
■ This article presents some fundamental ideas
about representing knowledge and dealing with
meaning in computer representations. I will
describe the issues as I currently understand
them and describe how they came about, how
they fit together, what problems they solve, and
some of the things that the resulting framework
can do. The ideas apply not just to graph-struc-
tured “node-and-link” representations, some-
times called semantic networks, but also to rep-
resentations referred to variously as frames with
slots, entities with relationships, objects with
attributes, tables with columns, and records
with fields and to the classes and variables of
object-oriented data structures. I will start by
describing some background experiences and
thoughts that preceded the writing of my 1975
paper, “What’s in a Link,” which introduced
many of these issues. After that, I will present
some of the key ideas from that paper with a dis-
cussion of how some of those ideas have
matured since then. Finally, I will describe some
practical applications of these ideas in the con-
text of knowledge access and information
retrieval and will conclude with some thoughts
about where I think we can go from here.

Semantic networks, in which nodes are
connected to other nodes by relationships
called links, are widely used to represent

knowledge and to support various algorithms
that operate on that knowledge. In 1975, I pub-
lished a paper titled “What’s in a Link” (Woods
1975) in which I argued for rigor in under-
standing the intended semantics of such links.
Since then, I have attempted to work out a
framework and a system for dealing rigorously
with semantics in link-based representations
and for efficiently organizing and retrieving
information using such representations. This is
an evolving activity in which many subtle (and
some not-so-subtle) issues need to be addressed
and adequately provided for. It’s like solving a
large puzzle in which many of the necessary

pieces do not yet exist and so need to be
invented. Moreover, the remaining pieces are
mixed together with many distracting and mis-
leading pieces that need to be recognized as
such and set aside as pieces of other puzzles. In
this article I will present some of the pieces of
this puzzle, as I currently understand them,
and describe how they came about, how they
fit together, what problems they solve, and
some of the things that the resulting frame-
work can do. These ideas apply not just to
explicitly link-based representations but also to
many similar representations, referred to vari-
ously as frames with slots, entities with rela-
tionships, objects with attributes, tables with
columns, and records with fields, and to the
classes and variables of object-oriented data
structures. I invite the reader to join me in the
continuing evolution of these ideas.

This article expands on an invited talk I pre-
sented at the 2004 Principles of Knowledge
Representation and Reasoning conference in
Whistler, Canada. It was one of two inaugural
talks in a new series on “Great Moments in
Knowledge Representation.” I was asked to talk
about the paper “What’s in a Link”—how it
came to be, what was happening in the field at
the time, and how the ideas have evolved since
then. This gave me an opportunity to think
about a number of ideas that led up to the writ-
ing of that paper—how they relate to each oth-
er and how they continue to develop. This arti-
cle provides an opportunity to continue those
thoughts.

Two of my fundamental assumptions will
quickly become apparent: first that notations
matter (and I hope to give you a feeling for
why this is so), and second, that subsumption
and generality play an important role in
human-level reasoning. With respect to the
first, I ask you to speculate how much of mod-
ern mathematics would have happened if we
had been constrained to try it in roman numer-
als. In another dimension, you may be aware
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of algorithms that have different complexity if
numbers are represented in unary notation
rather than binary or decimal. In this article, I
will illustrate how some key reasoning algo-
rithms, and in particular how subsumption
algorithms, can depend on the notations that
we use to represent knowledge and how a prop-
er combination of representation and algo-
rithm can answer some of the following ques-
tions: How does a reasoning system find
relevant pieces of information and relevant
rules of inference when it knows millions of
things? How does it acquire and organize mil-
lions of items of information? How does it inte-
grate new information with previously existing
information? How does it use its knowledge to
impose structure on situations?

I will start by describing some background
experiences and thoughts that preceded my
writing the “What’s in a Link” paper. These
provided the perspective that I brought to the
task. After that, I will present some of the key
ideas from the paper and a discussion of how
some of those ideas have matured since then.
Finally, I will describe some practical applica-
tions of these ideas in the context of knowl-
edge access and information retrieval and will
conclude with some thoughts about where I
think we can go from here.

A Perspective on 
Human-Level Reasoning

It appears that there are two kinds of reasoning
that people do. I will characterize them rough-
ly as rule-based and associative. When we’re
doing the former, we’re aware of it, and it has
steps that we can describe. We know we’re
doing something, and if it’s complicated
enough, we know that we’re doing work and
that we might make mistakes. When we do
associative reasoning, however, it’s largely
below the level of consciousness, and it appears
effortless. It takes clever psychological experi-
ments to reveal how much work actually goes
on at this subconscious reasoning level.

It’s probably not an accident, therefore, that
the structure of computer programs and the
characteristics of logical formalisms tend to
resemble the rule-based reasoning that we’re
aware of, and we’ve been relatively successful
(modulo the combinatorics) at getting com-
puters to do this kind of reasoning. On the
associative side, however, it is much harder
even to understand what people do, much less
figure out how to get computers to do some-
thing equivalent to it.

When it comes to dealing with large
amounts of knowledge, when a person has

more knowledge, the person generally thinks
better and is more effective at understanding
the environment and functioning in it. When
computers have more knowledge, they tend to
bog down in searching through the additional
facts and rules that have to be considered. I
believe that this difference is due to something
about the way people organize knowledge for
efficient use, and I’d like to be able to get com-
puters to do the same thing.

To give you an example of the kind of thing
I have in mind, consider the following exam-
ple. At one time I was trying to remember the
name of a flute piece that my wife used to play,
and the thing that kept coming to mind was
Fahrenheit 451, which I knew was wrong. Fah -
renheit 451 is a book about censorship and
book burning, and the title is the temperature
at which paper burns. Eventually I remem-
bered that the piece I was trying to recall was
called Density 21.5. Density 21.5 is the density
of platinum, and the piece was written in hon-
or of the first platinum flute. Both of these
titles use essentially the same device, and this
device is so unique that the first time we see it,
we are likely to form a concept something like
“a creative work whose title is the statement of
the value of a physical property that has a
semantic relationship to the work.” When the
second occurrence of this device was encoun-
tered, I apparently recognized the similarity at
this abstract level, and the two facts were thus
related to each other. When I later tried to
recall the musical piece, something about the
way my mind works was causing the abstractly
similar book title to be recalled out of all of the
millions of things that I know. This particular
abstract generalization was triggered by my
much more specific recall attempt. It happened
effortlessly and with no conscious awareness of
the process. This kind of retrieval is the capa-
bility that lets us recognize quickly what kind
of situation we are facing, what to expect in
that situation, what to do about it, and what
other similar situations we have encountered.
These capabilities are key to our successful
adaptation to the world in which we live and
are part of the essence of intelligence.

My goal is to discover a kind of “mental”
organization of knowledge that would enable
a computer to do a similar kind of retrieval
from large knowledge bases (Woods 1986a).
This is key to developing scalable knowledge-
based systems. Without it, systems are limited
in the amount of knowledge that they can han-
dle, and projects like the semantic web will be
unable to deal with truly web-scale knowledge.

In passing, it is worth noting here that many
“knowledge-based systems” are actually what I
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have called “ignorance-based systems” because
they rely on knowing only what they need to
know to solve the problem and on not know-
ing the many potentially distracting things
that could lead them down blind alleys and
increase the combinatoric search for a solution.
As a simple example, when writing grammars
to parse sentences, it is much easier if the pars-
er can assume that “I” is always a personal pro-
noun and “be,” “am,” and “are” are verbs. It
becomes more difficult if the parser’s diction-
ary also knows that “I” is the chemical element
symbol for iodine, the roman numeral for one,
the mathematical symbol for the square root of
minus one, the name of the ninth letter of the
alphabet, and even an Asian last name. These
six choices can be multiplied by two for each
occurrence of “be,” “am,” and “are” if the sys-
tem also knows that “Be” is the chemical ele-
ment symbol for Beryllium, that “am” is an
abbreviation for “morning,” and that an “are”
is a measure of land area equal to one hundred
square meters. If a reasoning system can han-
dle this kind of additional and potentially dis-
tracting knowledge, then it is truly robust and
scalable; otherwise, it can be thrown into com-
binatoric distraction by the addition of more
knowledge.

History
My concern with semantics and meaning
began in a seminar at Harvard University in
which my eventual thesis advisor, Susumu
Kuno, posed the problem of designing a natu-
ral language question-answering system to
query a database. After some thought, it
seemed to me that if one were going to get a
computer to answer questions, then one had
better know something about meaning, so I
turned to the library and read a lot of philoso-
phy: Tarski, Wittgenstein, Carnap, Quine,
Church, and others. None of this told me what
meaning was, however. The best I could find
was essentially an operational test for whether
one knew the meaning:

To know the truth conditions of a sentence is to
know what is asserted by it—in usual terms, its
“meaning” – Rudolf Carnap

But truth conditions are a very abstract thing
and, in particular, an infinite thing—a map-
ping of all possible worlds into the values true
or false. What could a computer use (or a per-
son for that matter) that would meet this oper-
ational test? What could be stored in a finite
memory that would encode the truth condi-
tions for an infinite set of possible worlds?

