Al Magazine Volume 26 Number 1 (2005) (© AAAI)

Semantic Integration
Through Invariants

Michael Gruninger and Joseph B. Kopena

B A semantics-preserving exchange of information
between two software applications requires map-
pings between logically equivalent concepts in the
ontology of each application. The challenge of se-
mantic integration is therefore equivalent to the
problem of generating such mappings, determin-
ing that they are correct, and providing a vehicle
for executing the mappings, thus translating terms
from one ontology into another. This article pre-
sents an approach toward this goal using tech-
niques that exploit the model-theoretic structures
underlying ontologies. With these as inputs, semi-
automated and automated components may be
used to create mappings between ontologies and
perform translations.

any tasks require correct and mean-
Mingful communication and integra-

tion among intelligent agents and in-
formation resources. A major barrier to such in-
teroperability is semantic heterogeneity:
different applications, databases, and agents
may ascribe disparate meanings to the same
terms or use distinct terms to convey the same
meaning. The development of ontologies has
been proposed as a key technology to support
semantic integration—two software systems
can be semantically integrated through a
shared understanding of the terminology in
their respective ontologies.

A semantics-preserving exchange of infor-
mation between two software applications re-
quires mappings between logically equivalent
concepts in the ontology of each application.
The challenge of semantic integration is there-
fore equivalent to the problem of generating
such mappings, determining that they are cor-
rect, and providing a vehicle for executing the
mappings, thus translating terms from one on-
tology into another.

Current approaches to semantic integration
do not fully exploit the model-theoretic struc-
tures underlying ontologies. These approaches
are typically based on the taxonomic structure
of the terminology (Noy and Musen 2000;

Stuckenschmidt and Visser 2000) or heuristics-
based comparisons of the symbols of the termi-
nology (Bouquet et al. 2003; Gruninger and
Uschold 2003). Such techniques are well-suited
to working with many ontologies currently un-
der development, most of which define a ter-
minology with minimal formal grounding and
a set of possible models that does not contain a
rich set of features and properties.

However, automated and correct approaches
to semantic integration will require ontologies
with a deeper formal grounding so that deci-
sions may be made by autonomous software
when comparing ontologies for integration.
This article presents an approach toward this
goal using techniques based on the develop-
ment of strong ontologies with terminologies
grounded in properties of the underlying pos-
sible models. With these as inputs, semiauto-
mated and automated components may be
used to create mappings between ontologies
and perform translations.

The Process Specification Language (PSL)
(Gruninger 2003b; Gruninger and Menzel
2003) is used in this article to demonstrate this
approach to ontology construction and inte-
gration. PSL consists of a core ontology, which
outlines basic objects that exist in the domain,
and a multitude of definitional extensions that
provide a rich terminology for describing
process knowledge. These extensions are based
on invariants, properties preserved by isomor-
phism, which partition the first-order models
of the core ontology. Using these invariants, se-
mantic mappings between application ontolo-
gies and PSL may be semiautomatically gener-
ated. In addition, the direct relationship be-
tween the PSL terminology and the invariants
improves the ability to verify the generated re-
sults. These semantic mappings may then be
used to perform integration between applica-
tions or ontologies. They may also be used to
analyze the application as well as to bootstrap

Copyright © 2005, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2005 / $2.00

Articles

SPRING 2005 11

Articles

12 AI MAGAZINE

an ontology to those applications that do not
have an associated, explicit, formal ontology.

An Architecture
for Semantic Integration

This section describes the interlingua architec-
ture, the basic approach to application integra-
tion employed in this work. Semantic integra-
tion is then presented in terms of this architec-
ture as the tasks and questions that must be
performed and answered.

The Interlingua Architecture

Informally, semantic mappings express the
meaning of a term from one ontology in terms
of another ontology; each such mapping may
simply link one term to another or may specify
a complex transformation. More formally, se-
mantic mappings can be characterized by the
notion of definable interpretation (Marker
2000): If N is a structure in the language &, and
AL is a structure in the language L, then we say
that N is definably interpretable in J(if we can
interpret the symbols of &£, so that there exists
a substructure Jt that is isomorphic to N. Se-
mantic mappings are the sentences that axiom-
atize this interpretation. The techniques that
we discuss in this article semiautomatically
generate such semantic mappings by using hu-
man input to identify properties of the models
that will be preserved by isomorphism.

In current practice, semantic mappings are
manually generated directly between ap-
plication ontologies. However, for software ap-
plications operating in open environments
such as the semantic web, it cannot be assumed
that mappings have been generated prior to in-
teraction between applications. In Gruninger
and Uschold (2003), a number of architectures
have been proposed to support semantic inte-
gration in such an open environment. Each ar-
chitecture is distinguished by the origins of the
semantic mappings, the existence of a mediat-
ing ontology, and the degree of agreement that
exists among the anticipated community of in-
teracting software.

