that a shared
framework could be the answer to enabling intelli-
gence, there is no consensus regarding the correct
paradigms in that framework. Each middleware
researcher approaches the goals of reusability and
verification differently through choices in inter-
process communication, development tools, and
exposed component interfaces.

The most common approach to reusability is
modularity. Separation of concerns allows for the
encapsulation of implementation. Hardware de -
tails are universally abstracted to natural, now de
facto interfaces. Other interfaces delineate func-
tions tasked with higher-level intelligence such as
localization and path planning. In this manner,
high-level intelligent algorithms can be reused
across similar sets of hardware. This modularity
extends to the run-time environment. Multiple
threads of execution are used to separate and par-
allelize controlling functions. However, the simi-
larity between architectures diverges as the mech-
anism for managing interprocess communication
becomes choices in transport, interfaces, and tools.
Each presenter during the workshop discusses the
design considerations and implications in each
framework.

Robotics Operating System
Morgan Quigley (Stanford University) presented
the robotics operating system (ROS),1 an open
source framework designed to accommodate a wide
range of robotics systems. The core development
team includes researchers at Stanford University
and Willow Garage. There are many high-level

Reports

88 AI MAGAZINE

algorithms such as door opening, object recogni-
tion, and navigation in cluttered, dynamic envi-
ronments designed to operate on the PR2 robot.

As an evolution of previous robotics frame-
works, ROS handles both the technical and social
challenges using modern software development
techniques. The technical issues concern portabil-
ity, efficiency, and scale. ROS uses a publish / sub-
scribe messaging paradigm that allows for the pro-
ducers and consumers of messages to be asyn-
chronous and loosely coupled. Message formats
are automatically generated. Messages are named
and can be remapped at run time. This approach
allows for programs to start/stop/crash in any
order, providing some flexibility and reliability.

ROS models its development tools after existing
open source tools providing a set of specialized
command-line tools that handle high-level man-
agement tasks such as package building and
dependency checking. Currently there are 1187
packages in known public repository. Groups of
versioned packages that work together are called
stacks. Distributions are collections of stacks that
are stable to build against. Automated unit and
integration testing is performed on all committed
code to reduce the introduction of errors.

ROS mirrors the distributed development process
of open source software with the goal of leveraging
distributed expertise through collaborations.
Although a main code repository exists at Willow
Garage, other collaborating institutions maintain
and control separate repositories of packages
designed to extend or improve existing modules.
This model has encouraged 30 other institutions to
collaborate through hosted contributions. Other
tools are used to provide cohesiveness to the dis-
tributed software effort: a web crawler that indexes
known repositories, wiki-based self-documenting
packages, an email list, and Trac for bug reports.

Yet Another Robot Platform
Giorgio Metta (in conjunction with Paul Fitz-
patrick and Lorenzo Natale) from the Italian Insti-
tute of Technology
presented yet another robot platform (YARP).2

YARP takes a slightly different approach, prioritiz-
ing mechanisms that promote code sharing
through the creation and utilization of successful
components on any platform. Given that writing
software is time-consuming and difficult, software
collaboration can provide a speed boost as groups
leverage pretested, modular components. Unfortu-
nately, there is no reward for producing reusable
code. Rather than attempt to provide a single solu-
tion for all development groups, Metta suggested
that a more viable approach would be to leverage
the natural communities around specific robot
platforms.

YARP is open source (LGPL) middleware for
humanoid robotics. Initially a collaboration
between MIT and University of Genoa, it is now
used by the RoboCub consortium. Primarily devel-
oped in C++, it leverages existing development
tools (CMake, and so on) and language bindings
(Java, Perl, Python, C#) through Swig. It uses the
adaptive communication environment to wrapper
operating system–specific application program-
ming interfaces (APIs) to provide cross-platform
portability. Yarp is a thin framework, requiring
only 54 megabytes of RAM and 28 megabytes of
flash memory when running on an embedded sys-
tem. It provides no special build system, utilizing
existing tool chains on each operating system.
However, maintaining a cross-platform framework
limits the availability of support tools (that is,
IDL/code generation for RPC calls).

YARP achieves modularity through separating
the algorithms from the data transport. Data
exchanged between components is not con-
strained to framework- or operating system–spe-
cific protocols. The YARP network can utilize any
number of transport protocols including standards
such as TCP, UDP, HTTP to distribute an applica-
tion across a physical system running a variety of
operating systems. This additional layer of abstrac-
tion allows YARP to communicate and provide a
bridge to other frameworks such as TCPROS to
ROS.

Lightweight Communications
and Marshalling
Edwin Olson from University of Michigan present-
ed lightweight communications and marshalling
(LCM).3 LCM supports C, C++, Java, Python, Mat-
lab, and C# across a variety of POSIX, BSD, Win-
dows, and embedded platforms. LCM provides
data visualization tools that allow developers to
inspect messages as they travel through the sys-
tem. In addition, LCM supports data logging and
injection for testing purposes.