The only thing I knew that would meet this
test was some encoding of a procedure—a Tur-

ing machine, a production system, a recursive
function definition—essentially a computer
program for computing the truth values from
the possible world itself. This idea, which I
introduced in my thesis (Woods 1967) and
called “procedural semantics” (Woods 1968),
not only turned out to be a powerful way to
build a practical question-answering system,
but also solved a classical problem in the phi-
losophy of language—how the meaning of a
proposition could be connected to the actual
physical world. In the procedural semantics
framework, the meaning of a proposition (that
is, the procedure expressing its truth condi-
tions) could be embodied (stored) in a physical
machine that used the procedure to operate on
the physical world to compute the truth values.
For example, a question about the inventory of
bolts in a warehouse could be answered by a
robotic system that actually went to the appro-
priate bin in the warehouse and counted the
bolts. This pure idea turned out to be some-
what oversimplified, but a more refined ver-
sion, using a notion of abstract procedures,
which I presented in two essays on procedural
semantics (Woods 1981 and Woods 1986b),
turns out to come closer to being a viable the-
ory of meaning. This more refined theory dis-
tinguishes between abstract procedures (possi-
bly not even executable) that determine the
meaning of a term and other (possibly fallible)
recognition procedures that are ordinarily used
to infer when the term is true or false.

The term procedural semantics has since been
used by a variety of people with various mean-
ings, often associated with representations that
look like computer programs. This is opposed
to taking abstract procedures as the semantic
foundation for representations that could look
like logical expressions or like network repre-
sentations. I will have more to say about pro-
cedural semantics in a subsequent section of
this article. For more information on the histo-
ry of the idea and the so-called procedural ver-
sus declarative controversy, see Woods (1987b)
and the preface to the published version of my
thesis (Woods 1979).

This idea of procedural semantics became
the basis of my Ph.D. thesis, “Semantics for a
Question Answering System,” which I finished
in 1967 and was eventually published in 1979.
In that thesis, I presented a methodology for
mapping a parse tree for a natural language
question into a computer program for comput-
ing its answer—essentially a natural language
compiler. I argued for the separation of the
parsing and semantic interpretation machinery
from the back-end database and reasoning
machinery by means of a general notation for
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expressing these procedures (what is now
called a meaning-representation language). Pri-
or to this, question-answering systems had usu-
ally transformed questions into the notation in
which the data was represented, and questions
were answered by pattern matching, equation
solving, logical deduction, or database
retrieval, depending on the representation cho-
sen. For example, Robert Simmons (1965)
describes a system that parsed a question into
a tree structure, replacing the question word
with a variable. This system answered ques-
tions by matching this structure against the
parse trees for sentences from an encyclopedia
and reported the value matched against the
variable as the answer. While this worked well
for many examples, in response to the question
“What do worms eat?” this system found
“Worms eat their way through the ground.” In
another example, Daniel Bobrow (1964) trans-
formed sentences from high school algebra
word problems into equations in algebra and
answered questions by solving algebraic equa-
tions.

Incidentally, I developed the formalism of
augmented transition network (ATN) gram-
mars (Woods 1970 and Woods 1987a) in order
to have a practical way of parsing English sen-
tences into the kinds of parse trees that I need-
ed as input to my semantic interpreter. At the
time, Chomsky’s theory of transformational
grammar was a hot topic, Haj Ross and George
Lakoff were furiously working out details of the
grammar of English within this framework
(and forcing extensions of the framework in
the process), and Stanley Petrick was working
on a parsing system for transformational gram-
mars at MITRE. Sheila Greibach, Susumu Kuno,
and Tony Oettinger had recently developed the
Harvard Predictive Analyzer, a large-scale con-
text-free grammar for English, and had
explored the richness (and ambiguity) of natu-
ral language syntax by parsing such things as
nuclear test ban treaties. (This was in the con-
text of a larger effort in machine translation.)
In my doctoral thesis, I had cited this work as a
justification that English sentences could be
parsed into tree structures, and the thesis
focused on the task of assigning semantic inter-
pretations to such trees. Thus, when it came
time to actually implement such a system, I
needed a practical way to transform natural
English sentences into parse trees, and my
notion of ATN grammars was invented in
response to that need.

In 1970, the theory and practice of both the
ATN grammar formalism and the method of
procedural semantics were put to the test in the
Lunar Sciences Natural Language Information

System (LUNAR), which several colleagues and
I developed at Bolt Beranek and Newman
(BBN) for the NASA Manned Spacecraft Center
(Woods et al. 1972). This system answered
questions about the chemical composition and
other experimental analyses of the lunar rocks
returned from the Apollo 11 moon mission. It
was the first question-answering system to
report empirical results from a test of the sys-
tem with real users (scientists attending the
Second Annual Lunar Science Conference).
One of the features of this system was a power-
ful framework of generalized quantifiers for
handling the kinds of quantification expressed
in natural English questions (Woods 1978).

In the midst of all this linguistic activity, I
noticed that while the philosophers thought of
semantics in terms of truth conditions, the lin-
guists had different notions. Their criterion for
a meaning representation was the ability to
produce different representations for the dif-
ferent “readings” they could perceive in an
ambiguous sentence. For example, “Time flies
like an arrow,” has a reading in which flies of a
certain kind (“time flies”) are fond of an arrow
(analogous to Groucho Marx’s rejoinder: “but
fruit flies like a banana”). The “meaning” rep-
resentations of the linguists were essentially
parse trees, and when they talked about
“semantic conditions,” the mechanisms they
had in mind were the same kind of thing that
parsers used for syntactic conditions. For exam-
ple, “the knife shoots bullets” was considered
ungrammatical because of a violation of a
“semantic” condition requiring the subject of
“shoot” to have a “semantic” feature “+agent.”
There was nothing in the envisioned machin-
ery that had anything to do with knowing
what a knife was or what shooting involved
(leaving aside the issue of whether ungram-
maticality is the right concept for expressing
what is strange about this sentence).

When it came to artificial intelligence
researchers talking about representing knowl-
edge in semantic networks, the lack of appreci-
ation of what semantics should mean was even
worse. In fact, there was generally nothing real-
ly semantic in semantic networks, and I felt the
term itself was a misnomer. It was in response
to these observations that I wrote the paper
“What’s in a Link.”

The essential content of the “What’s in a
Link” paper was developed at a brainstorming
workshop held at a National Academy of Sci-
ences conference center in Quisset, Massachu-
setts, on Cape Cod. I was attempting to tell
people about some of the mistakes and incon-
sistencies I saw people making when talking
about semantic networks for representing
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knowledge. These mistakes, I felt, stemmed
from a lack of understanding of what seman-
tics meant and what it would take for a
machine to correctly interpret such representa-
tions. I attempted to describe some of the
issues that needed to be addressed and possible
ways to address them.

After a subsequent conference at Pajaro
Dunes, in California, Danny Bobrow encour-
aged me to finish the paper and provided
access to the facilities at Xerox PARC as a way
to help make that happen. The final version
was produced using the Bravo text editor on an
Alto computer at Xerox PARC. (This was the
computer that pioneered bitmap graphics,
overlapping windows, WYSIWYG editing, and
laser printing.)

Semantics and Meaning
The meaning of meaning and how to deal with
meaning in formal and natural systems has
been one of the great mysteries of intelli-
gence—artificial or otherwise. It has been an
issue from the earliest days of philosophy and
logic, and it has become an engineering issue
with the advent of computerized question-
answering systems, information retrieval sys-
tems, machine translation, speech understand-
ing, intelligent agents, and other applications
of natural language processing, knowledge rep-
resentation, and artificial intelligence in gener-
al. When I first started working on question
answering, I was immediately confronted with
the fact that semantics in classical logic dealt
only with logical propositions (things that are
true or false), while questions and imperative
requests are not things that have truth values.
What kind of thing is the meaning of a ques-
tion? What is the relationship between a ques-
tion and an answer? What is the meaning of an
imperative request? What is meaning anyway?

As I mentioned previously, early work on
question answering had involved first choos-
ing a representational convention and then
transforming a question into the same nota-
tion so that it could be processed with a suit-
able algorithm. One of the limitations of this
approach was that it required analyzing the
questions into the same notation and conven-
tions as were used in representing the data, so
that the structures of the questions and the
data were compatible. Question-answering sys-
tems that took this approach could not be
combined unless all of the content was ana-
lyzed using the same representational conven-
tions. Moreover, the complicated work of
understanding the syntactic structure of Eng-
lish questions had to be redone for each system

in terms of the representational conventions
chosen. I was interested in what it would take
to have a general notion of meaning that
would be independent of the representational
conventions into which the content was ana-
lyzed and that would allow the integrated use
of data that was represented in different ways.
Moreover, I wanted to develop a general-pur-
pose English grammar and parser and a gener-
al-purpose semantic interpreter that could be
used with sentences from any natural language
and would transform them into a common,
fully expressive meaning-representation lan-
guage. In order to do this, it seemed that I
needed a good theory of meaning that could be
independent of particular data representations
and particular natural languages.

Conceptually, question answering can be
thought of as involving several subtasks,
including parsing, semantic interpretation,
and some combination of retrieval, inference,
and computation. Of these, the most mysteri-
ous phase was semantic interpretation, which
seemed to involve meaning. Semantics can be
defined rather crisply as the relationship
between terms or expressions and the things
that they denote or mean. Thus the term
semantics is relatively well defined in terms of
the concept of meaning, but the meaning of
meaning is much less clear. In the “What’s in a
Link” paper, I pointed out the different uses of
this term by the people I characterized as “lin-
guists” and the people I characterized as
“philosophers,” and I pointed out that there
was still a missing element necessary to map
the possible worlds of the philosophers into
something that a computer (or a person) could
store and manipulate. The solution I proposed
for filling this gap was my theory of procedur-
al semantics, which could not only express
truth conditions as abstract procedures but
could also express the meanings of questions
and imperative requests and of sensory percep-
tion and motor action.