The interlingua architecture is adopted with-
in this work, the distinguishing feature of
which is the existence of a mediating ontology
that is independent of the applications’ ontolo-
gies and is used as a neutral interchange ontol-
ogy (Ciocoiu, Gruninger, and Nau 2001). Se-
mantic mappings between application and in-
terlingua ontologies are manually generated
and verified prior to application interactions
(Ciocoiu 2002). This process of creating the
mapping between the application ontology
and the interlingua ontology is identical to the

process of creating a mapping directly between
two application ontologies, the key difference
of this approach being that application ontolo-
gies are integrated with the interlingua rather
than each other.

The most obvious property of this approach
is the dramatic reduction of the number of
translators that must be constructed. The man-
ual, point-to-point approach requires on the
order of n? translators, one for each pairing,
while the interlingua approach mandates only
one translator per application. In addition to
the initial costly development of a translator
for each pairing under the point-to-point ap-
proach, if one application’s ontology is
changed, each associated translator must also
be updated. Using an interlingua, only the
translator to and from the interlingua must be
maintained for each application.! A demon-
stration of these properties from the domain of
systems for managing manufacturing processes
is shown in figure 1.

Importantly, the point-to-point approach
does not work in environments that feature
unanticipated software interactions. Interac-
tion can only occur between pairs of software
for which a specific translator has been previ-
ously developed. Using the interlingua model,
a mapping between the application ontology
and the interlingua is all that is necessary to in-
teract with the community of software for
which mappings to and from the interlingua
have also been developed. This eliminates the
problem of changes in applications mandating
changes to all other systems and allows exist-
ing software to seamlessly interoperate with
newly introduced applications, capabilities not
possible using manual, point-to-point map-
pings.

Integration and Translation

Under the interlingua architecture, there are
two steps in translation: the execution of the
mapping from the application ontology to the
interlingua and subsequently from the interlin-
gua to the target application’s ontology. If the
application ontologies and the interlingua on-
tology are specified using the same logical lan-
guage, then translation can be accomplished by
applying deduction to the axioms of the inter-
lingua ontology in conjunction with the formal
mapping rules (Ciocoiu 2002; Ciocoiu,
Gruninger, and Nau 2001). In effect, a direct
mapping rule from one application’s ontology
to the target application’s ontology is inferred
from the two separate rules. If these mapping
rules have been verified to preserve semantics
between the application and interlingua ontol-
ogy, it is guaranteed that this translation be-

tween the applications also preserves semantics.

An important question is then whether the
existence of the predefined mappings between
the application ontologies and the interlingua
ontology enables the automatic generation of a
point-to-point mapping between the applica-
tions’ ontologies. More formally, if M, and .,
are both definably interpretable in N, is A,
definably interpretable in l,? Answering this
question is equivalent to the task of semantic
integration within the interlingua architecture.
It is addressed in this work by comparing the
mappings between application ontologies and
the interlingua.

Invariant-Based
Ontology Design

Many ontologies are specified as taxonomies or
class hierarchies, yet few provide formal jus-
tification for their classification scheme. If we
consider ontologies of mathematical struc-
tures, we see that logicians classify models by
using properties of models, known as invari-
ants, that are preserved by isomorphism.

For some classes of structures, invariants can
be used to classify the structures up to isomor-
phism; for example, vector spaces can be clas-
sified up to isomorphism by their dimension.
For other classes of structures, such as graphs, it
is not possible to formulate a complete set of
invariants. However, even without a complete
set, invariants can still be used to provide a
classification of the models of a theory.

Figure 2 provides such an example from the
domain of geometric shapes. Some invariants
of objects in this domain are given in figure 2a.
These are used in figure 2b to define the class of
regular shapes. Several shapes are classified
against this definition and the results given in
figure 2c.

Notice that each question in figure 2a corre-
sponds to an invariant for an object, and each
value of the invariant is a possible answer to
the question, as in figure 2c. We will later use
this same correspondence between invariants
and questions to specify semantic mappings for
ontologies such as PSL.

Of particular interest in this example is the in-
variant that is the symmetry group of the object.
In this case, symmetry is the preservation of the
shape of the object even after we rotate or reflect
it along an axis. If we take a triangle and rotate
it about its center through an angle of 120 de-
grees, the resulting figure looks exactly the same
as when it started. Similarly, the figure looks the
same when reflecting it about a line that con-
tains a vertex and bisects the opposite edge.

