
■ With the emergence of electronic-commerce sys-
tems, successful information access on electronic-
commerce web sites becomes essential. Menu-dri-
ven navigation and keyword search currently
provided by most commercial sites have consider-
able limitations because they tend to overwhelm
and frustrate users with lengthy, rigid, and ineffec-
tive interactions. To provide an efficient solution
for information access, we have built the NATURAL

LANGUAGE ASSISTANT (NLA), a web-based natural lan-
guage dialog system to help users find relevant
products on electronic-commerce sites. The system
brings together technologies in natural language
processing and human-computer interaction to
create a faster and more intuitive way of interact-
ing with web sites. By combining statistical parsing
techniques with traditional AI rule-based technol-
ogy, we have created a dialog system that accom-
modates both customer needs and business
requirements. The system is currently embedded
in an application for recommending laptops and
was deployed as a pilot on IBM’s web site.

For electronic-commerce web sites,
enabling fast access to product informa-
tion is crucial for generating sales. Users

(customers) need to find products matching
their interests, and businesses need to organize
product information to permit quick access.
Menu-driven navigation provided by most
commercial sites have tremendous limitations
because they tend to overwhelm and frustrate
users with lengthy and rigid interactions. User
interest in a particular site decreases exponen-
tially with the increase in the number of
mouse clicks (Huberman et al. 1998). Hence,

shortening the interaction path to provide use-
ful information becomes important. 

Many electronic-commerce sites attempt to
solve the problem by providing keyword
search capabilities. However, keyword search
engines usually require that users know
domain-specific jargon so that the keywords
could possibly match indexing terms used in
the product catalog or documents. Keyword
search does not allow users to precisely
describe their intentions or specify relational
operators (for example, less than, cheapest) on
product attributes. A search for shirt can reveal
dozens or even hundreds of items, which are
useless for somebody who has a specific style
and pattern in mind. Moreover, keyword
search systems lack an understanding of the
semantic meaning of the search words and
phrases. For example, keyword search systems
usually cannot understand that summer dress
should be looked up in women’s clothing
under dress, whereas dress shirt is most likely in
men’s under shirt. Finally, search engines do
not accommodate business rules, for example,
a prohibition against displaying cheap earrings
with more expensive ones. 

A solution to these problems lies, in our
opinion, in centering electronic-commerce
web sites on natural language (and multi-
modal) dialog. Dialog allows the user and the
machine to jointly arrive at the intended
meaning of the query. Because it is a joint
effort, the process is fast. Moreover, it is natural
for the site owner to implement business rules
as part of the dialog pragmatics. Based on these
ideas, we have built the NATURAL LANGUAGE ASSIS-
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novel feature of our system. This work involves
engineering dialog for presenting the mer-
chandise to the user, using user interface stud-
ies to guide both the form and the content,
and designing the system to support business
rules and business processes for updating the
data (for example, when offerings change). NLA

was deployed in a pilot study at an IBM exter-
nal web site. The data we collected, together
with appropriate business requirements, will
form a basis for a decision about its possible
wider deployment. The goal of this article is to
describe the behavior and the architecture of
the system together with the lessons learned.

In this article, we start with a typical user ses-
sion with NLA. We then give a detailed descrip-
tion on the general architecture and NLA com-
ponents. Finally, we present the evolution of
the system, showing how results from the user
studies shaped the development. 

Interacting with NLA

When searching electronic-commerce sites,
users often have target products in mind but
do not know where to find information or how

TANT (NLA), a web-based natural language dialog
system to help users find relevant products on
electronic-commerce sites.

Even though natural language dialog has
been used in many domains, and different
architectures are designed for supporting such
systems (for example, Allen, Ferguson, and
Stent [2001]), there is no general and practical
theory of engineering such applications. NLA is
therefore another case study, following recent
applications that include call-center routing
(Chu-Carroll and Carpenter 1998), e-mail rout-
ing (Walker, Fromer, and Narayanan 1998),
information retrieval and database access
(Androutsopoulos and Ritchie 1995), and tele-
phone banking (Zadrozny et al. 1998). 

NLA allows customers to make requests in
natural language and directs them toward
appropriate web pages that sell IBM laptops.
The system applies natural language under-
standing to interpret user input, engages in a
follow-up dialog with users to provide explana-
tions and to ask for additional information,
and makes recommendations. The required
tight integration of natural language dialog
with an electronic-commerce environment is a
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I am looking for the
fastest laptop under

1,400 dollars.

1. I see she wants a laptop
with a price under 1,400

dollars and with the fastest
CPU speed.

3. I found
ThinkPad R30

for you.

2. Find me
a laptop.

Product
Database

Internet

Network Interfaces
(i.e. Internet)

Figure 1. Interacting with NLA.



to specify a request. Sometimes, users only
have vague ideas about the products of interest
(Saito and Ohmura 1998). Thus, users need to
be able to formulate their requests in their own
words as well as revise their request incremen-
tally based on additional information, which
can be provided through natural language dia-
log. NLA was built with that in mind.

