
■ We now know the full genomes of more than 60
organisms. The experimental characterization of
the newly sequenced proteins is deemed to lack be-
hind this explosion of naked sequences (sequence-
function gap). The rate at which expert annotators
add the experimental information into more or
less controlled vocabularies of databases snails
along at an even slower pace. Most methods that
annotate protein function exploit sequence simi-
larity by transferring experimental information for
homologues. A crucial development aiding such
transfer is large-scale, work- and management-in-
tensive projects aimed at developing a comprehen-
sive ontology for gene-protein function, such as
the Gene Ontology project. In parallel, fully auto-
matic or semiautomatic methods have successfully
begun to mine the existing data through lexical
analysis. Some of these tools target parsing con-
trolled vocabulary from databases; others venture
at mining free texts from MEDLINE abstracts or
full scientific papers. Automated text analysis has
become a rapidly expanding discipline in
bioinformatics. A few of these tools have already
been embedded in research projects.

Proteins are the machinery of life. The in-
formation for life is stored in a four-letter
alphabet in the genes (deoxyribonucleic

acid [DNA]) (Alberts et al. 1994; Lodish et al.
2000). This four-letter DNA alphabet is trans-
lated into a 20-letter amino acid alphabet con-
stituting the basic language for proteins, the
machinery of life. Proteins are formed by join-
ing amino acids through peptide bonds. Pro-
teins differ greatly in the number of amino
acids joined (from 30 to more than 30,000)
and the arrangement and types of amino acids

used (dubbed residues when joined in pro-
teins). Proteins are the macromolecules that
perform all important tasks in organisms, such
as catalysis of biochemical reactions, transport
of nutrients, and recognition and transmission
of signals. The plethora of role aspects of any
particular protein is referred to as its function.
However, protein function is not a well-de-
fined term. Instead, function is a complex phe-
nomenon that is associated with many mutu-
ally overlapping levels: chemical, biochemical,
cellular, organism mediated, developmental,
and physiological. These levels are related in
complex ways; for example, protein kinases
can be related to different cellular functions
(such as cell cycle) and to a chemical function
(transferase) plus a complex control mecha-
nism by interaction with other proteins. The
same kinase can also be the culprit that leads
to misfunction, or disease. Thus, identifying
protein function is a step toward understand-
ing diseases and identifying drug targets (Brut-
lag 1998).

The first entire genome (DNA) sequence of a
free living organism, Haemophilus influenzae,
was published in 1995 (Fleischmann et al.
1995). Currently, we know the full genomes
for more than 100 organisms; for more than 60
of these, the data are publicly available and
contribute about 250,000 protein sequences,
that is, about one-fourth of all currently
known protein sequences (Carter et al. 2003;
Liu and Rost 2001; Pruess  et al. 2003). The
number of entirely sequenced genomes is ex-
pected to continue growing exponentially for
at least the next few years. This explosion of se-
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begun to successfully explore the marvels of an
ever-increasing body of research in biology and
medicine. There are two major methods at-
tempting automatic lexical analysis: (1) pars-
ing of controlled vocabulary from databases
and (2) mining unstructured text available
from scientific publications. We could not cov-
er all the promising approaches that have
mushroomed over the last 5 to 10 years; there-
fore, we focus in detail on a few success stories.

Annotations and Annotation
Transfer of Protein Function

Information about protein sequences is stored
in public databases such as SWISS-PROT and
TREMBL (table 1). SWISS-PROT (Apweiler 2001;
Bairoch and Apweiler 2000) is an expert-curat-
ed database that also contains annotations
about function (figure 1). These annotations

quence information has widened the gap be-
tween the number of protein sequences de-
posited in public databases and the experimen-
tal characterization of the corresponding
proteins (Baker and Brass 1998; Koonin 2000;
Lewis et al. 2000; Rost and Sander 1996). Bio-
informatics, sometimes referred to as functional
genomics, plays a central role in bridging the se-
quence-function gap through the development
of tools for faster and more effective prediction
of protein function (Bork et al. 1998; Fleis-
chmann et al. 1999; Luscombe et al. 2001; Va-
lencia 2002; Valencia and Pazos 2002).