Procedural Semantics
The idea of procedural semantics is that the
semantics of natural language sentences can be
characterized in a formalism whose meanings
are defined by abstract procedures that a com-
puter (or a person) can either execute or reason
about. In this theory the meaning of a noun is
a procedure for recognizing or generating
instances, the meaning of a proposition is a
procedure for determining if it is true or false,
and the meaning of an action is the ability to
do the action or to tell if it has been done.

This theory can be thought of either as an
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alternative to the standard Tarskian semantics for
formal systems or as an extension of it. The idea is
that the computational primitives, consisting of
represented symbols, the ordered pair, the assign-
ment of values to variables, the addition and sub-
traction of integers, conditional branching, itera-
tion, and the subroutine call, together with
sensorimotor operators that interact with a real
world, constitute a stronger (and more well-under-
stood) foundation on which to build a theory of
meaning than do set theory and the logical opera-
tions of universal and existential quantification
over an all-inclusive infinite universe (which have
their own paradoxes and incompleteness issues).
For more about the limitations of classical logic
alone as a basis for meaning, see Woods (1987c).

Adopting a procedural semantics foundation
allows for a definition of the standard logical oper-
ators as well as extensions of them to deal with gen-
eralized quantifiers and with questions and imper-
ative requests. Building on computational primi-
tives seemed to me to be at least as well understood,
and more grounded, than building on universal
and existential quantification over an all-inclusive
infinite universe (and then having to make some
kind of extension to handle the meanings of ques-
tions and imperatives). Moreover, because proce-
dural specifications can be installed in a machine,
where they can be physically executed, they can
interact with sensors like keyboards and cameras
and with output devices like printers and manipu-
lators, so that this approach allows meanings that
actually interact with a physical world, something
that no previous theory of meaning had been able
to achieve.

In the case of question answering, procedural
semantics allows one to decouple the parsing and
semantic interpretation of English sentences from
the details of the storage and representational con-
ventions of the information in the database. The
procedural semantics approach allows a computer
to understand, in a single, uniform way, the mean-
ings of conditions to be tested, questions to be
answered, and actions to be carried out. Moreover,
it permits a general-purpose system for language
understanding to be used with different databases,
and even combinations of databases, that may have

different representational conventions and dif-
ferent data structures. It also allows questions
to be answered by results that are computed
from the data in the database without being
explicitly stored.

This can be illustrated by an example from
the LUNAR system. The semantic interpreta-
tion of the question, “What is the average con-
centration of aluminum in each breccia,” is
given in figure 1.

This semantic interpretation can be read as
follows: “For every x5 in the class TYPECS such
that the universally true condition T is true,
print out the value computed by the averaging
function AVCOMP for the sample x5 for the
overall concentration of Al2O3,” where TYPECS
is the name used in the database for “Type-C
rocks” (that’s how breccias are encoded in the
database) and Al2O3 is the chemical name for
aluminum oxide (which is how aluminum
concentrations are represented in the data-
base). Note that answering this question
involves computing an average that was not
explicitly stored in the database, and that the
grounding for the semantics of terms such as
aluminum and breccia is in a database whose
structure and content and encoding conven-
tions were previously and independently
defined.

The quantifier notation in LUNAR used spe-
cial symbols, “/” “:” and “;” as illustrated in fig-
ure 1, to separate different elements of a quan-
tification. For improved readability, for the rest
of this article, I will use the mnemonic key-
words, “in,” “when,” and either “do” or
“thereis,” respectively, in place of these special
symbols (“;” becomes either “do” or “thereis”
depending on whether the quantified expres-
sion is a command or a predicate).

Meaning 
Representation Language

LUNAR’s meaning representation language
(MRL) is an extension of the Predicate Calculus
with generalized quantifiers and imperative
operators. Some examples of the schemata for
these quantifiers and operators are shown in
figure 2.

For example, the first schema in figure 2 can
be read “For <quant> <vbl> in the class <class>
such that <condition> is true, do <com-
mand>.” This is the schema for a quantified
command. The second schema can be read:
“For <quant> <vbl> in the class <class> such
that the first <condition> is true, the second
<condition> is also true.” This is the schema for
a quantified proposition. The quantifiers
<quant> in these schemata include not only
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(FOR EVERY X5 / (SEQ TYPECS) : T ;
      (PRINTOUT (AVGCOMP X5 (QUOTE OVERALL) (QUOTE AL2O3))))

Figure 1. The Semantic Interpretation of the Question, “What Is 
the Average Concentration of Aluminum in Each Breccia.”

From the LUNAR question-answering system (1971).



the traditional universal and existential quan-
tifiers EVERY and SOME, but also nontradi-
tional quantifiers like THE and (MORETHAN
<number>) and a generic quantifier GEN,
which corresponds to the use in English of
undetermined noun phrases with a plural
noun (for example, birds have wings). The par-
adigm can accommodate numerical quantifiers
as exotic as “an even number of” or “a prime
number of” and all sorts of nonstandard quan-
tifiers such as “few” and “most.” The paradigm
can also handle modal wrappers like “typical-
ly,” “often,” “rarely,” and “unless-contradict-
ed.”

The schema (TEST <condition>) is a com-
mand to test a condition and print out Yes or
No according to the result, and (PRINTOUT
<designator>) is a command to print out a
name or description of the referent of the spec-
ified designator.

LUNAR’s meaning representation language
uses typed quantifiers, with types that can be
functionally specified (that is, the types can
take parameters). The type classes over which
quantified variables could range were defined
by a kind of generator (I called them enumera-
tion functions) which could enumerate the ele-
ments of the class. These enumeration func-
tions could take arguments (the parameters of
the type), so that the class generated could be
functionally determined. This allowed a uni-
form treatment of nouns in English that
named classes and nouns that took arguments
(usually expressed as prepositional phrases) like
the departure time of a flight from a city. The
notation also allows additional restrictions on
the range of quantification to be specified by
predicate filters. This allows a uniform treat-
ment of different quantifiers and different
kinds of nouns and modifiers in English noun
phrases. For example, “Some tall men play bas-
ketball” has the interpretation:

(FOR SOME X in MAN when (TALL X) thereis
(PLAY X BASKETBALL))

and “All long flights to Boston serve meals” has
the interpretation:

(FOR EVERY X in (FLIGHT-TO BOSTON) when
(LONG X) thereis (SERVE-MEAL X))

If we try mapping English directly to classi-
cal logic, we need different treatments for
noun phrases with universal versus existential
quantifiers. For example, for “Some tall men
play basketball,” the three predicates (MAN X),
(TALL X), and (PLAY X BASKETBALL) are all
conjoined under the existential quantifier:

(for some x) {x is a man and x is tall and x plays
basketball}.

For “All tall men play basketball,” the first two

conditions would be conjoined as the ante -
cedent of an implication whose consequent is
the third condition:

(for all x) {if x is a man and x is tall, then x plays
basketball}.

For nonstandard quantifiers, such as “the” or
“many” or “most,” mapping to classical logic
is different still, but all fall uniformly into
LUNAR’s MRL paradigm.

Reasoning with 
Procedural Semantics

The procedural semantics framework allows
procedural interpretations to be treated in two
ways: In the simplest way, the semantic inter-
pretation is simply executed as a program.
However, in some cases, the system will take
the interpretation as an object to be reasoned
about and possibly modified. For example, in
the following case from an airline flight sched-
ules application:

(FOR EVERY X in FLIGHT when (CONNECT X
BOSTON CHICAGO) do (PRINTOUT X))

the system discovers that it can get the same
result more efficiently by using a functionally
specified range of quantification that uses a
database table to enumerate only the flights
that go to Chicago, resulting in:

(FOR EVERY X in (FLIGHT-TO CHICAGO)
when (CONNECT X BOSTON CHICAGO)

do (PRINTOUT X))

This is an example of what I have called “smart
quantifiers,” quantifiers that apply reasoning
to their range of quantification and any speci-
fied filters on that range to see if there are more
efficient ways to enumerate the same effective
range.

There are many other reasons why a system
might want to reason about the interpretation
of a request before acting on it: it may not be
appropriate to take literally, or there might be
some additional helpful actions to take, or the
request might be estimated to be unduly
expensive, or the user may not be authorized
to do what is being requested, or the system
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(FOR  <quant> <vbl> in <class> when <condition> do <command>)
(FOR  <quant> <vbl> in <class> when <condition> thereis <condition>)
(TEST <condition>)
(PRINTOUT <designator>)

Figure 2. Quantificational and Imperative Schemata 
Used in the LUNAR Question-Answering System.



may have reasons not to do the thing that is
requested, or it may be more efficient to
reorder the quantifiers, or... So, we would like
semantic representations to be useful both for
execution as procedures and for mechanical
reasoning.