For models of ontologies such as PSL, the

Articles

Product Data Production

Management Management
Design/ o
Modeling\ / Training

Interlingua
Process / \ _
Planning Analysis
Scheduling Simulation

Product Data Production

Management Management
Design/ o
Modeling | Training
Process)
Planning Analysis

Simulation

Scheduling

Figure 1. Translation Pairings for a Set of Manufacturing Process Systems.

(a) Point-to-point translation requires on the order of n? translators be
developed and maintained. (b) With an interlingua, only n translators
must be developed and maintained.

symmetries are more abstract, but the basic idea
remains—some structure within a model of the
ontology will be preserved even after subjecting
it to some sort of transformation. The invari-
ants that are used in ontology design are there-
fore generalizations of symmetry groups.

To illustrate how invariants are used to pro-

SPRING 2005 13

Articles

A

Is the shape a polygon with n > 3 sides?

Is the shape convex?

Is the symmetry group consisting of rotations
and reflections of the shape equivalent to D,;?

B.

Regular polygons = convex polygons with
n > 3 sides and symmetry group = D,,.

yes, n=6

convex;
Symm # D,
D —regular

yes, n=8 yes, n=8 yes,n=23
convex; concave; convex;

Symm = Dn Symm * D” Symm = Dn
O regular > - regular O regular

Figure 2. An Example of the Use of Invariants in
Constructing a Terminology of Geometric Shapes.

A. Several invariant properties of geometric shapes. B. Definition for the class of
regular shapes using the above invariants. C. Several shapes classified as regular
or irregular through comparison to the definition. Although not a complete set,
these invariants do support the formal definition of terms in the language.

14 AI MAGAZINE

vide the classification and terminology of an
ontology, we will consider the treatment of pre-
conditions in the PSL ontology. Preconditions
specify the constraints under which activities
can possibly occur in some domain. Within the
PSL ontology, occurrence trees characterize all
sequences of activity occurrences; however, not
all of these sequences will intuitively be physi-
cally possible within the domain. Consequent-
ly, we need to characterize the subtree of an oc-
currence tree that consists only of possible se-
quences of activity occurrences; such a subtree
is referred to as a legal occurrence tree, and el-
ements of this subtree are referred to as legal ac-
tivity occurrences.

The most prevalent class of occurrence con-
straints is that of Markovian activities, activities
whose preconditions depend only on the state
prior to their occurrences (for example, to with-
draw money from a bank account, there must

be sufficient funds in the account). The class of
Markovian activities is defined in the PSL
definitional extension state_precond.def, a por-
tion of which is given in figure 4. There are also
activities whose preconditions intuitively are
not Markovian but depend on the time at
which the activity occurs (for example, transac-
tions must be completed during office hours),
and any process ontology should be able to
capture these constraints as well.

The invariant that is associated with Mar-
kovian preconditions can be illustrated by the
symmetries of poker hands. Poker is played
with a standard pack of fifty-two cards, which
are ranked ace, king, queen, jack, 10, 9, 8, 7, 6,
5, 4, 3, 2; for each rank, there are four suits—di-
amonds (¢), hearts (v), spades (a), and clubs
(%). Although there are ten possible poker
hands, we will focus on three of these hands. A
flush is a hand in which all of the cards are the
same suit, for example, all cards have the heart
suit. A royal straight is the sequence ace, king,
queen, jack, 10, regardless of the suit. With a
pair, there are two cards of any rank, matched
with three distinct cards.

We can classify poker hands by characteriz-
ing which of them are preserved by different
kinds of transformations (see figure 3). In one
kind of transformation, we change the suit of a
single card, but we must preserve the rank, for
example, change a 3% into a 3v. In another
kind of transformation, we change the rank of
a single card, but we must preserve the suit, for
example, change a 3% into a 7. The first kind
of transformation will always preserve a royal
straight but it will never preserve a flush, while
the second kind of transformation will always
preserve a flush but never preserve a royal
straight. There exist transformations of either
kind that will preserve a pair, provided that the
rank of the changed card is not the rank of one
of the cards in the pair.

The classification of activities with respect to
preconditions is analogous to this card game
(see table 1). Rather than preserve poker hands,
we want to characterize which permutations of
activity occurrences within a model of the PSL
ontology preserve legal occurrences of activi-
ties in an occurrence tree. Rather than change
cards with the same suit, we consider permuta-
tions of activity occurrences within a model
that agree on the set of fluents that hold prior
to the activity occurrences in an occurrence
tree. The invariant in this case is the group of
such permutations that preserve the legal oc-
currences of the activity. If any such permuta-
tion will preserve legal occurrence, then the ac-
tivity is the markov_precond class, as axioma-
tized in figure 4. With a partial_state activity, if

Articles

A.
3 6 7 9 10 3 6 7 9 4
3o [io ole o [ie ¢[00 o S0 [f0 o[7e ¢[00 o0 «
N O IR A O EDabe o Lo oot
+ + 4”4’*’4 + + 4”» +
B R RIS R IR RS B R RIS RIS R

C.
E‘ FEO 14-‘4- ‘e o E‘ FEO 14.‘4. R
v |[a"a v (a0t
Vo * . - P * v o . Py v‘*‘»
z Zl W P v ey z zl W [¥ ¥y

Figure 3. Poker Hands Can Be Classified by Considering the Sets of Transformation that Preserve the Hand.