Here, we briefly review some of the attempts
at annotating function through homology
transfer. The most widely used methods that
allow guessing protein function rely on the
ability to correctly mine the information de-
posited in public databases and scientific jour-
nals. Although we need a comprehensive on-
tology for protein function, developers have
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Figure 1. Protein Entry in SWISS-PROT.
The SWISS-PROT identifier for the protein MYOD_HUMAN is found under the header ID. The type of protein and its source organism are
found under the DE and OS headers, respectively. Detailed functional information regarding the protein is found under the header CC.
This information is written in plain English and is not suitable for computer analysis. Following the KW header are keywords describing

the function of the protein. The keywords use a restricted vocabulary and are ideal for tools for text analysis.

ID   MYOD_HUMAN     STANDARD;      PRT;   319 AA.
AC   P15172;
. . .
DE   Myoblast determination protein 1 (Myogenic factor MYF-3).
GN   MYOD1 OR MYF3.
OS   Homo sapiens (Human).
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
OC   Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 
OX   NCBI_TaxID=9606;
. . .
CC   -!- FUNCTION: INVOLVED IN MUSCLE DIFFERENTIATION (MYOGENIC FACTOR).
CC       INDUCES FIBROBLASTS TO DIFFERENTIATE INTO MYOBLASTS. ACTIVATES
CC       MUSCLE-SPECIFIC PROMOTERS. INTERACTS WITH AND IS INHIBITED BY THE
CC       TWIST PROTEIN. THIS INTERACTION PROBABLY INVOLVES THE BASIC
CC       DOMAINS OF BOTH PROTEINS (BY SIMILARITY).
CC   -!- SUBUNIT: EFFICIENT DNA BINDING REQUIRES DIMERIZATION WITH ANOTHER
CC       BHLH PROTEIN. SEEMS TO FORM ACTIVE HETERODIMERS WITH ITF-2.
CC   -!- SUBCELLULAR LOCATION: Nuclear.
CC   -!- SIMILARITY: BELONGS TO THE BASIC HELIX-LOOP-HELIX (BHLH) FAMILY OF
CC       TRANSCRIPTION FACTORS. “MYOGENIC FACTORS” SUBFAMILY.
. . .
DR   SWISS-2DPAGE; GET REGION ON 2D PAGE.
KW   Myogenesis; Differentiation; Developmental protein; Nuclear protein;
KW   Transcription regulation; DNA-binding.
FT   DNA_BIND    109    121       BASIC DOMAIN.
FT   DOMAIN      122    161       HELIX-LOOP-HELIX MOTIF (BY SIMILARITY).
FT   CONFLICT    124    124       K -> E (IN REF. 2).
. . .



are added by a team of expert annotators who
extract this information primarily from journal
publications (Junker et al. 2000). TREMBL
(Bairoch and Apweiler 2000) consists of entries
that are derived from the translation of all cod-
ing sequences in the EMBL nucleotide sequence
database that are not in SWISS-PROT. Unlike
SWISS-PROT records, those in TREMBL are await-
ing manual annotation. SWISS-PROT currently
contains only 113,470 sequence entries, and
the TREMBL database contains over 755,169 se-
quence entries (Boeckmann et al. 2003).

Annotations of function primarily occur
through homology transfer. Experimentally
determining protein function continues to be
a laborious task that can take enormous re-
sources; for example, more than a decade after
the discovery, we still do not know the precise
and entire functional role of the prion protein
(Harrison et al. 1997). The automatic elucida-
tion of the protein function is therefore an ap-
pealing challenge (Apweiler et al. 1997; Eisen-
berg et al. 2000; Gaasterland and Sensen 1996).
The most commonly used approach for the au-
tomatic elucidation of protein function relies
on the fact that two proteins with similar se-
quence often have a similar function.