Requirements for 
Semantic Representation

Semantics is used in natural language process-
ing not only as an end result, but also in order
to choose between alternative syntactic parses
and alternative senses of words. For example,
knowledge is often required to choose the
scope of modifiers when parsing English sen-
tences, as in the question “Does American have
a flight from an East coast city to Chicago?”
which my thesis system interpreted with the
phrase “to Chicago” modifying “flight” rather
than “city” (even though “city” is closer)
because it didn’t have any rules for cities being
modified by destinations, but it did have a rule
that knew what it meant for a destination
phrase to modify “flight.” In the case of speech
understanding, semantic interpretation and
background knowledge can be required even to
determine what words were heard. For exam-
ple, in the BBN HWIM Speech Understanding
System (Woods et al. 1976), the sentence
“Show me Bill’s trips to Washington” was mis-
heard as “Show me Bell’s trips to Washington”
in the context of a travel planning system that
knew travel plans for a group of people that
included Bill Woods and Alan Bell. There is a
minimal difference of one phoneme between
these two sentences (one letter, in the written
orthography) and only one feature difference
between the two vowels in question. The
acoustic scores of the two hypotheses were vir-
tually identical and the correct choice hap-
pened to come second. However, the system
could easily have resolved the choice by using
the interpretation to check the trip database to
learn that Bill Woods was scheduled to go to
Washington, while Alan Bell was not.

Thus, we need a system that can organize
and use large amounts of world knowledge and
facilitate the efficient associative access to that
knowledge during the analysis of sentences.
My experiences in a variety of natural language
applications have convinced me that under-
standing and using knowledge is the bottle-
neck in both speech and natural language pro-
cessing and that finding and retrieving the
relevant pieces of knowledge that apply to a
problem at hand, from among all of the knowl-
edge in a large knowledge base, is a significant
issue. We need a representation system to sat-

isfy at least two requirements: (1) it should be
expressively adequate to represent all of the
necessary elements of natural language ques-
tions, commands, assertions, conditions, and
designators, and (2) it should be structured to
support semantic interpretation, retrieval,
inference, and perception.

For further discussion of requirements for a
knowledge representation system, see Woods
(1986a and 1987c) and Davis, Schrobe, and
Szolovits (1993). In order to attain human-lev-
el reasoning, I believe that it will be necessary
to combine the best features of two traditions:
(1) logical reasoning, which is rigorous and for-
mal, but often counterintuitive, and which has
algorithms that match expressions, substitute
values for variables, and invoke rules, and (2)
associative networks, which are associative and
intuitive, but typically informal. However, they
support efficient algorithms that follow paths
through links to draw conclusions.

We need the associativity of link-based rep-
resentations in order to exploit efficient path-
following algorithms, but we also need repre-
sentations with a clean and well-understood
semantics. To that end, I have been interested
in the things people do with link-based repre-
sentations and seeking conventions for making
explicit the semantics of the links in such rep-
resentations.

Semantic Networks
I had the privilege to be working at BBN at the
time when Ross Quillian, Allan Collins, and
Jaime R. Carbonell were working there on a
variety of projects with semantic networks, one
of which was Jaime’s mixed-initiative tutoring
system called SCHOLAR (Carbonell 1970). This
was a computer-aided instruction system to
tutor students about South American Geogra-
phy, and it used a semantic network as its
knowledge base. Jaime worked with Allan
Collins on SCHOLAR, and the pair of them had
great insights into how people use knowledge
and how knowledge could be represented and
used in a computer system for educating peo-
ple. (I should explain that the Jaime R. Car-
bonell I refer to here is the father of the current
Carnegie Mellon University professor.)

SCHOLAR used its semantic network to rep-
resent the knowledge that the tutor had to
teach, and it would annotate this network with
records of what the student now knew as it
introduced material and tested the student’s
knowledge. It could use these annotations to
assess how much a student knew about a given
concept and to decide what material to intro-
duce next. It could also use the network to
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assess how much it knew about a given topic
and could apply this self-knowledge in answer-
ing questions with what Collins called the lack-
of-knowledge-principle, a sophisticated kind of
local closed-world assumption (Collins et al.
1975). If you asked it whether Bolivia exported
steel and it didn’t know that Bolivia exported
steel, but it knew enough about Bolivia and its
exports to be confident that it would know this
if it were true, then SCHOLAR would answer
confidently “No.” If it didn’t know enough to
be confident in a negative answer, it would
answer “I don’t know.”

Unfortunately, Jaime died suddenly and
unexpectedly in the middle of this work and
the project ended. 

Inheritance in 
Semantic Networks

Perhaps the first and simplest algorithm for the
use of links in semantic networks was the con-
cept of inheritance, now a common feature of
knowledge representation systems and object-
oriented programming. In the early days, Quil-
lian and Collins were seeking to understand
whether this kind of representation played a
role in human reasoning (Collins and Quillian
1969). Figure 3 illustrates an example from one
early experiment that they carried out to inves-
tigate the psychological reality of a path-fol-
lowing algorithm in a semantic net. In this
experiment, Collins, who is a psychologist, pre-
sented people with a variety of statements and
measured their reaction time to decide whether

the statement was true or false. In each case,
Collins and Quillian had made assumptions
about the background knowledge people
would use to answer the question, how that
knowledge would be represented in a semantic
net, and how that representation would affect
reaction time. Specifically, they predicted that
it would take longer to answer when the attrib-
ute was inherited from a higher category, so
that in the example illustrated, it should take
less time to decide whether a canary has feath-
ers than to decide whether a canary has skin.
Their predictions were validated in the experi-
ments, but the results were not conclusive
because other explanations could have predict-
ed the same results.

In other experiments, Quillian would test his
networks by running an algorithm to describe
the relationship between arbitrary pairs of con-
cepts. This would be found by a “spreading acti-
vation” algorithm that searched for the shortest
path between nodes in the semantic network.
This work presaged later work by Rummelhart,
Norman, and others on psychological aspects
of network representations and on various algo-
rithms for learning in such networks.

These algorithms were really cool and many
of them had a plausible psychological reality as
models of how people do associative reasoning.
However, all of these methodologies were very
informal in terms of the semantics of what the
links in the networks represented.

Many other people were using network rep-
resentations at that time, and there was (and
perhaps still is) an astounding range of opinion
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Figure 3. Illustration of Semantic Inheritance.



about the meanings of such representations or
whether meaning even matters. Generally,
people working in this area were more interest-
ed in the things that an algorithm could do
with the representations than with what the
representations signified, and they would casu-
ally use similar representations to mean differ-
ent things in different experiments. Most of
the people who did say something about the
meanings of their representations seemed to
me to be well off the mark. Basically, this is
what led me to write the “What’s in a Link”
paper. Here are some of the inadequate notions
of meaning that some people espoused, many
of which may still be in people’s minds today:

1. The meaning of a concept is the totality of
the concepts connected to it.

2. The meaning of a concept is whatever a sys-
tem does with it.

3. There’s no difference between syntax and
semantics.

4. Semantics is in the eye of the beholder,
because the meaning comes from the names of
the nodes.

In the first part of my “What’s in a Link”
paper, I attempted to clarify what a semantic
account would entail. I described the different
perspectives on semantics held by what I have
already characterized as the linguist versus the
philosopher, which, even combined, still fell
short of answering my needs for something
that could be stored and used by a computer. I
proposed procedural semantics to fill the
remaining gap.

The second part of the paper addressed the
various things that a link could be used to
mean and the many ways in which people
were not clear about what their representations
meant. When I looked for the semantics of
links that I saw people using, I found many dif-
ferent things that were being represented or
would need to be represented as links:

attributes and values
attributes and value-predicates
relations and objects-of-relations
functions and arguments
actions and objects
roles and constituents
roles and constituent-restrictions

The most prototypical case is using links for
attribute-value relationships, as in:

John
height 6 feet
haircolor brown
occupation scientist

But what if all you can say about a value is that
it satisfies some predicate, as in:

John
height(greaterthan 6 feet)

Or worse, what if you want to compare the val-
ues of two attributes, as in “John’s height is
greater than Sue’s”:

(height John)
greater (height Sue)

Sometimes people used links to assert facts, as in:
John

hit Mary
Mary

hit* John

where the “hit*” link here is the reverse of the
forward “hit” link.

In some cases, both types of links branch
from the same node, with nothing to indicate
that they have different kinds of interpreta-
tion, as in:

John
height 6 feet
hit Mary

Links were sometimes used to build descrip-
tions using case grammar constituent roles, as
in:

sell
agent John
recipient Mary
patient book

But sometimes the same representation was
used to state the value restrictions on the case
roles:

sell
agent person
recipient person
patient thing

I identified a distinction between assertional
links, which assert facts, versus structural links,
that merely build up parts of a description of
something about which something else may be
asserted. Sometimes, the mere existence of a
description of a relationship in a semantic net-
work corresponds to the assertion that the rela-
tionship holds, but if so, then there is no way
to represent such a description as the object of
a denial. Often it was not clear whether a rep-
resentation was intended as an assertion or as
a description of something. I cited the follow-
ing example, which either represents a black
telephone or asserts that telephones are black,
depending on which kind of interpretation is
given to the links:

N12368
superc telephone
color black

All of these things were represented by links
in various systems and examples. These differ-
ent kinds of link relationships have very differ-
ent semantics, and any algorithm that operates
on these representations needs to understand
these semantics in order to function as intend-

Articles

80 AI MAGAZINE



ed. Shifting from a convention in which links
point to values, to a convention in which links
point to predicates that are true of values, would
require a systematic change to the representa-
tions for everything and a corresponding adjust-
ment to the algorithms that operate on the rep-
resentation. The distinction between links that
make assertions and links that build parts of
descriptions (about which assertions are then
made) makes things even more complicated.
Ideally, each link should be associated somehow
with a characterization of its semantics (for
example, whether it is a pointer to an individual
value, a pointer to a predicate that applies to the
value, or a pointer to an abstract description
about which assertions can be made). If this is
not the same for all links, then each link needs
to be accompanied with some source of infor-
mation about how it is to be interpreted.