In this example, we exchange cards of the same rank, but they are allowed to be of different suits. A. Any transformation that preserves the
suit also preserves a flush. In this example, the 10 is exchanged with the 4e. B. No transformation that preserves the suit also preserves
a royal straight. In this example, the 10+ is exchanged with the 6¢. C. Some transformations that preserve a suit also preserve a pair. In

this example, the 4 ¢ is exchanged with the 10e.

only a subset of such permutations will pre-
serve legal occurrences, then there exist addi-
tional non-Markovian constraints on the legal
occurrences of the activity, and this is axioma-
tized by the partial_state class in figure 4. If no
such permutation will preserve legal occur-
rences, then the constraints on the legal oc-
currences of the activity are completely non-
Markovian; this is axiomatized by the
rigid_state class in figure 4.

In general, the set of models for the core the-
ories of an ontology are partitioned into equiv-
alence classes defined with respect to the set of
invariants of the models. Each equivalence class
in the classification of the models of the ontol-
ogy is axiomatized using a definitional exten-
sion of the ontology. Each definitional exten-
sion in the ontology is associated with a unique
invariant; the different classes of activities or
objects that are defined in an extension corre-
spond to different properties of the invariant. In
this way, the terminology of the ontology arises

from the classification of the models of the core
theories with respect to sets of invariants.

Semantic Mapping
Via Translation Definitions

As noted previously, the generation of seman-
tic mappings between two ontologies T, and T,
is equivalent to the formal problem of deter-
mining whether T, is definably interpretable in
T,. Although in general an extremely difficult
problem, the invariants used in the classi-
fication of the models of the ontologies can al-
so be used to generate semantic mappings. Se-
mantic mappings preserve models—each mod-
el of the ontology T, is mapped to an
isomorphic substructure of a model of the on-
tology T,. Since invariants are properties of the
models that are preserved by isomorphism, se-
mantic mappings must also preserve the invari-
ants. Therefore, if models of T, and T, are char-
acterized up to isomorphism by some sets of in-
variants, then T, is definably interpretable in

SPRING 2005 15

Articles

16 Al MAGAZINE

legality

Transformation Poker Preconditions
All transformations of some kind preserve legality ~ flush markov_ precond
A subset of transformations of some kind pre- pair partial_state
serve legality

No transformations of some kind preserve royal straight rigid_state

Table 1. Analogy Between the One Kind of Transformation that Preserves Legal
Poker Hands and the Permutations that Preserve Legal Activity Occurrences.

T, if and only if there is a mapping of the in-
variants of T to the invariants of T,; a concept
in T, will be mapped to a concept in T, if and
only if the invariants have the same values.

Translation definitions specify the semantic
mappings between the interlingua ontology
and application ontologies. Following the
above discussion, they are generated using the
organization of the definitional extensions,
each of which corresponds to a different invari-
ant. Every class of activity, activity occurrence,
or fluent in an extension corresponds to a dif-
ferent value for the invariant. The consequent
of a translation definition is equivalent to the
list of invariant values for members of the ap-
plication ontology class.

Translation definitions have a special syn-
tactic form—they are biconditionals in which
the antecedent is a class in the application on-
tology and the consequent is a formula that us-
es only the lexicon of the interlingua ontology.
For example, the concept of AtomicProcess in
the OWL-S ontology? (Mcllraith, Son, and Zeng
2001) has the following translation definition
with respect to the PSL ontology:

(forall (?a)
(iff (AtomicProcess ?a)
(and (atomic ?a)
(markov_precond ?a)
(markov_effects ?a))))

The invariant corresponding to the markov_
precond class was discussed in the preceding sec-
tion; the invariants corresponding to the mar-
kov_effects and context_free classes are based on
groups consisting of permutations of activity
occurrences that preserve effects (that is,
fluents that are achieved or falsified by activity
occurrences).