The basic idea to exploit this fact involves
the following steps: (1) extract the experimen-
tal information from the literature into a con-
trolled vocabulary of annotated databases; (2)
establish thresholds T for pairwise sequence
similarity that imply similarity in function; (3)
for a protein U of unknown function, search
the database for proteins {K} that have a se-
quence similarity to U: SIM(K, U) > T; and (4) if
any such protein K is found, transfer its anno-
tation to U. Albeit this concept appears
straightforward, in practice, there are many
hurdles to overcome: First, the function is not
well defined; hence, it is very difficult to create
controlled vocabularies (Ashburner et al. 2000;
Bairoch and Apweiler 2000). Second, because
function is such a complex phenomenon, it is

very difficult to assign one number that de-
scribes all these roles at once (Ashburner et al.
2000; Todd et al. 2001). Third, to add to the
complication, it seems that the precise values
for thresholds of significant sequence similari-
ty (T) are actually specific to particular func-
tion—that is, become T(F)—and have to be
reestablished for any given task (Devos and Va-
lencia 2000; Nair and Rost 2002a, 2002b;
Ouzounis et al. 1998; Rost 2002, 1999; Todd et
al. 2001; Wilson et al. 2000; Wrzeszczynski and
Rost 2003). In general, the inference of func-
tion is reliable only for very high levels of se-
quence similarity (Devos and Valencia 2001;
Nair and Rost 2002; Rost 2002). For reliably in-
ferring the subcellular localization of a protein
using homology transfer, a sequence identity
of more than 80 percent is required. At this se-
quence identity, subcellular localization anno-
tations can be transferred at more than 90-per-
cent accuracy. Below this threshold, the
accuracy of annotation transfer rapidly de-
creases (Nair and Rost 2002b).

Several pitfalls in transferring annotations of
function have been reported, for example, hav-
ing inadequate knowledge of thresholds for
“significant sequence similarity”; using only
the best database hit; or ignoring the domain
organization of proteins (Bork and Koonin
1998; Devos and Valencia 2001; Doerks et al.
1998; Galperin and Koonin 2000). Despite all
these problems, the majority of annotations
about function in public databases result from
homology transfer (Devos and Valencia 2001;
Koonin 2000; Valencia 2002). Databases such
as SWISS-PROT usually do not provide pointers
for the origin of the information. One problem
arising from this approach is that it is difficult
to distinguish annotations that are experimen-
tal from those that are predicted.

Problem 1: 
Multiple Levels of Description
The function of a protein is context depen-
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Database URL

SWISS-PROT (Boeckmann et al. 2003) www.ebi.ac.uk/swissprot

TrEMBL (Boeckmann et al. 2003) www.ebi.ac.uk/trembl

Gene Ontology (Ashburner et al. 2000) www.geneontology.org

MIPS (Mewes et al. 2000) mips.gsf.de

PEP (Carter et al. 2003) cubic.bioc.columbia.edu/db/PE1

Table 1. Web Sites of Major Databases and Genome Resources.



quence in formats that are more or less
straightforward for parsing by computers.
However, annotations are mostly written in
plain text using a rich biological vocabulary
that often varies in different areas of research
(figure 1). Such annotations are primarily
meant for the eyes of human experts; hence,
they are not machine readable (Eisenhaber and
Bork 1999). Another problem that hampers au-
tomatic annotations is the quality of database
annotations: Only a few database groups at-
tempt a quality control of curated annotations
(Tsoka and Ouzounis 2000).

Automatic Lexical Analysis of
Controlled Vocabularies

Protein databases such as SWISS-PROT usually
contain functional annotations at a very de-
tailed level of biochemical function; for exam-
ple, a given sequence is annotated as a cdc2 ki-
nase but not as being involved in intracellular
communication (Apweiler 2001; Tamames et
al. 1998). A number of text-analysis tools have
been implemented that infer various aspects of
cellular function from database annotations of
molecular function. Many methods explore
the functional annotations in SWISS-PROT, espe-
cially the keyword annotations (Eisenhaber
and Bork 1999; Fleischmann et al. 1999; Nair
and Rost 2002a; Tamames et al. 1998).

SWISS-PROT currently contains over 800 key-
word functional descriptors. Semantic analysis
of the keywords is used to categorize proteins
into classes of cellular function (Andrade et al.
1999b; Bork et al. 1992; Karp et al. 1999;
Ouzounis et al. 1996; Riley 1993; Riley and
Labedan 1997). There are two types of meth-
ods: (1) fully automated and (2) semiautomat-
ic.