I concluded the article with examples show-
ing the need to represent at least the function-
al equivalent of LUNAR’s generalized quantifi-
cation, and I demonstrated the need to
represent propositions without commitment to
their truth and to represent descriptions of indi-
viduals without commitment to their existence.

Towards an Internal 
Notation for Thought

After “What’s in a Link” was published, I began
a new DARPA project at BBN aimed at repre-
senting knowledge and at addressing the issues
raised earlier. This was the KL-ONE project that
Ron Brachman and I and many other col-
leagues worked on (Brachman and Schmolze
1985). KL-ONE pioneered a number of con-
cepts that are now well known, including the
concept of automatic concept classification,
which can be done only if the semantics of the
notation are well understood. The project start-
ed out with the somewhat nebulous goal of
providing the representational framework for
fully general knowledge representation and
reasoning on large-scale knowledge bases. This
included uncovering and attempting to under-
stand subtle issues of representational seman-
tics and exploring the consequences of intu-
itions about the role of knowledge in reasoning
and in language understanding that we were
still trying to work out.

A central starting point of this project was
Ron Brachman’s Ph.D. thesis (Brachman 1977)
on structured inheritance networks. Ron was
one of my Ph.D. students at Harvard and also
worked at BBN. His thesis made distinctions
between primitive concepts as compared to
defined concepts and distinguished concepts,
roles, number restrictions, and value restric-

tions. As a result of the relatively crisp seman-
tics of these concepts, we were able to create
algorithms that could automatically decide
where new concepts belonged in a generaliza-
tion hierarchy. This was discovered in the fol-
lowing way.

In order to support the acquisition of
knowledge, I wrote an English-like language
for entering knowledge into the system and
wrote an algorithm to decide where to add
new knowledge into an existing knowledge
taxonomy. This algorithm consisted of two
parts, a most-specific subsumer (MSS) algo-
rithm that could find the most specific sub-
sumers of the new concept (that is, the most
specific concepts in the taxonomy that sub-
sumed the new concept) and a most-general
subsumee (MGS algorithm that could find the
most general subsumees of the new concept
(that is, the most general concepts in the tax-
onomy that were subsumed by the new con-
cept). The new concept could then be added to
the taxonomy, linked directly under its most
specific subsumers and linked to from below
by its most general subsumees. This was the
first of what came to be called classification
algorithms. Jim Schmolze and others worked
on subsequent classification algorithms that
were more efficient.

Technically, the structure referred to previ-
ously as a generalization hierarchy was not
strictly a hierarchy, but was rather much closer
to an upper semilattice, since a concept could
in general have multiple parents (that is, most
specific subsumers). Moreover, it is not neces-
sarily a strict semilattice either, since it could in
principle allow multiple least upper bounds
and greatest lower bounds. Hereafter, I will
refer to this kind of structure as a conceptual
taxonomy.

The original goals that I had for the KL-ONE
project were quite ambitious. I wanted an
organizing structure for all of the knowledge of
a reasoning system and an efficient associative
access mechanism to get at that knowledge,
and I wanted the representation to have com-
plete expressivity and support for high-level
perception and automatic classification and to
support inheritance of attributes and rules. We
pursued a variety of ideas in all of these dimen-
sions. Conferences were organized and a vari-
ety of people from many organizations shared
ideas on how to deal with a wide variety of sub-
tle representation problems. This was an excit-
ing time, and these conferences were the ori-
gins of the series of Knowledge Representation
and Reasoning conferences.

Eventually the complexity of KL-ONE’s
many goals led Ron Brachman and Hector
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Levesque to focus on some specific problems
relating to expressivity, and they discovered
the first expressivity/complexity trade-off
(Brachman and Levesque 1987). (This is my
perspective—Ron and Hector might describe it
differently from their point of view.) After this,
there were many theoretical complexity results
and many new systems in what came to be
called the KL-ONE family (Woods and
Schmolze 1992), eventually giving rise to a new
field that changed its name periodically, but
seems to have settled on description logic
(Brachman and Levesque 2004).

Extensional Subsumption
A common theme of this post-KL-ONE theory
work was a move away from thinking of con-
cepts as structured objects in favor of a “declar-
ative semantics” that focused on the subsump-
tion relationship in terms of a model-theoretic
semantics. In this view, which I call extension-
al subsumption, one concept subsumes anoth-
er if by virtue of the meanings of the concepts,
any instance of the subsumed concept must
necessarily be an instance of the subsuming
concept in a model theoretic sense. That is, the
extension of the subsuming concept (the set of
all objects that are its instances) contains the
extension of the subsumed concept in any pos-
sible world.

This turned out to be a challenging criterion
to meet, and most of the complexity results
yielded algorithms that were computationally
intractable in the worst case. Completeness with
respect to this criterion is difficult to achieve,
and full expressivity leads to the complexity of
predicate calculus deduction in general.

Understanding Subsumption
and Taxonomy

While most of this flurry of theoretical activity
was going on, I was involved in a couple of start-
up companies and watching all this from the
sideline. When I came back to these issues, I
concluded that the declarative semantics
approach had lost something important by
eliminating all of the intuitions for how the
structure of links can support efficient algo-
rithms and that the extensional subsumption
criterion was also limited in its ability to express
subtle meanings. In 1985, I began to revisit the
original goals of KL-ONE in light of where the
field had gotten. I wanted a representational sys-
tem that would be an efficient and principled
methodology for organizing knowledge, and I
came to focus on a different criterion for sub-
sumption that I called an intensional, rather

than extensional, subsumption criterion. The
result was my 1991 paper, “Understanding Sub-
sumption and Taxonomy” (Woods 1991).

Intensional Subsumption
The idea of intensions is an old one in the phi-
losophy of language and is typically illustrated
by the distinction between the concepts of the
morning star and the evening star. Before the
discovery of astronomy these were thought to
be two different stars, and only subsequently
was it discovered that both descriptions
referred to the planet Venus. The case is made
that if the two descriptions meant the same
thing, then it wouldn’t have taken an astro-
nomical discovery to reveal their identity.
Therefore, the meanings of these descriptions
must be something other than their common
extension (that is, Venus).

This example demonstrates the need for dis-
tinct abstract entities (intensions) that stand
between these literal phrases and their shared
referent. Intuitively, the morning star refers to
the last star that is visible in the morning,
before the sun comes up, while the evening
star refers to the first star that is visible in the
evening. Notice that both of these are essen-
tially procedural descriptions and thus a proce-
dural semantics interpretation of their mean-
ings could provide a suitable intensional
abstraction. That is, one can take the meanings
(intensions) of these concepts to be the abstract
procedures for recognizing them.

Carnap thought that since this identity was
a contingent fact, not a logical one, he could
use the concept of logical equivalence to create
intensional abstractions. However, I have dis-
covered that the concept of a triangle is an
analogous example, in which the identity is a
necessary consequence of the meanings of the
terms, and thus Carnap’s “L-equivalence” solu-
tion will not suffice. That is, the definitions
“polygon with three sides” and “polygon with
three angles” are logically equivalent, but it is
a common exercise in geometry class to prove
this. If these two descriptions meant the same
thing, then it would not have been necessary
to prove the equivalence. In fact, it would not
even be possible to state the theorem, since any
attempt to state it would be equivalent to stat-
ing the tautology, “an x is an x,” where x could
be either one of the descriptions. (I will say
more about this later.)

The idea of intensional subsumption is this:
Since the meanings of concepts need to be
intensions rather than extensions, the criteri-
on for subsumption can’t be based on exten-
sional set inclusion but must be based on
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something that takes the intensional meaning
of the concept into account. In particular, this
means that different concepts with the same
extension can remain distinct, without the
classifier wanting to merge them into a single
concept.

From my perspective, sameness of intension
is determined by a definition of intensional
equivalence that specifies when two descrip-
tions are to be considered intensionally the
same. For example, different orders of listing
the roles of a structured concept would be con-
sidered equivalent, but logically equivalent
characterizations involving completely differ-
ent constituents might not. What should
count as equivalence of intension is as much a
psychological as a logical issue. If people can
argue that there are potentially different mean-
ings of two representations, then intensional
equivalence of those representations can be
ruled out. From the perspective of abstract pro-
cedures in procedural semantics, there can be
different notions of intensional equivalence,
each defined by its own equivalence relation.
For example, the order of adjectives in an Eng-
lish noun phrase might not make a difference
in most cases. However, since there are cases
like “little old lady” versus “old little lady”
(that is, a sagacious little girl), where the order
of modifiers does make a difference, one may
need to provide a notation or a convention in
which these two noun phrases have different
meanings.

