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Toward a Computational
Model of Transfer

Daniel Oblinger

Agency (DARPA) explored the application of Transfer Learning Program (TLP) explored the application
transfer — a notion well studied in psychology of “transfer”—a notion well studied in psychology—to
— to machine learning. This article discusses machine learning, where it was still novel. The aims of TLP were

the formal measure of transfer and how it L .
evolved. We discuss lessons learned, progress to understand and formally frame how this intuitively com-

made at the formal and algorithmic levels, and pelling psychological idea might apply in the computational
thoughts about current and future prospects for context, build computational models of transfer learning (TL),

the practical application of this technology. and explore how these models might apply to practical learning
tasks. TLP and the field as a whole made great strides in each of
these dimensions. Indeed, the program has helped TL become a
recognized subdiscipline of machine learning. Other articles in
this special issue detail the work accomplished in TLP; this arti-
cle focuses on a broad framing of the research conducted and an
assessment of its progress, limitations, and challenges, from an
admittedly personal but DARPA-influenced perspective.
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Framing Transfer Learning

Traditionally every DARPA program has focused its research by
requiring a precise measure of progress. The DARPA TLP decid-
ed to measure transfer by comparing the learning of tasks A and
B versus the learning of B alone. In figure 1 the curve labeled B
represents a traditional learning curve of the performance on
target task B as a function of the number of training instances.
Curve A + B represents the same learning algorithm, given the
same sequence of training instances for task B but additionally
provided all available training data from task A (suitably trans-
formed) prior to receiving any training data for task B. Intu-
itively the area between the two curves represents the transfer
or “boost” that the algorithm received from exposure to source
task A’s data.
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TLP developed multiple measures of this area to
assess transfer but observed more than a dozen
forms of degenerate behavior while trying to apply
these seemingly straightforward metrics. For exam-
ple, some learning algorithms were wildly nonmo-
notonic, making it hard to select an appropriate
cutoff window. That choice affected transfer scores
as well as the meaning and relative importance of
transfer metrics, such as the jump-start and asymp-
totic advantages (figure 1). Once these difficulties
were mitigated, the primary remaining shortcom-
ing of the metric was that it provided no way to
calibrate observed transfer against a baseline (anal-
ogous to comparing induction to the a priori most
likely class) or any kind of upper limit on obtain-
able transfer. Yet this basic characterization of
transfer was critical to the success of TLP as it
afforded an intuitive and practical way to measure
progress quantitatively with respect to specific
problem classes. Without this measure, document-
ing research progress would have been impractical
from year to year—and quantitative measures are
often the most compelling way to justify long-term
research investment in an area.

Characterizing transfer by its boost also allowed
us to frame the most salient distinctions between
the types of transfer explored within TLP. Some
algorithms expected to receive their boost as a
jump start—an increased y-intercept value (figure
1). Of course, one expects this increased value to be
carried across the learning curve, resulting in an
expanded area between the curves. Other algo-
rithms promised a greater slope for the A + B curve
over some indeterminate “productive” range of the
learning algorithm. On inspection, the first class of
learning algorithms often attempted to use heuris-
tics to map learned knowledge directly from
instances of the source task A to instances of the
target task B, while the latter attempted to map
some form of bias (for example, expressed as joint
Bayesian priors on the source and target learning
tasks).

Interestingly the different approaches had diver-
gent but harder to characterize differences in
asymptotic performance as well, which is often of
the greatest import for applications of interest to
DARPA. Transfer from instances often either had
no asymptotic difference or an extreme asymptot-
ic difference in cases where the learning algorithm
failed without the generalized knowledge trans-
ferred from those instances. Transfer of bias or pri-
ors tended to provide modest but consistent dif-
ferences in asymptotic performance. TLP never
found a way to predict these effects.

Another key, though perhaps expected, differ-
ence between these approaches is how each would
naturally frame the transfer problem itself. The
transter of bias typically yields the largest improve-
ments when employed between large families of

related learning tasks, whereas direct mapping of
knowledge applies more naturally to the A-to-B
transfer case addressed within TLP.

Status and Prospects for a Formal
Understanding of Transfer

A theoretical understanding of transfer is still in its
infancy. By the end of TLP, we had a relatively intu-
itive, formally characterized answer to the ques-
tion, “How much transfer has occurred between
these two learning tasks?” But TL is far from hav-
ing a theoretical basis the equivalent of computa-
tional learning theory, in which the Vapnik-Cher-
vonenkis dimension provides both a formally
pleasing and practically useful measure of induc-
tive difficulty. Creating a formal theory of transfer
remains a critical, yet difficult, direction for future
work.

Although there were some attempts, we did not
arrive at practical definitions for many of the con-
cepts that we nonetheless treated as meaningful
throughout TLP. Notions of “distance” between
different inductive learning tasks, “difficulty” of
transfer, and “types” of transfer seemingly could be
formally characterized (with sufficient con-
straints). We assumed these notions were real, but
left them underspecified. Definitions are needed
that are intuitive, provide explanatory power, and
are practically measurable.

Today we use the term transfer to cover a num-
ber of qualitatively distinct processes for connect-
ing related learning tasks. Even making coarse-
grained qualitative statements that apply to all
transfer algorithms is difficult. Despite all these
shortcomings, TLP produced algorithms that pro-
vide significant performance improvements across
many practical transfer tasks.