With fully automated methods, the problem
of automatically extracting rules from key-
words has parallels to the problem of text cate-
gorization, that is, assigning predefined cate-
gories to free-text documents. Many statistical
learning methods have been applied to this
problem, including nearest-neighbor classifiers
(Yang and Pederson 1997), multivariate regres-
sion models (Schutze et al. 1995; Yang and
Chute 1992), probabilistic Bayesian models
(Lewis and Ringuette 1994), symbolic rule
learning (Apte et al. 1994), and m-ary (multi-
ple-category) classifiers such as the k–nearest
neighbor (Dasarathy 1991) and the linear least
squares fit (LLSF). These methods have been in-
tensively studied and are among the most ac-
curate for text categorization (Yang and Liu
1999). The majority of the tools for annotating
function are based on one of these methods.

dent. Database annotations of protein function
are often confusing because of the variety of
functional roles (Attwood 2000). For reliable
automatic predictions, computer-readable hi-
erarchical descriptions of function are needed
(Bork et al. 1998; Overbeek et al. 1997). 

Several groups and associations have ven-
tured to introduce numeric schemata to define
function. The first attempt was the introduc-
tion of enzyme classification numbers (Webb
1992); this classification uses four digits to clas-
sify enzymatic activity. The first enzyme classi-
fication digit distinguishes the general types of
enzymes; the second enzyme classification dig-
it specifies the substrate (oxireductases), the
group transferred (transferases), the type of
bond (hydrolases, lyases, ligases), or the type of
reorganization (isomerases). The third and
fourth digits provide more detail (for an excel-
lent survey of structural aspects of enzymatic
function, see Todd, Orengo and Thornton
[2001]). MIPS attempts to extend this idea to a
wider perspective, with more proteins and
more roles, through its classification catalog
(Mewes et al. 2000).

Arguably, the most impressive gargantuan
effort at defining ontology for protein function
originates from the gene ontology consortium
(Ashburner et al. 2000). Gene ontology distin-
guishes three levels of protein function: (1)
molecular, (2) biological, and (3) cellular. At
the molecular level, the protein can, for exam-
ple, catalyze a metabolic reaction and recog-
nize or transmit a signal. In a biological
process, a set of many cooperating proteins is
responsible for achieving broad biological
goals, for example, mitosis, purine metabo-
lism, or signal transduction cascades. The cel-
lular category includes the structure of subcel-
lular compartments, the localization of
proteins, and macromolecular complexes. Ex-
amples include nucleus, telomere, and origin
recognition complex. The subcellular localiza-
tion of a protein is an essential attribute for
this level. The totality of the physiological sub-
systems and their interplay with various envi-
ronmental stimuli determine properties of the
phenotype, the morphology and physiology of
the organism and its behavior. Gene ontology
is not complete. In fact, now after almost a
decade of efficient work, the first notable cov-
erage of the experimental information is com-
plete, and the developers contemplate restart-
ing. Nevertheless, gene ontology constitutes
the best set of definitions available today.

Problem 2: No Machine-Readable
Functional Information
Nearly all databases present the protein se-
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Some of the major methods for annotating
function are LOCKEY (Nair and Rost 2002),
SPEARMINT (Bazzan et al. 2002; Kretschmann et
al. 2001), and the support vector machine
(SVM)-based approach of Stapley et al. (2002)
(table 2).

Semiautomated methods are based on build-
ing dictionaries of rules. Keywords characteris-
tic of each of the functional classes are first ex-
tracted from a set of classified example
proteins. With these keywords, a library of
rules is created that associates a certain pattern
of occurrence of keywords to a functional class.
The major methods in this category are EUCLID

(Tamames et al. 1998), META_A (Eisenhaber and
Bork 1999), and RULEBASE (Fleischmann et al.
1999) (table 2). We review the LOCKEY and EU-
CLID algorithms as examples of the two main
approaches.