Semiautomatic Generation
of Semantic Mappings

The generation of semantic mappings through
the specification of invariant values has been
implemented in the PSL project’s twenty ques-
tions mapping tool.> Each question corre-

sponds to an invariant, and each value of the
invariant is a possible answer to the question.
Any particular activity, activity occurrence, or
fluent will have a unique value for the invari-
ant; however, if we are mapping a class of activ-
ities, occurrences, or fluents from some applica-
tion ontology, then different members of the
class may have different values for the same in-
variant. In such a case, one would respond to a
question by supplying multiple answers. By
guiding and supporting users in creating trans-
lation definitions without requiring them to
work directly with first-order logic axiomatiza-
tions, the twenty questions tool provides a
semiautomated technique for creating seman-
tic mappings.

Figure 5 gives a sample question correspond-
ing to the symmetries of fluents and legal activ-
ity occurrences; each possible answer corre-
sponds to a different value of the invariant,
which is the group of permutations that pre-
serve legal activity occurrences. Following the
axiomatizations given in figure 4 for the classes
of activities corresponding to these values, se-
lecting the first answer would generate the
translation definition:

(forall (?a)

(iff (myclass ?a)
(markov_precond ?a)))

Selecting the first two answers would give
the translation definition:

(forall (?a)

(iff (myclass ?a)
(or (markov_precond ?a)
(partial_state ?a))))

In this latter case, some activities in myclass
will have Markov preconditions while other ac-
tivities will not.

Validating Semantic Mappings

The twenty questions tool illustrates how the
classification of the models of the PSL ontology
determines the syntactic form of the trans-
lation definitions. The consequent of the trans-
lation definition specifies the values of the in-

variants that capture the intended semantics of
the class of activities that appear in the an-
tecedent of the translation definition. Howev-
er, this raises the issue of validating the seman-
tic mappings that are generated in this
way—how can we determine the correctness of
the mappings between an application ontology
and the interlingua ontology? If the applica-
tion ontologies are axiomatized, then we can
verify the semantic mappings by proving that
they do indeed preserve the models of the on-
tologies. This can be done by demonstrating
that the class of models of the application on-
tology is axiomatized by the interlingua, to-
gether with the translation definitions.

In practice, the validation of semantic map-
pings is complicated by the fact that few soft-
ware applications have explicitly axiomatized
ontologies. In such cases, the twenty questions
tool can also be used to define a formal ontol-
ogy for the software applications. This is afford-
ed by the assumption of the ontological stance
(Gruninger and Menzel 2003), the main tenet
of which is that a software application may be
modeled as if it were an inference system work-
ing on an axiomatized ontology.

The ontological stance is an operational
characterization of the set of intended models
for the application’s terminology. In this sense,
it should be treated as a semantic constraint on
the application—it does not postulate a specific
set of axioms, but rather a set of intended mod-
els. Given a software application, there exists a
class of models M4 such that any sentence ® is
decided by the application to be satisfiable if
and only if there exists a model .t in M* such
that Jl entails ®.

By answering the questions presented by the
twenty questions tool, the application designer
is capturing the application’s set of intended
models. Given correct input, the translation
definitions generated by the tool together with
the interlingua ontology define an explicit ax-
iomatization of the application’s previously im-
plicit ontology.

To validate the attributed ontology, the gen-
erated translation definitions may be treated as
falsifiable hypotheses and tested empirically.
By the ontological stance, the application de-
cides some sentence ® to be provable if and on-
lyif T, U T, entails ® where T, is the

translation
set of axioms for the PSL ontology and T, ..
tion 1S the set of translation definitions that are
being verified. In this way, it may be evaluated
whether or not the attributed ontology correct-
ly predicts inferences made by the software
and, consequently, whether or not the transla-
tion definitions accurately capture the seman-

tics of the application.

Articles

Definition 1

(forall (20l ?02) (iff (state equiv ?0l ?02)
(forall (?f)
(iff (prior ?f ?01)

(prior ?f 202)))))

Definition 2
(forall (?a 20l ?02) (iff (poss_equiv ?a 20l ?02)
(implies (and (occurrence of ?0l ?a)
(occurrence of ?02 ?a))
(legal equiv 2?0l ?02))))

Definition 3
(forall (?a) (iff (markov precond ?a)
(forall (2?0l 202)
(implies (state equiv ?0l ?02)
(poss_equiv ?a 2ol ?02))))

Definition 4
(forall (?a) (iff (partial state ?a)
(and (exists (?o01)

(forall (?02)

(implies (state _equiv ?0l ?02)
(poss_equiv ?a 20l ?02))))
(exists (?03 ?04)
(and (state_equiv ?03 ?04)
(not (poss _equiv ?a ?03 ?04)))))))

Definition 5
(forall (?a) (iff (rigid state ?a)
(forall (?o01)
(exists (?02)
(and (state_equiv 20l ?02)
(not (poss _equiv ?a ?0l ?02)))))))

Figure 4. Classes of Activities with State-Based Preconditions from the
Definitional Extension State_precond.def.