Status and Prospects for Research
on Algorithms and Applications

Over the course of TLP, we applied transfer to
dozens of application tasks ranging from simple
synthetic tasks designed to explore specific classes
of transfer, to complex groups of learning tasks in
real-world sensing and acting. In this section we
describe the two transfer tasks used in TLP’s final
phase and use them to consider the status, chal-
lenges, and opportunities of the two types of trans-
fer attempted.

Cognitive Approaches

Cognitive approaches (broadly, those that explicitly
map knowledge from instances of the source task
to instances of the target task) require a rich repre-
sentational space for tasks in both domains. Cog-
nitive approaches were applied to the task of clas-
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sifying and schematically describing
football plays based on overhead cam-
era footage of college football games.
Knowledge gained from learning in
this domain was then transferred to the
task of actually playing football in a
computer simulation.

There are profound differences
between these source and target learn-
ing tasks. Beyond the obvious differ-
ences between classifying a video
stream and playing a computer game,
the rules (even the number of players)
varied between these tasks. Thus the
only meaningful transfer concerned
the coordinated behaviors of implicitly
defined groups of players, for example,
strategies involving causal relation-
ships among the center, quarterback,
and receiver. Given the enormous para-
metric space of possible strategies for
coordinating players, without trans-
ferred knowledge the learning algo-
rithms were hopelessly lost in search-
ing for even the simplest playing
strategies (for example, having the
quarterback drop back at the beginning
of a play, having receivers run laterally
to avoid defensive coverage). Causal
explanations for observed play behav-
iors provided an extremely powerful
bias, guiding reinforcement learning to
far more complex playing strategies.
This highlights both the potential and
the constraints on practical application
of these cognitive approaches. The
benefits will almost always be transfor-
mative for the target learning task, but
they will only come in a context with
deep and rich task knowledge tying the
two transfer domains together.

Such task knowledge is not easy to
encode and does not exist for most
practical applications. One approach
attempts to generalize the learning
method such that the knowledge map-
ping and acquisition required for trans-
fer utilize the same common underly-
ing mechanism. Another cognitive
approach, pursued by many
researchers, treats transfer as one of
multiple distinct forms of mental pro-
cessing. The key challenge to widescale
application of this technology is cre-
ation of mechanisms for capturing the
background knowledge.

Bayesian Approaches
In TLP the Bayesian approaches
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involved engineering research to char-
acterize the space of relationships
between source and target as a set of
joint variables over which the source
task can provide priors used to con-
strain the target task. Framed in this
way, each new class of transfer tasks
becomes an exercise in encoding
expected relations as a Bayesian infer-
ence problem. The final TLP task here
was to transfer the recognition of objects
(and in some cases parametric models
of objects as a composition of primitive
parts) from still images to the robotic
manipulation of related physical
objects. Specifically the parametric
model of recognized object classes was
used to define the priors on grasping
strategies for physical objects.

Transfer of priors is now being used
in other application domains. DARPA
is funding work on text extraction (for
example, extraction of relevant param-
eters on natural disasters as reported in
news articles) that transfers specific
forms of linguistic knowledge between
different languages, genres (for exam-
ple, AP articles versus Twitter traffic),
and extraction domains (for example,
natural disasters, crime reporting,
mergers and acquisitions). The mecha-
nism for communicating the relation-
ships between learning tasks as priors
on those tasks appears to be quite gen-
eral and practical. It requires a sophis-
ticated understanding of both statisti-
cal domain modeling and the targeted
transfer; however, the results have dra-
matically reduced the training
required.

A key challenge for Bayesian ap-
proaches is to identify a theory that
enables constructing generic building
blocks that would allow new classes of
transfer to be cost-effectively expressed
as a combination of previously charac-
terized transfer components.

The Future of Cognitive
and Bayesian Approaches

Transfer learning performed by either a
cognitive or Bayesian approach could,
at least in principle, be encoded within
the other approach. In practice, how-
ever, the two research areas appear to
be moving in quite different directions.
Perhaps the most important difference
lies in their assumptions about the

source of the knowledge underlying
transfer. In the Bayesian approach it is
natural to assume that engineers hand-
code the underlying knowledge as pri-
ors and joint variables, based on under-
standing the relationships between
learning tasks. In the cognitive ap-
proach the form of knowledge is more
amenable to automated acquisition.
The Transfer Learning Program didn’t
address the acquisition of underlying
knowledge, but the two approaches
have very different objectives. The
Bayesian approach anticipates a toolk-
it in an emerging engineering disci-
pline of transfer; a mature, successful
cognitive approach would provide
transfer as part of an autonomous
learning agent.

The two approaches also contrast
sharply in the complexity of their
underlying connective knowledge.
Bayesian approaches generally start
with an extremely small bit of knowl-
edge relating source and target tasks
(often a single organizing principle),
using this one insight to structure the
joint variables and priors for transfer.
By contrast, cognitive approaches
encode a much deeper theory connect-
ing the learning tasks. Not surprising-
ly, in TLP the cognitive approaches
often needed far less training data to
achieve good transfer performance,
while the Bayesian approaches
required less engineering time to
encode their one principle. Because of
the limited development required, spe-
cific instances of the Bayesian
approach to transfer are probably clos-
er to practical application today; the
cognitive approaches are aiming
toward general models of intelligence.
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