The LOCKEY system (Nair and Rost 2002a) is
a novel m-ary classifier that predicts the subcel-
lular localization of a protein based on SWISS-
PROT keywords. The algorithm can be divided
into two steps (figure 2): (1) building data sets
of trusted vectors for known proteins and (2)
classifying unknown proteins. First, a list of
keywords is extracted from SWISS-PROT for all
proteins with known subcellular localization.
On average, most proteins have between two
and five keywords. A data set of binary vectors
(Salton 1989) is generated for each protein by
representing the presence of a certain keyword
in the protein by 1 and absence by 0. Second,
to infer subcellular localization of an unknown
protein U, all keywords for U are read from
SWISS-PROT. These keywords are translated into a
binary keyword vector. From this original key-
word vector, LOCKEY generates a set of all pos-
sible combinations of alternative vectors by
flipping vector components of value 1 (pres-
ence of keyword) to 0 in all possible combina-
tions. For example, for a protein with three
keywords, there are 23 – 1 = 7 possible subvec-

tors: 111, 110, 101, 011, 100, 010, and 001.
These subvectors constitute all possible key-
word combinations for protein U. The keyword
combination, that is, subvector, that yields the
best classification of U into 1 of 10 classes of
sub-cellular localizations is found. All exact
matches of each of the subvectors to any of the
proteins in the trusted set are retrieved by find-
ing all proteins in the trusted set that contain
all the keywords present in the subvector. By
construction, the proteins retrieved in this way
can also contain keywords not found in U.

The next task is to estimate the surprise val-
ue of the given assignment. Toward this end,
LOCKEY simply compiles the number of pro-
teins belonging to each type of subcellular lo-
calization. This procedure is repeated in turn
for each of the subvectors, and localization is
finally assigned to a protein by minimizing an
entropy-based objective function. The system
accurately solves the classification problem
when the number of data points (proteins) and
the dimensionality of the feature space (num-
ber of keywords) are not too large. LOCKEY

reached a level of more than 82-percent accu-
racy in a full cross-validation test. However, be-
cause of a lack of functional annotations, the
system failed to infer localization for more
than half of all proteins in the test set (Note: A
number of SWISS-PROT keywords are biologically
correlated to subcellular localization; for exam-
ple, DNA-binding proteins always localize to
the nucleus. These keywords, which were all
simple one-to-one correlations, were excluded
from testing because the goal was to estimate
the true ability of the algorithm to infer com-
plex correlations among the keywords). For
five entirely sequenced proteomes—(1) Saccha-
romyces cerevisiae (yeast), (2) Caenorhabditis ele-
gans (worm), (3) Drosophila melanogaster (fly),
(4) Arabidopsis thaliana (plant), and (5) a subset
of all human proteins—the LOCKEY system au-
tomatically found about 8000 new annota-
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Database URL

LOCkey (Nair and Rost 2002) cubic.bioc.columbia.edu/services/LOCke

GeneQuiz (Tamames et al. 1998) jura.ebi.ac.uk:8765/ext-genequiz/

Meta_A (Eisenhaber and Bork 1999) mendel.imp.univie.ac.at/CELL_LC

AbXtract (Andrade and Valencia 1998) columba.ebi.ac.uk:8765/andrade/a

SUISEKI (Blaschke and Valencia 2002) www.pdg.enb.uam.es/suiseki/

Table 2. Resources for Text Analysis.



human expert. This dictionary of characteristic
keywords satisfies the following criteria: (1) on-
ly keywords with functional meaning are used,
and keywords with no functional information
are excluded (for example, hypothetical or
three-dimensional structure); (2) only key-
words appearing in more than one SWISS-PROT

entry are considered; and (3) only keywords
with more than 85 percent of their occurrences
in a single functional category are included in
the dictionaries.

Next, to assign sequences to classes, a simple
voting scheme is used. A sequence is automati-
cally classified in the functional class to which
the majority of its keywords belong. The dictio-
nary of keywords is then used to automatically
assign all proteins from the database if a suffi-
cient match is found. Proteins thus assigned to
a functional class are analyzed to extract a new,
more extensive dictionary of characteristic key-

tions about subcellular localization. LOCKEY

has been optimized to provide fast annota-
tions. Annotating the entire C. elegans pro-
teome took less than 4 hours on a Pentium III
900-megahertz machine. The algorithm is lim-
ited to problems with relatively few data points
(proteins) in the vector set (n << 1000000) and
with few keywords (n << 10000).

The EUCLID system (Tamames et al. 1998) us-
es SWISS-PROT keywords to classify proteins into
14 classes of cellular function according to the
scheme originally proposed by Monika Riley
(Karp et al. 1999; Krawiec and Riley 1990; Riley
1993; Riley and Labedan 1997). The 14 classes
are grouped into 3 broad functional classes: (1)
energy, (2) information, and (3) communica-
tion. The EUCLID system can be summarized as
followed: First, keywords characteristic of each
of the functional classes are extracted from a
set of classified example proteins provided by a
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Best Classifier
(by entropy)

Find
Matching
Vector

Localization
Annotated

   SWISS-PROT

0100110010..
0100100000..
0100100010..
.............  