The additional relations are defined to capture the different transformations used
to determine the symmetries. Two activity occurrences o, o0, are state_equiv iff
there exists a permutation of activity occurrences that preserves the fluents that
hold prior to the activity occurrences. The two activity occurrences are poss_equiv
if and only if there exists a permutation of activity occurrences that preserves le-
gal occurrences of the activity.

Comparison of Semantic-Inte-
gration Profiles for Integration

The set of translation definitions for all con-
cepts in a software application’s ontology
defines a semantic-integration profile for that
application. If the interlingua has m invariants
and each invariant n values, then an applica-
tion profile will have the form:
(forall (?a)
(iff (C1,,,, ?2)
(and (or (py;?a) ... (py, ?2)

SPRING 2005 17

Articles

18 AI MAGAZINE

2. Constraints on Atomic Activity Occurrences Based on State

Are the constraints on the occurrence of the atomic activity based
only on the state prior to the activity occurrence?

o Any occurrence of the activity depends only on fluents that
hold prior to the activity occurrence.

a Some (but not all) occurrences of the activity depend only on
fluents that hold prior to the activity occurrence.

a There is no relationship between occurrences of the activity
and the fluents that hold prior to occurrences of the activity.

Figure 5. One of the Twenty Questions, Used to
Classify Activities with State-Based Preconditions.

(or Py 7a) ... (P 7))

Each clause in the profile corresponds to a
different invariant; each literal (p; ?a) is a class
of objects in the interlingua ontology, all of
whose members have the same value of some
invariant. For example, suppose Alice’s ontol-
ogy contains a class of activities C%¢ (g), which
has unconstrained preconditions (that is, they
are always possible) and whose effects are ei-
ther context free or depend only on the state
prior to occurrences of the activities. Suppose
that Bob’s ontology contains a class of activities
Ch (@) whose preconditions are either uncon-
strained or Markovian and whose effects are
context free. Using the invariants for the PSL
ontology, the twenty questions tool would gen-
erate the following translation definitions:

(forall (?a)

(iff (Calice 2a)
(and (unconstrained ?a)
(or (markov_effects ?a)
(context_free ?a)))))
(forall (?a)
(iff (CPoP ?a)
(and (context_free ?a)
(or (markov_precond ?a)
(unconstrained ?a)))))

As noted earlier, translation between inte-
gration targets may be accomplished by apply-
ing deduction to the axioms of the interlingua,
the semantic mappings, and the input to be
translated. Given the above example mappings
from the two application ontologies of Alice
and Bob into PSL, the following mappings be-
tween the two concepts may be inferred:

(forall (?a)

(implies (context_free ?a)
(implies (Cbdlice 2a)
(CP°P 2a))))
(forall (?a)
(implies (unconstrained ?a)
(implies (CP°P ?a)
(Calice ’)a))))

Thus, if an activity has context-free effects,
then Bob’s class of activities subsumes Alice’s
class; if an activity has unconstrained precondi-
tions, then Alice’s class of activities subsumes
Bob’s class.

Such inferred mappings will in general take
the form of:

(forall ?a)

(implies (and (or (py; ?a) ... (py, ?2)

(©or Py ?8) - (Prp 7))
(implies (Calice, ?a)
(CP, ?a))))

The antecedents of these sentences can be
considered to be guard conditions that deter-
mine which activities can be shared between
the two ontologies. This can either be used to
support direct exchange or simply as a compar-
ison between the application ontologies. In
this example, Alice can export any uncon-
strained activity description to Bob and Bob can
export any context-free activity description to
Alice; however, Alice cannot import markov_
precond activity descriptions from Bob, and Bob
cannot import any markov_effects activity de-
scriptions from Alice.

Although inferred implicitly during transla-
tion, these relationships may be explicitly de-
termined by the simple profile-compare algo-
rithm presented in figure 6. Explicitly inferring

these mappings offers several capabilities. If
run-time translation efficiency is important,
then these point-to-point mapping rules could
be generated upon first interaction and then
cached as explicit rules to be used in subse-
quent interactions. A detailed discussion of
such trade-offs and overlaps between point-to-
point and interlingua-based integration ap-
proaches is presented in Uschold, Jasper, and
Clark (1999).

In addition, by explicitly generating such
mappings, it may be possible to use simpler in-
ference engines to perform translation, rather
than requiring a full first-order reasoner to im-
plicitly translate using axioms of the interlin-
gua, the semantic mappings, and the input to be
translated. Importantly, such explicit mappings
may also be used by the application designers to
examine the structure of their application as
well as to evaluate relationships and coverage
relative to the interlingua or other ontologies.