In addition to dealing with intensional
meanings, I was interested in defining a notion
of intensional subsumption that would make
the subsumption test something that could be
verified by inspection, without needing subtle
proof. If an extensional subsumption required
subtle proof, then that would have to be done
by a separate system, after which that sub-
sumption could be asserted as an axiom, justi-
fied by that separate proof, but it would not be
the job of the classifier (that is, the subsump-
tion algorithm) to find it. Finally, I wanted the
overall classification of a concept into a large
taxonomy to be efficient (preferably sublinear
in the size of the overall taxonomy). An impor-
tant aspect of intensional subsumption is that
it not only allows for the representation and
handling of intensional concepts, but it also
escapes some of the complexity limitations of
extensional subsumption.

Separating Necessity 
and Sufficiency

One of the things I discovered when investi-
gating this notion of intensional subsumption

is that one can gain additional expressive pow-
er by allowing a concept to have different nec-
essary and sufficient conditions. I thus allowed
three kinds of definitional statements and
allowed a concept to have more than one such
definition:

<concept> [def-if] <condition>
specifies a sufficient condition

<concept> [def-only-if] <condition> 
specifies a necessary condition

<concept> [def-iff] <condition> 
specifies a condition that is both

This allows us to represent partially defined
concepts for dealing with natural kinds and
overdefined concepts for dealing with certain
kinds of abstraction (for example, “triangle”).

Natural Kinds and 
Gap Predicates

Natural kinds like “tiger” and “chair” are typi-
cally thought of as undefinable, since any
attempt to define them seems to turn up short.
However, they can often be given partial defi-
nitions by specifying some necessary condi-
tions and separately defining a different and
more stringent set of sufficient conditions. In
between these two conditions is a gap in which
things are neither in or out. This is not possible
in classical first-order-logic axiomatizations,
but is not a problem with a procedural seman-
tic interpretation. I have argued elsewhere that
decisions about whether a hypothetical exam-
ple that falls in this gap should be judged an
instance of a natural kind or not is a different
kind of decision than deciding whether an
instance satisfies a predicate. Rather, it is a deci-
sion whether the utility of the concept in ques-
tion will be enhanced or damaged by extend-
ing the predicate to include the new example
(for example, will all of the learned rules and
axioms that use that concept still be valid and
useful, or will some of them be violated).

Multiple Definitions and
Abstract Concepts

Multiple definitions can be used to define
abstract concepts like triangle, which as we
mentioned has two alternative definitions,
polygon with three sides and polygon with
three angles. These two concepts are exten-
sionally identical to each other and to triangle,
but I argue that they are intensionally distinct.
In this case, overdefinition of the concept tri-
angle produces a third abstract concept that
intensionally subsumes its two alternative def-
initions and has the interesting characteristic
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that its necessary conditions are stronger than
its sufficient conditions. That is, it is necessary
that a triangle have both three sides and three
angles, but it is sufficient that it have either
three sides or three angles.

Defining Intensional 
Subsumption

Since the notion of intensional subsumption
allows some latitude for definition, I choose to
seek definitions that lead to tractable and effi-
cient algorithms for the common cases that
people do effortlessly. In my view, this is the
purpose of the representational framework—
to efficiently find concepts related to a need.
For those cases that require subtle reasoning to
infer that any x is also a y, I will not expect the
classification system to find this out. Rather it
must be possible to record this fact and subse-
quently use it, once it has been discovered by
whatever means. The intensional subsumption
criterion that I have been exploring is that
every element of the parent description sub-
sumes some corresponding element of the
child. For example:

[a person with a professional spouse]
subsumes

[a woman with a doctor husband]
because [person] subsumes [woman] and 
[professional spouse] subsumes [doctor husband].

For natural kind concepts and abstract con-
cepts, comparing the sufficient conditions of
the parent with the necessary conditions of the
child, easily generalizes this subsumption algo-
rithm to handle gap predicates in partial defi-
nitions and also the overdefined abstract con-
cepts like triangle.

Implicit Quantification
Having introduced the idea of intensional sub-
sumption, let me now turn briefly to another
topic that interacts with the subsumption algo-
rithm. I have noticed when looking at seman-
tic network systems that many links have
implicit quantificational import that is not
overtly indicated but is hidden in the meaning
of the link and in many cases never explicitly
spelled out. For example:

“Birds have wings” means that every bird has
some wings.

“People need vitamins” means that every per-
son needs every vitamin.

“People live in houses” may mean that every
person has a house to live in, or that houses are
things that people live in, or that people are
the kinds of things that live in houses, or that

living is what people do in houses (and perhaps
more), although it isn’t clear which.

When this kind of quantification is hidden
inside the meaning of a link, it is impossible for
a classification algorithm to handle links cor-
rectly without accessing the full definition of
the link and working it out, or else having spe-
cific information about specific link names
(either wired in or stored somewhere). More-
over, if this information is associated with the
link by means of the link name, then some-
times one needs to coin different link names
for the same underlying domain relationship
in order to have links with different quantifi-
cational import. This problem exists not only
for link-based network representations, but
also for fields in records of databases, for slots
in frame systems, for class and instance vari-
ables in object-oriented systems, and for many
axiomatizations of knowledge in predicate cal-
culus notations.

Semantic Tags can Reveal 
Quantificational Import

To solve this problem, in my “Understanding
Subsumption” paper (Woods 1991), I intro-
duced the notion of an explicit tag that can
make this kind of quantification overt and thus
make it visible to the classification algorithm
without having to unpack the domain-specific
semantics of the rest of the link. For example:

Birds have wings
is Bird (AE have wing)

People need vitamins
is Person (AA need vitamin)

Children like candy
is Child (TAA like candy)

John lives in Chicago
is John (II live_in Chicago)

where AE (for all-exists) is the tag that says
every instance of the subject has the specified
relation to some instance of the object, AA (for
All-All) asserts that every instance of the sub-
ject has the specified relation to every instance
of the object, TAA (for Typically-All-All) means
that typically every instance of the subject has
the specified relation to every instance of the
object (but that exceptions are possible), and II
(for instance-instance) specifies that the speci-
fied relation holds directly between the subject
and object as instances. (These are only illus-
trative examples of the kinds of things that can
be made explicit by such tags.)

These quantificational tags can be treated as
relation-forming operators. For example, the
tags used earlier could be defined as shown in
figure 4.
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Advantages of 
Explicit Semantic Tags

The advantage of an explicit semantic tag is
that it separates the logical quantification
information (which the classifier needs to
know) from the domain-specific elements of a
link (which the classifier can treat as a “black
box”) and thus provides the classifier with the
needed information to make subsumption
decisions without having to know any
domain-specific information. It also forms a
contract between a knowledge engineer and
the reasoner, so that a knowledge engineer can
record a fact using a domain-specific relation
that is free of excess quantificational baggage
and can explicitly indicate the quantification-
al import that the link is intended to have,
without the knowledge engineer or the system
having to somehow know and remember
which links have what quantificational conse-
quences. I have seen cases in large-scale knowl-
edge representations in which the same under-
lying domain-specific relation is given two
slightly different names, each with slightly dif-
ferent quantificational import, and there is no
system to flag that this is going on or to help
the knowledge engineer know or remember
which relation to use for which purpose. An
explicit quantificational tag solves this prob-
lem.

Since these tags can be treated as relation-
forming operators in link-oriented structures, it
should be possible to retrofit this perspective
onto existing systems that allow definitions of
links, slots, fields, and so on. Figure 5 illustrates
some examples of assertional link tags that
could be added to links to make their intended
quantification clear.

Subject Restriction and 
Object Restriction

Similar tags can be used to express assertions
about subject restrictions and object restric-
tions of relations:

VR [person] [live in] [place]
“If a person lives in y then y is a place”

SR [person] [live in] [apartment]
“If x lives in an apartment then x is an person”

(The latter is not true, of course, but that’s what
the SR link means.)

Tagging the Kind/Instance 
Distinction

Semantic link tags can also indicate whether
they are treating the concept at the end of a

link as a kind or as an instance. For example:
AI—“everybody likes John”
EI—“somebody likes John”
IA—“John likes everybody”
IE—“John likes somebody”
SRI—“only sport fans like John”
IVR—“John eats only vegetarian food.”
II—“John likes Mary”

Structural Link Tags
My “Understanding Subsumption” paper also
introduces structural link tags (starting with M,
for modifier) that allow one to build up
descriptions of structured concepts from con-
stituent elements using links. Examples are:

IKO [student] / (ME [take course] : [math course])
“a student who takes some math course”
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AE(REL) = 
 (lambda (X Y) (for every x in X thereis 
  (for some y in Y thereis x REL y)))

AA(REL) = 
 (lambda (X Y) (for every x in X thereis 
    (for every y in Y thereis x REL y)))

TAA(REL) = 
 (lambda (X Y) (for every x in X thereis 
    (for every y in Y thereis 
  (unless known(not(x REL y)) thereis 
    likely(x REL y)))))

Figure 4. Quantificational Tags can be 
Treated as Relation-Forming Operators.

AE [person]  [live in]  [place]
      "Every person lives in some place." 
AA [person] [need] [vitamin]
      "Every person needs every vitamin"
EE [person] [break] [window]
      "Some person breaks some window"
EA [student] [take] [course]
      "Some student takes every course"

Figure 5. Some Examples of Assertional Link Tags.