SUB vectors cyt:
00010110011..
01001010010..
....
nuc:
01100101001..
00110011001..

TRUSTED vectors

Unknown Query

Extract
Keywords

Find Homologues

Find Homologues

Infer Localization
for Query

Figure 2. The LOCKEY Algorithm.
A sequence-unique data set of localization-annotated SWISS-PROT proteins was first compiled. Keywords were

extracted for these proteins and merged with any keywords found in homologues. The keywords were repre-
sented as binary vectors in the trusted vector set. An unknown query was first annotated with keywords

through identification of SWISS-PROT homologues. Keywords for the query were represented as binary vectors.
All possible keyword combinations were constructed (the subvectors). The best-matching vector was found

based on entropy criteria (Nair and Rost 2002a). This vector was used to infer localization for the query.



words. The process is iterated until the classifi-
cation quality no longer increases (figure 3). A
limitation of this approach is that only simple
correlations between keywords can be discov-
ered. The method is easily scalable and can be
applied to very large protein databases. For the
genome sequence of Mycoplasma genitalium
(Fraser et al. 1995), the EUCLID system was able to
classify 52 percent of the sequences at a classifi-

cation accuracy of 82 percent. The EUCLID algo-
rithm has been incorporated into the GENEQUIZ

workbench for sequence analysis (Andrade et al.
1999a). GENEQUIZ is a semiautomated protein
sequence analysis workbench whose principal
purpose is to infer a specific and reliable func-
tional assignment together with a broad cellular
role for a query protein by analyzing annota-
tions from sequence database matches.
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KEYWORDS CLASS
ACTIVATOR INFO
ATP-binding NONE
KINASE ENERGY
PHEROMONE COMM
UBIQUINONE NONE

Generated Dictionary of Keywords
Assign each keyword to one class

Count the Occurrences of Each  
Keyword in Each Field

KEYWORDS ENERGY INFO COMM

ACTIVATOR 2 17  0
ATP-binding 15 25 17
KINASE 14 0 1
PHEROMONE 0 0 3

ID: HXKB_YEAST
DE: HEXOKINASE
 ...
KW: KINASE, ATP-BINDING…

PROTEIN: XXXX
KEYWD:  ACTIVATOR
ASSIGNED TO: INFO

PROTEIN: YYYY
KEYWD: KINASE, ATP-binding
ASSIGNED TO ENERGY

PROTEIN: ZZZZ
KEYWD: ACTIVATOR, KINASE
ASSIGNED TO: NONE

Assign Proteins to Classes

SWISS-PROT File
Since HXKB_YEAST is in the ENERGY class, increase counts of  

keywords “kinase” and ATP-binding in the “Energy” class

Set of Proteins Classified
by Human Experts

STDL_YEAST → ENERGY
HXKB_YEAST → ENERGY
FTSI_ECOLI → INFO
RNP1_YEAST  → INFO
BUD5_YEAST → COMM
KAPA_YEAST → COMM
 XXXX → INFO
 YYYY → ENERGY
  …

Add the Classified Proteins 
to the Initial Set

Iterate

STDL_YEAST → ENERGY
HXKB_YEAST → ENERGY
FTSI_ECOLI → INFO
RNP1_YEAST  → INFO
BUD5_YEAST → COMM
KAPA_YEAST → COMM
  …
  …

ST
A

R
T

Figure 3. The EUCLID Algorithm.
Scheme of the iterative method used to classify sequences in three functional classes. The classification relies on the definition of a dic-

tionary of keywords characteristic for a particular functional class. First, experts assign hexokinase from yeast (hxkb_yeast) to the energy
class. Second, a keyword dictionary is constructed scoring the keywords associated with hexokinase in the energy class. Third, the same

dictionary is then extended to classifying other proteins. The process is iterated until no more keywords are gained.



