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approximately correct learning). At
the same time, his paper and his sub-
sequent research applied that theoret-
ical framework to analyze the proper-
ties of specific machine learning
algorithms.

At the time of Haussler’s paper, one
informal notion popular in machine
learning was the “inductive bias” of a
learner; that is, the set of assumptions
that, together with the training data,
logically entail the hypothesis finally
output by the learner. For example, a
key part of the inductive bias of most
learners is the representation they em-
ploy for hypotheses, which defines
implicitly the space of hypotheses
they can ever consider. The larger the
space of hypotheses considered, the
more training data needed to reliably
learn the target concept—the more
constraining the inductive bias, the
less training data needed.

During the mid-1980s the new the-
ory of PAC learning was being devel-
oped, which allowed deriving quanti-
tative bounds on the probability of
successful learning as a function of the
number of training examples and the
complexity of the learner’s hypothesis
space (as measured by its Vapnik-
Chervonenkis dimension). What
Haussler’s paper did was help intro-
duce this PAC learning theory to the
AI community and show that its re-
sults made direct contact with the in-
ductive bias of the learner—that in
fact the Vapnik-Chervonenkis dimen-
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Quantifying the Induction
Bias in Concept Learning

Commentary by Tom Mitchell

David Haussler’s paper “Quantifying
the Inductive Bias in Concept Learn-
ing,” presented at the AAAI’s Fifth Na-
tional Conference on AI in Philadel-
phia in 1986, helped initiate a very
fruitful integration of a branch of ma-
chine learning theory with machine
learning practice. Starting in the
1950s, with work like Samuels’s pro-
gram that learned strategies for play-
ing checkers, AI researchers had de-
signed and experimented with a
variety of learning algorithms and
had also developed a number of theo-
retical results, such as convergence
proofs for perceptrons and “learning
in the limit” results for grammatical
inference. Haussler’s paper helped in-
troduce the AI community to a new
line of important theoretical work on
what is called PAC learning (probably

sion offered a quantitative measure of
the complexity of the learner’s hy-
pothesis space, characterizing this key
aspect of the learner’s inductive bias.

Haussler’s paper was therefore im-
portant in linking the new PAC learn-
ing theory work with the ongoing
work on machine learning within AI.
Twenty years later that link is firmly
established, and the two research
communities have largely merged in-
to one. In fact, much of the dramatic
progress in machine learning over the
past two decades has come from a
fruitful marriage between research on
learning theory and design of practi-
cal learning algorithms for particular
problem classes.

Default Reasoning, 
Nonmonotonic Logics,
and the Frame Problem

Commentary By Hector Levesque

Within knowledge representation and
reasoning, the (temporal) projection
task is that of determining what does
or does not hold after a sequence of
actions is performed. It is subject to
the frame problem: how do we deter-
mine what does not change after an
action is performed, when we are only
expected to be told what does change?
From the mid-1970s or so, this general
pattern of drawing conclusions based
on a lack of information to the con-
trary became the focus of much re-
search under the name “nonmono-
tonic” or “default” reasoning.

The idea is this: Normally, an object
is unaffected by an action. If a window
is open, then it is reasonable to as-
sume that it remains open after doing
an action. There are clear exceptions,
however, such as the act of closing the
window. A variety of formal systems
have been proposed that would allow
us to infer in the absence of conflict-
ing information that the window re-
mains open (or that a polar bear is
white or that a violin has four strings,
and so on). The formal systems do this
in various ways, but the main idea is
to make the set of exceptions (or ab-
normalities) as small as possible, given
what is known. The sort of reasoning
required for projection would then be
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Left to Right: David Haussler, Steve Hanks, Drew McDermott.

subsumed by this general account of
default reasoning.

At least, this was the view held by
most researchers until the publication
of the paper by Steve Hanks and Drew
McDermott in 1986. What this paper
showed using a very simple example is
that default reasoning in its most obvi-
ous form yields conclusions that are
too weak for projection.

Here’s the example that came to be
known as the “Yale Shooting Problem”
(YSP). There are three actions: shooting
a gun, loading a gun, and pausing for a
moment. Loading a gun is exceptional
in that it causes the gun to be loaded,
when under normal circumstances, a
gun would stay unloaded. When the
gun is loaded, shooting is also excep-
tional in causing a target to be hit,
when normally the target would stay
unhit. No other information is given
(for example, about the pause action).
Now assume that we load the gun,
pause, and then shoot. What happens
to the target? Intuitively, we ought to
be able to infer by default that the tar-
get is hit, even without information
about the pause action.

The problem is this: what about the
possibility of the gun becoming un-
loaded as the result of the pause ac-
tion? This would certainly be an ex-
ceptional outcome. But if it happened,
the target would then be unaffected by
the next action. In other words, some-
thing exceptional has to happen: it
can either be a shooting that hits the
target (preceded by an ineffective
pausing) or a pausing that unloads the
gun (followed by an ineffective shoot-
ing). Default reasoning minimizes the
exceptions but has no reason to prefer
one or the other. And, as Hanks and
McDermott correctly observe, this
does not depend on which default rea-
soning formalism we use to represent
the example. Thus they conclude
(much more controversially) that the
frame problem cannot be solved as a
special case of default reasoning.

Agree or disagree with this conclu-
sion, the impact of the paper was un-
deniable. Many researchers tried very
hard to find other ways to deal with
the example to avoid the problem.
One suggestion was to apply default
reasoning chronologically (or point-
wise) so that we first conclude by de-

fault that the gun remains loaded and
then go on from there to conclude that
the target is hit. Another approach was
to formalize causality explicitly, where
causal relations themselves are what
are considered to be exceptional, and
where pausing is then assumed by de-
fault to have no causal consequences.
A third approach involved looking at
all possible states of the world, and
noting that the assumption that paus-
ing changes the gun is otiose, since in
other states where the gun is loaded,
shooting still changes the target. Final-
ly, a group of researchers tackled the
YSP by representing some facts not as
sentences but as special “rules” involv-
ing the negation-as-failure operator of
logic programming (or the default log-
ic equivalent).

All of these techniques solve the
YSP to some extent, given certain
caveats and restrictions. The most
popular solutions today are the causal
approach due to Turner, Lifschitz, and
others; the solution proposed by Reiter
based on ideas of Schubert, Pednault,
and Haas; and variants due to Elkan
and to Thielscher. Each has become
the basis for implemented systems,
and Reiter’s has the added advantage
of using only ordinary monotonic
first-order logic through so-called suc-
cessor-state axioms. A generalization
of this solution based on causality due
to Lin also addresses the ramification
and qualification problems.

An interesting thing about these so-

lutions is that they are only claimed to
work for a collection of beliefs (about
action effects) of a very specific form. I
believe Hanks and McDermott were
right: a naive application of default
reasoning over a plausible collection
of beliefs about a changing world will
not solve the frame problem. Perhaps
what we have learned in the interim is
that it is not worth the effort to find a
purely logical solution that applies to
beliefs of unrestricted form. At any
rate, concern about the frame problem
has certainly diminished. In many of
the implemented systems today, suc-
cessor-state axioms are simply encod-
ed directly, bypassing completely the
need for default reasoning.
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