Open Problems

Several important issues related to semantic in-
tegration have not been addressed so far in this
work: translation definitions for primitive rela-
tions; incomplete sets of invariants; and recog-
nizing classes from domain theories.

Translation Definitions
for Primitive Relations

All of the translation definitions generated by
the twenty questions tool are restricted to se-
mantic mappings using only the definitional
extensions of the PSL ontology; they do not
provide general semantic mappings between
concepts within the core theories of the
ontology.

Translation definitions are also restricted to
mappings between the classes of the applica-
tion ontology and the PSL ontology; they do
not map relations in the different ontologies.
For example, different applications may im-
pose restrictions on the subactivity relation in
the composition of complex activities—in one
ontology, the relation may not be transitive,
while in the other ontology, the relation may
be isomorphic to a bipartite graph consisting of
primitive and nonprimitive activities. Even
though both of these relations are definably in-
terpretable within the PSL ontology, the map-
pings do not use invariants, and there is no
general way of generating a direct mapping be-
tween the two ontologies.

This leads to the following question:

Under what conditions does the existence of a

semantic-integration profile guarantee the exis-

tence of a definable interpretation of primitive

Articles

PROFILE-COMPARE(P,,Py,)

1 for each C, € P,

2 do for each Cp, € Py,

3 do {8, g} < CONCEPT-COMPARE(C,, Cp)
4 OUTPUT(‘’g, D (C,; D Cp)’)

S OUTPUT(‘gp, D (Cp D Cp)")

CONCEPT-COMPARE(C,, Cp)

1 R, < true; Ry, < true

2fori< 1tom

3 do s < VALUES(C,, i) N VALUES(Cy, i)

4 ifsz0

S then R, < CONJUNCTION(R,, DISJUNCTION(s))
6 Rj < CONJUNCTION(Ry,, DISJUNCTION(S))
7 else if VALUES(C,, i) # 0 /\ VALUES(Cy, i) # 0

8 then error “No mapping.”

9 return{R,, Ry}

Figure 6. The PROFILE-COMPARE Algorithm for Determining Relationships

between Ontologies, Given the Semantic-Integration Profiles.

relations with respect to the invariants in the
profile?

Incomplete Sets of Invariants

The approach to semantic integration taken in
this article relies on the existence of a complete
set of invariants for the models of the ontology.
However, there are theories (such as graphs) for
which such a set of invariants cannot be found.
In such cases, two concepts may have equiva-
lent semantic-integration profiles (that is,
equivalent values for the invariants) yet not
have isomorphic intended models.

In some cases, this may require the intro-
duction of new core theories to axiomatize the
intended models of the concepts. For example,
a theory of resource requirements would be re-
quired to distinguish between different classes
of manufacturing and logistics activities. Since
this does not eliminate the problem if the mod-
els of the new core theories also do not have
complete sets of invariants, we are faced with
the following question:

Given a theory whose models cannot be com-

pletely classified by some set of invariants, how

can the translation definitions be augmented
by more general relative interpretation axioms?

SPRING 2005 19

Articles

Recognizing Classes
from Domain Theories

The PSL ontology makes a distinction
between the axioms of the ontology
and the axioms of a domain theory
that uses the ontology, which are char-
acterized as syntactic classes of sen-
tences that are satisfied by elements of
the models. For example, traditional
precondition axioms are characterized
as the class of sentences that are
satisfied by markov_precond activities,
and traditional effect axioms are
equivalent to the class of sentences
that are satisfied by markov_effect ac-
tivities. On the other hand, many
process ontologies used by software
applications do not explicitly specify
classes of activities but only specify
syntactic classes of process descrip-
tions. A comprehensive account of se-
mantic integration must therefore ad-
dress the following question:
Is it always possible to automatically
determine the profile for a class using
only the domain theory associated
with elements of the class?

Conclusions

This article has described how model-
theoretic invariants of an ontology
can be used to specify semantic map-
pings translation definitions between
application ontologies and an interlin-
gua. In particular, examples have been
presented using the Process Specifi-
cation Language (PSL) ontology as the
neutral medium in integration.

The sets of models for the core the-
ories of PSL are partitioned into equiv-
alence classes defined with respect to
the invariants of the models. Each
equivalence class in the classification
of PSL models is axiomatized using a
definitional extension of PSL. The
twenty questions tool that is based on
these invariants and definitional ex-
tensions supports semiautomatic gen-
eration of semantic mappings be-
tween an application ontology and
the PSL ontology.