The current version of MEDLINE contains
nearly 12 million abstracts and occupies ap-
proximately 43 gigabytes of disk space. A
prominent example of methods that target en-
tire papers is still restricted to a small number
of journals (Friedman et al. 2001; Krautham-
mer et al. 2002). The task of unraveling infor-
mation about function from MEDLINE ab-
stracts can be approached from two different
angles. In the first approach, computational
techniques for understanding text written in
natural language are based on lexical, syntacti-
cal, and semantic analysis (Cowie and Lehnert
1996; Salton 1989). In addition to indexing
terms in documents, natural language–process-
ing  methods extract and index higher-level se-
mantic structures composed of terms and rela-
tionships between terms, which can be done in
different ways (for general discussion, see
Baeza-Yates and Ribeiro-Neto [1999]). Howev-
er, this approach is confronted with the vari-
ability, fuzziness, and complexity of human
language (Andrade and Bork 2000). The GENIES

system (Friedman et al. 2001; Krauthammer et
al. 2002) for automatically gathering and pro-
cessing knowledge about molecular pathways
and the IFBP transcription-factor database (Oh-
ta, Yamamoto et al. 1997) are natural lan-
guage–processing-based systems. The second
approach and one that might be more relevant
in practice is based on the treatment of text
with statistical methods (Andrade and Valencia
1998; Yang 1996). In this approach, the possi-
ble relevance of words in a text is deduced from
a comparison of the frequency of different
words in this text with the frequency of the
same words in reference sets of text (Berry et al.
1995). Some of the major methods using the
statistical approach are ABXTRACT (Andrade and
Valencia 1998, 1997) and the automatic path-
way discovery tool of Ng and Wong (1999)
(table 2).

There are advantages to each of these ap-
proaches (grammar or pattern matching). Gen-
erally, the less syntax that is used, the more do-
main specific the system is. Thus, a robust
system can be constructed relatively quickly,
but many subtleties can be lost in the interpre-
tation of the sentence. In some applications,
however, the domain-dependent pattern-
matching approach might be the only way to
attain reasonable performance in the near fu-
ture (Allen 1995).

The ABXTRACT system (Andrade and Valencia
1998, 1997; Blaschke 2001; Blaschke and Valen-
cia 2001) is triggered by collections of abstracts
related to a given protein, and it is able to ex-
tract functional information directly from
MEDLINE abstracts. Relevant keywords are se-

Mining Free Text 
from the Literature

Experimental results are usually published first
in scientific journals. Because such publica-
tions do not conform to any standardized
rules, this information is not computer read-
able. At best, this lack of automation leads to a
severe delay in incorporating the information
into databases. Furthermore, a lot of the data
will lie buried in the literature forever. One so-
lution to this problem will be to adopt stan-
dards similar to the PDB model for protein
structure for depositing functional informa-
tion into databases, that is, requiring deposi-
tion of, say, protein-protein interactions into a
public database along with publication. 

However, currently, mining text is the only
way of retrieving functional information from
the literature. In recent years, many groups
have worked on dedicated problems in this
area, such as machine selection of articles of in-
terest (Iliopoulos et al. 2001; Shatkay et al.
2000), automated extraction of information
using statistical methods (Stapley and Benoit
2000; Stephens et al. 2001), and natural lan-
guage–processing techniques (Friedman et al.
2001; Ng and Wong 1999; Thomas et al. 2000;
Yakushiji et al. 2001) as well as setting up spe-
cialized knowledge bases for storing molecular
knowledge (Stevens et al. 2000). The invalu-
able electronic availability of scientific publica-
tions through MEDLINE (Airozo et al. 1999)
has not only severely affected the ways of writ-
ing papers and doing science in general, it has
also enabled the development of an avalanche
of methods that mine these data. Automatic
text-analysis tools can assist human annotators
and can thus significantly shorten the time lag
of functional annotations. One of the most
crucial bottlenecks for automated text analysis
is the mapping of gene-protein names (Hatzi-
vassiloglou et al. 2001; Valencia 2002). Al-
though this problem might be overcome in the
near future by particular standards adopted by
journals, this hurdle currently hinders the
availability and usefulness of public methods
considerably.