LCM also focuses on scalability and reliability
through the use of publish/subscribe as the message
paradigm. However, LCM differs from ROS and
YARP by using multicast UDP and emphasizing
run-time type safety. Using multicast UDP as the
primary transport supports high-bandwidth, low-
latency message passing. In addition, there is no
centralized process that manages subscribers and
message forwarding, making performance inde-
pendent of the number of subscribers. With UDP,
message delivery is not guaranteed. Olson recog-
nizes that with time sensitive systems it is better to
drop messages and process fresh data than to fall
behind real time. Messages are defined using an
implementation-agnostic specification that is
translated into the language-specific implementa-
tion at compile time. The LCM transport detects

Reports

SPRING 2011 89

trollers hinges partially on the ability
to leverage prior research and software
artifacts. Although all middleware
frameworks seek to ease controller
development by providing a set of
modules for low-level device control
and higher-level primitives that
encompass basic competencies such as
path planning and localization, the
availability and implementations vary
widely.

There are open research questions
around middleware. In addition to
using mature software paradigms,
research on how best to incorporate
these technologies such that develop-
ers at many sophistication levels can
develop robot controllers could widen
the appeal of such work. Understand-
ing which of these approaches actually
results in increased collaboration and
contribution will provide motivation
for the narrowing of the available
toolset and focus on proven, best prac-
tices in robot software development.
Future research should focus on con-
solidating around toolsets, ideally to a
core set that supports both novice pro-
grammers and advanced developers on
a variety of platforms.

Acknowledgements
The authors would like to thank Sven
Koenig and Robert Kohout for their
participation in the workshop; we also
thank Microsoft Research and NSF (IIS-
1037866) for their support.

Notes
1. See ros.org.

2. See eris.liralab.it/yarp.

3. See lcm.googlecode.com.

4. See www.tekkotsu.org.

5. See www.cs.bham.ac.uk/go/.

Monica Anderson is an assistant professor
in the Department of Computer Science at
the University of Alabama. Her research
areas include accessible robotics and multi-
robot systems.

Andrea L. Thomaz is an assistant professor
in the School of Interactive Computing at
the Georgia Institute of Technology. She
conducts research in the domain of human-
robot interaction and interactive machine
learning.

incompatibilities at run time using the
higher-level message type specification.

Tekkotsu
David Touretzky from Carnegie Mellon
University presented Tekkotsu,4 an
open source robot application frame-
work built on C++, with GUI-based
teleoperation and monitoring tools in
Java. Tekkotsu focuses on providing a
unified, high-level framework for sim-
plifying robot programming. Develop-
ers can specify desired effects without
worrying about how to achieve them.
For example, they can use a compo-
nent called the MapBuilder to do visu-
al search, recognize various types of
objects, and maintain robot-centered
and world-centered maps of the envi-
ronment. Other high-level modules
include the Lookout (manages the sen-
sor package), the Pilot (for navigation),
the Grasper (for control of an arm), and
a newly proposed Executive Officer
(task scheduling and resource manage-
ment).

Tekkotsu uses an event-based archi-
tecture and a parallel, hierarchical state
machine formalism. Programmers can
quickly compose state machines in a
shorthand notation that is automati-
cally compiled into C++ code. Approx-
imately 30–40 different event types are
defined, ranging from low level events
(button presses, timer expirations) to
very high level events (for example,
arrival at a navigation destination).
These mechanisms hide details from
novice programmers, allowing expo-
sure to a broad range of robotics con-
cepts in a layered manner. Tekkotsu is
presently in use at dozens of universi-
ties and supports a variety of wheeled
and legged robots.

CoSy Architecture
Schema Toolkit
Nick Hawes presented the CoSy archi-
tecture schema toolkig (CAST).5 CAST
is an information-centered framework
that uses shared memories for informa-
tion storage, retrieval, and change noti-
fication. Data is exchanged between
components through objects in work-
ing memory. As a memory-based archi-
tecture, processes can refine data in
parallel, and the results from one
process are available to all. This is a par-
adigm shift from other participating

frameworks that use message passing.
The advantage is the simplicity of man-
aging the data and a focus on the archi-
tecture and algorithms and not on the
data transport and availability. Al -
though this approach is not suited to
all domains (for example, those requir-
ing real-time control), Hawes sees a
place in the set of middleware packages
for a shared memory tool that allows
developers to focus on the informa-
tion-driven integration of many het-
erogenous components.

CAST uses many standard libraries
and frameworks to leverage developer
expertise on other platforms. It is built
on the Ice middleware package from
ZeroC, which provides interoperability
between languages and platforms. Oth-
er libraries include Log4j and Log4
CXX. Components can be program -
med in both C++ and Java.

BotSense
Road Narrows, in conjunction with Jer-
ry Weinberg at SIU Edwardsville, pre-
sented BotSense, a relatively new
framework. BotSense provides an IP-
based proxy server written in C to the
POSIX standard for cross-platform
compatibility. The client language sup-
port includes C, C++, and Python. The
hybrid messaging paradigm includes
both request/reply and streaming. The
server supports plug-in modules for
devices, and both messages and config-
uration files use the XML format.

The target of BotSense is both
research and education. A robot’s data
and commands can be sent and
received through a near real-time IP
interface that leverages a common dis-
tributed paradigm to support learning
of the architecture. Therefore, host
applications can be quickly developed
— a useful resource for teaching com-
puter science, AI, or robotics. With the
python interface, GUIs for specific
proxied platforms can be quickly
implemented.

Conclusion
Middleware frameworks primarily
focus on the features that support par-
allelism and interoperability such as
standardization of messaging para-
digms. However, improving the ability
of researchers to create robot con-

Reports

90 AI MAGAZINE