This approach can be generalized to
other ontologies by specifying the in-
variants for the models of the axiom-
atizations. Future work in this area in-
cludes developing software to gener-
ate mappings based on profiles
created with the twenty questions

20 AI MAGAZINE

tool and application to translation be-
tween PSL and other ontologies (such
as OWL-S [Gruninger 2003a]) and
translators for existing process model-
ers and schedulers.

Acknowledgements

This work was supported by the Preci-
sion Engineering Project within the
Manufacturing Engineering Laborato-
ry at the National Institute of Stan-
dards and Technology (NIST); Office of
Naval Research (ONR) Grant N0O0O14-
0110618; and NIST Grant #70NAN33
H1026, funded by the National Sci-
ence Foundation. Any opinions, find-
ings, and conclusions or recommen-
dations expressed in this material are
those of the authors and not necessar-
ily the supporting organizations.

Notes

1. See Uschold, Jasper, and Clark (1999) for
a more detailed discussion of the trade-offs
between the point-to-point and interlingua
approaches.

2. OWL-S is an Ontology Web Language
(OWL) ontology for describing web ser-
vices, created by a coalition of researchers
through the support of the DARPA Agent
Markup Language (DAML) program. OWL-
S supplies web service providers with a core
set of markup language constructs for de-
scribing the properties and capabilities of
their web services in unambiguous, com-
puter-interpretable form.

3. Available at http://ats.nist.gov/psl/twen-
ty.html.

References

Bouquet, P.; Serafini, L.; Zanobini, S.; and
Benerecetti, M. 2003 An Algorithm for Se-
mantic Coordination. Paper presented at
the Semantic Integration Workshop, Sani-
bel Island, FL, October 20.

Ciocoiu, M. 2002. Ontology-based Seman-
tics, Ph.D. diss., Department of Computer
Science, University of Maryland, College
Park, MD.

Ciocoiu, M.; Gruninger M.; and Nau, D.
2001. Ontologies for Integrating Engineering
Applications. Journal of Computing and Infor-
mation Science in Engineering 1(1): 12-22.
Gruninger, M. 2003a. Applications of PSL to
Semantic Web Services. Paper presented at
the Workshop on Semantic Web and Data-
bases, Berlin, Germany, September 7-8.

Gruninger, M. 2003b. A Guide to the On-
tology of the Process Specification Lan-
guage. In Handbook on Ontologies in Infor-
mation Systems, ed. R. Studer and S. Staab.
Berlin: Springer-Verlag.

Gruninger, M.; and Menzel, C. 2003.
Process Specification Language: Principles
and Applications, AI Magazine 24(3): 63-74.
Gruninger, M.; and Uschold, M. 2003. On-
tologies and Semantic Integration. In Soft-
ware Agents for the Warfighter. Pensacoloa,
FL: University of West Florida, Institute for
Human and Machine Cognition.

Marker, D. 2000. Model Theory: An Introduc-
tion. Berlin: Springer-Verlag.

Mcllraith, S.; Son, T. C.; and Zeng, H. 2001.
Semantic Web Services, Special Issue on the
Semantic Web. IEEE Intelligent Systems
16(2): 46-53.

Noy, N.; and Musen, M. 2000. PROMPT: Al-
gorithm and Tool for Automated Ontology
Merging and Alignment. In Proceedings of
the Nineteenth National Conference on Artifi-
cial Intelligence. Menlo Park, CA: AAAI Press.

Stuckenschmidt, H.; and Visser, U. 2000.
Semantic Translation Based on Approxi-
mate Reclassification. In Proceedings of the
Seventh International Conference on Knowl-
edge Representation and Reasoning. San Fran-
cisco: Morgan Kaufmann Publishers.
Uschold, M.; Jasper, R.; and Clark, P. 1999.
Three Approaches for Knowledge Sharing: A
Comparative Analysis. Paper presented at
the Twelfth Workshop on Knowledge Acqui-
sition, Modeling, and Management (KAW
'99), Banff, Alberta, Canada, October 16-21
(sern.ucalgary.ca/KSI/KAW/KAW99/papers.
html).

Michael Gruninger is
currently an assistant re-
search scientist in the In-
stitute for Systems Re-
search at the University
of Maryland College
Park and also a guest re-
searcher at the National
Institute for Standards
and Technology (NIST). His current re-
search focuses on the design and formal
characterization of ontologies and their ap-
plication to problems in manufacturing
and enterprise engineering.

Joseph Kopena is a student researcher at
Drexel University, where he is a member of
the Secure Wireless Agent Testbed (SWAT)
project headed by William Regli and Moshe
Kam. His current research revolves around
the application of service-based computing
to disruption-prone networking environ-
ments. His previous research includes
knowledge representation for engineering
design repositories and low-cost mobile ro-
botics for education.