Many tools focus on mining MEDLINE ab-
stracts. Although the principal reason for this
restriction is supposedly related to complexity
(abstracts available fit onto a disk and can be
searched quickly), abstracts are occasionally
more easy to mine because many papers con-
tain less precise and less well-supported sec-
tions in the text that are difficult for machines
to distinguish from more informative sections
(Andrade and Bork 2000; Ding et al. 2002;
Hersh et al. 1992).
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lected by their relative accumulation in compar-
ison with a domain-specific background distrib-
ution. To obtain a representative set of words
(and their abundance) in protein families, the
background distribution of abstracts is chosen
to represent the widest range of protein families.
For each of the representative set (dictionary) of
words, two statistical parameters are computed:
(1) their frequency in each family and (2) the
deviation of the distribution of their frequencies
in the set of families. Provided with a query
family and an associated set of MEDLINE ab-
stracts, words that are likely to be functionally
important for the family (putative keywords)
are found by comparison with the background
set. This comparison is done by measuring the
frequency of the relevant word in the query
family relative to its background frequency of
occurrence using a z-score (Andrade and Valen-
cia 1998). Words with a high z-score are likely to
be potential keywords for the family.

The system has been tested on a number of
different protein families and showed a good
ability to extract functionally important key-
words. A modification of this algorithm, called
SUISEKI (system for information extraction on
interactions) (Blaschke and Valencia 2001;
Blaschke et al. 2002), has been applied to the
problem of extracting protein-protein interac-
tion from MEDLINE abstracts. In addition to
the statistical approach of ABXTRACT, SUISEKI al-
so takes advantage of the analysis of the syn-
tactic structure of phrases and other develop-
ments in computational linguistics. The SUISEKI

system was able to extract almost 70 percent of
the interactions present in a relatively large
text corpus at approximately 80-percent accu-
racy for the best-defined interactions. The SU-
ISEKI system discovered a total of 4657 protein-
protein interactions in cell-cycle proteins in
yeast from a corpus of  approximately 5300 ab-
stracts (approximately 12 megabytes).

The authors identify a number of sources of
error in mining MEDLINE abstracts: First is er-
roneous detection of protein names. There is
no systematic nomenclature for gene and pro-
tein names, which has led to a number of pos-
sible writing variants and synonyms being as-
sociated with the proteins that makes
detection and classification difficult. Second
are indirect references and anaphoric expres-
sion. This problem is key for the analysis of
MEDLINE abstracts, where protein names can
be given in the title or initial sentences and lat-
er treated with forms such as the protein or
mentioned as a general class of proteins such as
the kinase. Third are deficiencies in the infor-
mation-extraction technology. Incorrect pars-
ing of sentences as a result of limitations im-

posed by the parsers and the use of complicat-
ed sentence structures to convey results are
some other areas where the information-ex-
traction applications require improvement.

Conclusions
What is to be expected from computational ge-
nomics in the near future? As we illustrated in
this article, our battery of tools is becoming in-
creasingly sophisticated, and our ability to an-
notate protein function using computers is
generally improving. However, to fully exploit
genome information, we still need to progress
from methods derived mostly from traditional
sequence analysis that examine genome se-
quences individually to algorithms and data-
bases that exploit the inherent properties of
entire genomes. The development of a stan-
dardized ontology is an important step in this
direction. Text-based tools such as LOCKEY, EU-
CLID, and the MET_A annotator that infer cellu-
lar function from detailed annotations of mol-
ecular function found in databases can be
useful aids in the development of ontologies.

The development of tools for the extraction
of useful functional information from the ex-
isting literature is still in its infancy. The com-
plexity and fuzziness of natural language make
it extremely difficult for computer algorithms
to parse and extract useful information from
text. The development of a standardized vo-
cabulary for reporting experimental discovery
in the scientific literature will go a long way to-
ward simplifying the process of extracting in-
formation directly from literature.

Genomics-based drug discovery is heavily
dependent on accurate functional annota-
tions. Toward this end, bioinformatics will
need to deliver highly integrated, interoperable
data “warehouses” that allow the user to rea-
son over disparate data sources and ultimately
enable knowledge-based inference and innova-
tion. The road toward satisfactory solutions
might be long. However, the first successes
have been encouraging. One important lesson
from the successes of bioinformatics over the
last decade continues to be that integrated
tools become successful when their developers
are integrated with the wet-lab biologists.
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