IKO [student] / (MA [take course] : [math course])
“a student who takes every math course”

IKO [student] / (MR [take course] : [math course])
“a student all of whose courses are math courses”

IKO [student] / (MI [has major] : [mathematics])
“a student whose major is mathematics”

Here, the ME, MA, and MR relationships say
that the link is part of the meaning of the con-
cept to which it is attached, as opposed to
something that is asserted about it. ME (for
“Modifier Exists”) says that there exists a con-
cept of the indicated type which has the indi-
cated relationship to the concept being
defined, while MA (for “Modifier All”) says that
every concept of the indicated type has the
indicated relationship to the concept being
defined. MR (for “Modifier Restriction”) says
that any object related to the concept being
defined by the indicated relationship must be
of the indicated type. MI (for “Modifier
Instance”) says that the specified object con-
cept itself is related to the concept being
defined by the specified relationship.

Semantic Tags Can Answer
“What’s in a Link?”

With the machinery of semantic tags intro-
duced earlier, we can now have a principled
methodology for systematically answering the
questions raised in “What’s in a Link?” For
example, in the black telephone case, the node:

N12368
MI kind-of telephone
MI color black

would represent the general concept of a black
telephone, while:

N12368
II name telephone
AI color black

would represent a concept whose name is tele-

phone (that is, the concept of a telephone, if
there is only one, or a sense of the word, if
there are more than one) with the recorded
assertion that all telephones (or at least all
N12368s) are black.

Subsumption Depends on 
the Meanings of Link Tags

The reason to introduce all this detail about
link tags is that subsumption depends on the
meanings of the link tags as well as the sub-
sumption relations between the domain-spe-
cific concepts involved. For example:

[person] / (MR [has son] : [professional])
subsumes

[woman] / (MR [has child] : [doctor])

because of the semantics of the MR quantifica-
tional tag and the subsumption relationships
between the domain-specific concepts. The
meaning of the MR tag has the unexpected
consequence, illustrated in figure 6, that the
required subsumption relationship between
the relations [has son] and [has child] goes in
the opposite direction from the usual sub-
sumption dependencies between the elements
of a subsuming concept and those of its sub-
sumees. If the semantic tags were both ME,
then this relationship would go in the usual
direction. That is, a woman who has a son who
is a doctor (the ME case) therefore has a child
who is a doctor, but a woman all of whose sons
are doctors (the MR case) might still have a
child (that is, a daughter) who is not a doctor.

This counterintuitive behavior doesn’t arise
in simpler subsumption systems in which sub-
sumption between elements of descriptions is
allowed only when the relations in the two ele-
ments are the same. Moreover, most of the oth-
er semantic tags have the expected directional-
ity of subsumption between the subsuming
and subsumed elements, so this issue is rarely
noticed or appreciated. You can imagine why
some early expert systems designers were mys-
tified by occasional situations in which inheri-
tance seemed to work backwards.

Practical Subsumption 
Algorithms

Now that we have an intensional subsumption
criterion that is able to handle partially defined
and overdefined abstract intensional concepts,
and that appears to be more computationally
tractable than extensional subsumption, the
next question is whether we can in fact use
these structures and notations to support prac-
tical and scalable subsumption algorithms

Articles

86 AI MAGAZINE

AE [person]  [live in]  [place]
      "Every person lives in some place." 
AA [person] [need] [vitamin]
      "Every person needs every vitamin"
EE [person] [break] [window]
      "Some person breaks some window"
EA [student] [take] [course]
      "Some student takes every course"

Figure 6. The MR Tag Has Inverse Relational Subsumption.



capable of dealing with large knowledge bases.
The important issue is not whether the testing
of an individual subsumption relationship
between two concepts is efficient, but whether
the entire process of finding the place in a con-
ceptual taxonomy where a new concept
belongs is efficient—that is, can we get efficient
MSS and MGS algorithms. I gave arguments in
the “Understanding Subsumption” paper why
I believe this is possible. A key observation is
that the taxonomy is narrow at the top and
fans out downward, so that paths searching
upward in the structure are generally bounded,
while searching downward can become combi-
natoric. In the paper, I argued that if the down-
ward branching ratio can be controlled, then
an appropriate MSS algorithm should be able
to look up the most specific subsumers in sub-
linear time, and that although the MGS algo-
rithm is less well behaved, its average expected
time should be sublinear as well. This should
make it possible to handle very large tax-
onomies. It remained to be determined empir-
ically if this is so. 

At this point, I wanted to identify a natural
population of concepts that could number into
the millions with which to test these ideas
empirically. I didn’t expect to learn what I
wanted from synthetically constructed concept
definitions such as randomly generated con-
ceptual structures—I wanted to know what a
real natural population of concepts was like.
Eventually I settled on using concepts defined
by words and phrases extracted from unre-
stricted natural English text as a natural popu-
lation of concepts with which to test out these
ideas. It turned out that for a wide variety of
text sources, the downward branching of the
induced taxonomy of natural language words
and phrases was naturally bounded, and the
MSS and MGS algorithms were empirically
practical. Moreover, the resulting conceptual
taxonomies turned out to be useful structures
for improving text retrieval and browsing. This
was discovered in the course of a project that I
began at Sun Microsystems Laboratories that
attempted to determine whether this kind of
conceptual taxonomy could improve informa-
tion retrieval (Woods 1997, Woods 2000a,
Woods 2004). 

Conceptual Indexing
The methodology that I began exploring at Sun
is something that I called conceptual indexing.
In addition to the usual inverted files that
record where individual words and phrases
occur in documents, conceptual indexing pro-
duces an induced taxonomy of structured con-

cepts organized by intensional subsumption
for all of the words and phrases found in the
material. This taxonomy also includes addi-
tional subsuming concepts that can be inferred
from phrase structure and from dictionary
entries. The conceptual taxonomy is then used
to support searching and browsing. The query
engine can use this taxonomy to connect what
you ask for to what you need to find. The com-
bination of the inverted files of word and
phrase occurrences with the resulting derived
conceptual taxonomy is referred to as a concep-
tual index of the material. Coupled with a
dynamic passage retrieval algorithm that
locates specific passages where the information
you need is likely to be found, this methodol-
ogy has proven to be extremely effective in
promoting human search productivity
(Ambroziak and Woods 1998, Woods et al.
2000b). The conceptual taxonomies also
proved to be an intuitive structure for brows-
ing and navigating. In a separate validation of
the use of such taxonomies, a project at Boe-
ing, using a large manually generated taxono-
my with automatic augmentation and similar
subsumption technology, demonstrated
improvement in people’s ability to locate
experts in highly technical subject areas (Clark
et al. 2000).

The conceptual indexing project at Sun
Microsystems began with the question of
whether a conceptual taxonomy of the words
and phrases from indexed text could be used to
improve information retrieval. The project was
aimed at improving online information access.
The object was to find specific passages of text
in response to specific requests, in order to help
people find specific information in a timely
fashion. This was a very different goal from tra-
ditional document retrieval (and it predated
and presaged the advent of Web search
engines). I argued that if we could significant-
ly improve this kind of online access, it would
have wide applicability, and this is turning out
to be quite true. (Also, the project would allow
me to gain experience with large-scale natural
populations of structured concepts.) In the
course of this project, systems that we built
have been used to construct structured con-
ceptual taxonomies in a variety of subject
domains, the largest of which generated over 3
million concepts.

The basic idea of conceptual indexing is to
allow people to search by generality, specifying
the level of generality of interest by the query
terms they choose and relying on the system to
use information from the constructed concep-
tual taxonomy to make connections between
terms in the request and related (more specific)
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terms that should be considered hits when
found in the text. The conceptual taxonomy
can integrate various kinds of subsumption
relationships such as syntactic, semantic, and
morphological relationships as well as other
relationships, such as entailment and contain-
ment relationships. For example, in a concep-
tual index of a bug-description database, the
query “color change,” which was not in the
taxonomy, was found to subsume the indexed
phrases “becomes black,” “reset bitmap col-
ors,” and “color disruption.” Figure 7 gives an
illustration of how this last subsumption is
derived. On the left side of the figure, “color
disruption” is under “disruption” because “dis-
ruption” is the head of the phrase. The concept
“disruption” is under “change” because it was
analyzed morphologically as being derived
from the root “disrupt,” and the system’s dic-
tionary knows that disrupt is a kind of damage
and that damage is a kind of change. On the
right side, “color change” subsumes “color dis-
ruption” because “color” subsumes “color” and
“change” subsumes “disruption” by virtue of
the path on the left. 

The morphological relationships that are
incorporated into the taxonomy, as well as
semantic and other relationships, are drawn
from a lexicon of known words with informa-
tion about their meanings, derivations, and
relationships to other words. This lexicon is
supplemented during indexing by a morpho-
logical analysis component whose job is to
construct a lexical entry for any unknown
word that the indexer encounters (Woods
2000b). This new lexical entry, which contains
syntactic part-of-speech information and may
contain morphological information and
semantic and other relationships, is then avail-
able for immediate use and for any subsequent
occurrences of the same word. Information

about the word can then be checked to see
whether it should be used to start a potential
phrase or whether it can extend a potential
phrase already under consideration. As each
word and phrase is encountered in the indexed
material, if it is not already in the conceptual
taxonomy, it is added to the taxonomy and
various related terms derived from it or drawn
from its lexical entry are also added to the tax-
onomy with appropriate relationships to the
indexed term. The result is a custom taxonomy,
every concept of which either occurs in the
indexed material or is induced by terms in the
indexed material.

A feature of the intensional subsumption
perspective is the ability to integrate a variety
of abstract subsumption relationships, using
link labels to distinguish different kinds of sub-
sumption. Inheritance of properties can then
be governed by the sequence of labels in a sub-
sumption path. The conceptual indexing sys-
tem at Sun used several such subsumption rela-
tionships, the most general of which is an
entailment relationship in which a term in the
indexed text entails the implicit presence of
another concept in the context being
described. For example, the term display entails
the concepts of “see” and “visible” although
display is not a kind of “seeing” or “visibility.”
The idea is that if a concept of displaying is
present in a context, then the concepts of see-
ing and visibility are intensionally implicit
somewhere in the context. Thus, if someone
searches for “see diagram,” a hit for “display
diagram” could be found. Similarly, terms
derived morphologically from another term
entail the implicit intensional presence of the
underlying root term, even when the deriva-
tion involves significant qualification or even
negation. For example, the term indestructible
entails the implicit presence of the concept of
destruction. Specializations of this kind of
entailment include the use of morphological
relations such as “derived-from” and “inflec-
tion-of” as kinds of subsumption relationships,
as well as the use of explicit entailment axioms
for facts like “plumage” entails “bird.” In a sim-
ilar way spatial and temporal containment can
be treated as kinds of subsumption. Figure 8
illustrates some of the kinds of relationships
that can be treated as subsumption and some
of the subsumption relationships that hold
among them.

Figure 9 illustrates how helpful it can be to
browse with a conceptual index. In this case,
when searching an index of encyclopedia arti-
cles about animals with the query “brown fur,”
I found a few subsumed phrases such as “gray
brown fur” and “white-spotted brown fur,” but
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[person] / (MR [has son] : [professional])

 [woman] / (MR [has child] : [doctor])

Figure 6. The MR Tag Has Inverse Relational Subsumption.



the system helpfully indicated that “brown
fur” was classified in the taxonomy under the
concept “brown coat.” Clicking “brown coat”
to generalize the query found the concepts
shown.

Discussion and Future Directions
The conceptual indexing application I have
just described makes some interesting use of
subsumption technology, but it uses it in a very
special and limited way that doesn’t come close
to the kind of reasoning that I’d like to be able
to support. A next step is to move beyond sys-
tems for passage retrieval (or similar systems
that extract bits of text from source material)
toward systems that can do reasoning in sup-
port of a user’s information need. This includes
general-purpose question-answering systems
that can perform useful reasoning and percep-
tion, based on the information in the indexed
material. General-purpose question answering
requires at least an ability to understand pas-
sages of text that contain answers or that con-
tain information necessary to infer answers
and an ability to efficiently reason with this
information. This requires robust natural lan-
guage parsing, semantic interpretation, finding
and using relevant background knowledge,

and reasoning with algorithms that can deal
with large amounts of knowledge. I believe
that the kinds of intensional subsumption
techniques that I have described will be helpful
in providing an infrastructure for such algo-
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ENTAILS
       ISA
           INSTANCE-OF
           KIND-OF
HAS-ROOT
           INFLECTION-OF
           DERIVED-FROM
SPECIALIZES
           VARIANT-OF
           NICKNAME-OF
           MISSPELLING-OF 
CONTAINED-IN
           SPATIAL-SUBREGION-OF
           TEMPORAL-SUBINTERVAL-OF 

Figure 8. Some Kinds of Subsumption Relationships.

change

damage

disrupt

disruption

color disruption

color change

Figure 7. Taxonomy Fragment Illustrating Syntactic, 
Semantic, and Morphological Relationships.



rithms, not only in the organization of con-
ceptual taxonomies and the retrieval of text
passages, but also in the organization of facts
and rules necessary to support inference with
large-scale knowledge bases. This will require
continued development of the theory and
practice of scalable knowledge representation
technology, such as understanding the circum-
stances under which downward branching in a
conceptual taxonomy will be bounded or the
algorithms will be otherwise well behaved and
how subsumption technology can be integrat-
ed with probabilistic and rule-based inference.

With the increasing availability and use of
online information, the inability of searching
alone to meet many of people’s information
needs is becoming more and more apparent.
Accordingly, question answering has once
again become a major research topic, especial-
ly in the areas of open-domain question

answering where the resource against which
questions are answered consists of large text
collections with virtually unrestricted content.
Most work in this area involves transforming a
question into a search query, followed by a
phase of paragraph or passage retrieval (usual-
ly preceded by a document retrieval phase to
find documents to search for passages), fol-
lowed by a phase of answer extraction from the
identified passages. Conceptual indexing
appears to be a good candidate for the passage
retrieval phase of this process, since it avoids
the need for an intermediate document
retrieval phase, and it directly handles many of
the paraphrase issues. Preliminary attempts to
explore this hypothesis by participating in the
TREC Question Answering Track (Woods et al.
2000a, Woods et al. 2001) have been only par-
tially successful due to technical issues and lim-
itations of the query formulation and answer
extraction components that were used, but
they did manage to establish that this kind of
subsumption knowledge can help and that
more of it helps more. This is consistent with
some other QA track results (Harabagiu et al.
2001) where similar lexical and semantic infor-
mation derived from WordNet was used with a
more sophisticated answer-extraction compo-
nent. These explorations also revealed that
conceptual indexing is a powerful tool for
investigating the issues that arise with this task.
For example, being able to quickly probe the
corpus and discover that an answer to a ques-
tion about a Russian astronaut is answered in a
passage about a Soviet cosmonaut reveals some
of the paraphrase issues that are involved.

Perhaps the most interesting thing about the
TREC QA-track questions is the degree to
which background knowledge is required to
answer many of them and the diversity of the
background knowledge that is required. For
example the question “What are the names of
the tourist attractions in Reims?” finds no pas-
sages with “Reims” that involve tourists or
attractions or seeing or visiting. One has to
know that a cathedral is something that some-
one might like to visit to recognize that Reims
Cathedral is an answer. On the other hand,
finding the answer passage for “What is the
longest word in the English language?” is easy,
given the way the answer passage is worded,
but answering the paraphrase “What English
word contains the most letters?” would require
knowledge of how word lengths are calculated
and the ability to do some sophisticated rea-
soning. While it is clearly a logistical problem
to acquire the necessary background knowl-
edge for this task, a challenging prerequisite is
figuring out a way to organize and use that
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BROWN COAT
 |-k- BRIGHT REDDISH BROWN COAT
 |-k- BROWN BLACK COAT
 |-k- BROWN COATS
 | |-k- FAWN COATS
 | | |-v- (FAWN) COATS
 | |
 | |-k- REDDISH BROWN UPPER COATS
 |
 |-k- BROWN FUR 
 |       |-k- GRAY BROWN FUR
 |       |-k- RICH BROWN FUR
 |       |-k- WHITE-SPOTTED BROWN FUR
 |
 |-k- BROWN HAIR
 | |-k- BROWN HAIRS
 | | |-k- REDDISH BROWN GUARD HAIRS
 | |
 | |-k- BROWN WOOL
 | | |-k- REDDISH BROWN WOOL
 | |
 | |-k- BROWNISH HAIR
 | |-k- REDDISH BROWN HAIR
 |   |-k- REDDISH BROWN GUARD HAIRS
 |   |-k- REDDISH BROWN WOOL
 |
 |-k- BROWN-GRAY COAT

Figure 9. Browsing in a Conceptual Taxonomy.



knowledge that will scale to the size of the task.
It is in this area that I think generalizations of
the subsumption technology described here
and other link-based algorithms have the most
promise.

My “What’s in a Link” paper has sometimes
been taken as an argument against semantic
networks. It should now be clear that my goal
is quite the opposite, namely to make semantic
networks sufficiently rigorous to meet the chal-
lenges that I raised, while keeping the advan-
tages of associative link-based representations
for efficient reasoning (at least for those things
that people do efficiently). One system that has
attempted to combine rigor with link-based
representations is the system of Stuart Shapiro
(Maida and Shapiro 1982). Another is James
Crawford’s system of Access Limited Logic
(Crawford 1990). Neither of these systems,
however, fully address my needs for a sublinear
algorithm for finding the most specific sub-
sumers of a goal description from a large
knowledge base. My hope is that the work
described here will lead to scalable solutions to
these problems in the future.

Conclusion
These are times of exciting opportunities. The
goal of question answering in open-ended
domains raises many new problems of repre-
sentation and reasoning, and many of the old
problems have come back and are still with us.
For example, a recent search on a collection of
New York Times articles found a new variant on
the classic “What do worms eat?”:

Query: What does BMW make?
Answer: The BMW makes your upward mobili-
ty all too obvious.

I have presented a range of issues that relate
to what nodes and links in associative net-
works might mean and how such structures
can aid in understanding language and may be
used to support intelligent reasoning. I have
also presented a number of techniques and
methods for dealing with some of those issues
in a way that can be used to help people find
information in large bodies of knowledge. The
resolution of these issues is far from complete,
and this article represents only a status report
for an ongoing effort. I believe we still need to
forge some new tools to solve some of these
problems (Woods 1987c). I hope that the ideas
presented here will help point the way to new
and better solutions. In terms adapted from a
saying of Warren McCulloch:

Don’t just look at the end of my finger—look
where I’m pointing.
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