Figure 1 shows a high-level view of NLA.
Users specify their needs to NLA in their own
words over the internet. NLA interprets the
input, retrieves products, and gives its response
to the user. For example, when the user speci-
fies the fastest computer under $1400, based on
the understanding of this input, NLA retrieves
the laptop (a ThinkPad R30 model) that has
the fastest central processing unit (CPU) speed
among all laptops with a price less than $1400.
This example demonstrates the tremendous
advantage of natural language search because
the user is able to obtain the desired product in
one interaction rather than navigate up and
down several layers of menus (menu-driven
navigation) or browse among several irrelevant
pages (keyword search). A keyword search sys-
tem can result in no hit or too many hits
because the relational operators specified by
fastest and under $1400 are typically neither
identified nor computed by search engines.
Furthermore, in a menu-driven navigation, the
user might not be able to choose the product
that has the fastest CPU speed within the price
range if he/she has no knowledge that it is the
CPU speed that determines whether a comput-
er is fast or not.

In addition to the capability of finding prod-
ucts in one click, NLA also engages users in a
dialog to elicit their needs and provide guid-
ance. Figure 2 shows a typical user session with
NLA. Note that the user can describe his/her
requirements using either specifications on
product attributes (Memory in utterance
User[1], Operating System and Battery life in
User[2]), or general concepts (User[4]). Further-
more, the user can express multiple constraints
in one input (User[2], User[3]). In this example,
NLA explains to the user why a certain require-
ment cannot be satisfied (NLA[2]) and helps the
user narrow down the search space (NLA[3],
NLA[4]). NLA does not force the user to only
answer the specific questions put to them. For
example, NLA asks the user about the price con-
straints (NLA[2], NLA[4]); however, the user
bypasses this question and provides additional
criteria (figure 3). This type of “mixed-initia-
tive” interaction provides flexibility to the user
in specifying his/her needs and NLA in guiding
the user (figure 4).

System Overview
Our architecture (figure 5) is designed to sup-
port mixed-initiative dialog with multiple
modalities, including typed-in text and speech.
We use a hub-and-spokes architecture with a
central hub responsible for shuttling messages
between all other components. 

The user interface module is responsible for
receiving user input and presenting system
output. Once the input is received by the hub,
the shallow parser parses it and captures
important expressions that are used to describe
certain features of ThinkPads (for example,
hard-disk size, CPU speed) or the usage pat-
terns (for example, for travel). Based on these
expressions and the session context main-
tained by the dialog manager, the interpreter
constructs a set of constraints on attributes of
ThinkPads. These constraints are then translat-
ed to an SQL query by the action manager. The
action manager executes the SQL query against
a relational product database and retrieves a set
of products matching user constraints. Based
on the identified constraints and the retrieved
products, the dialog manager constructs differ-
ent responses such as requesting clarification
and soliciting more information to narrow the
recommendation list. Finally, the user interface

NLA [1]: What type of ThinkPad are you looking for?

User [1]: “Something with at least 256 mb ram.”

NLA [2]: ThinkPads ship with memory between 64 and
128 MB. I could not find any ThinkPads. Here are some
popular modules. What are your price constraints? (figure
3)

User [2]: [presses Start Over button] “A windows 2000 com-
puter with a battery life of at least 3 hours.”

NLA [3]: I found 18 ThinkPads for you. What are your
speed and RAM requirements?

User [3]: “At least 128 mb ram with multimedia features.”

NLA [4]: I found 2 ThinkPads for you. What are your price
constraints?

User [4]: “The lightest one.”

NLA [5]: I recommend the ThinkPad model T23 for you.
(figure 4)
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module renders a screen presenting these
responses and the retrieved products to the
user. From this interface, the user can start
another interaction with NLA. We now describe
each of these components in details.

User Interface Module
The user interface module is responsible for
receiving user input and displaying system out-
put. In our architecture, we have a separate
user interface for each modality of interaction.
The dialog manager determines the content of
what is to be presented, and the specific user
interface renders it using the unique capabili-
ties of the channel or modality of interaction.

For the web-based interaction, we designed
the NLA interface to have a consistent look and
feel in every screen. For example, the dialog
box is positioned at exactly the same place on
every screen. Furthermore, in every screen, NLA

reiterates the user input and provides feedback
on what constraints have been understood to
this point. Such feedback is also reflected in the
table of products, where NLA dynamically high-
lights the attributes in the column that corre-
spond to the identified constraints. 

Figure 3 shows a screenshot of the user inter-
face for NLA [3] in figure 2. Note the follow-up
question is shown to the user to solicit more
information for the purpose of narrowing the
retrieved product list. Furthermore, both bat-
tery life and OS are highlighted in the product
table to reflect the user-specific requests. Figure
4 shows a screenshot of the user interface for
the final turn (NLA [5]) of the dialog session in
figure 2. Note the merged constraints from pre-
vious turns are shown at the top of the page as
a feedback. 

Parser
NLA uses a shallow statistical parser to identify
expressions in a user input referring to product
specifications (for example, CPU speed, hard-
disk capacity) or usage categories (for example,
for multimedia applications). Using a statistical
approach allows us to scale to multiple lan-
guages and geographies with minimal recon-
figuration. Thus, to create a French language
version of NLA, we would only need to collect a
corpus of French sentences and annotate them
with the existing schemes, instead of recruiting
French-speaking linguists to create rules for
French expressions. 

Specifically, the statistical parser learns deci-
sion tree models using a corpus of sentences
annotated with parse trees. The parser then
applies the learned models on user input to
create semantic parse trees in a bottom-up, left-
most order (Magerman 1995; Magerman et al.
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Figure 3. A Screenshot of NLA User Interface for Requesting More Information.

Figure 4. A Screenshot of NLA Interface for Final Recommendation.
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Figure 5. General Architecture.



1994). The parse trees are relatively shallow in
our domain given the brevity of user input. For
example, given the input at least 128mb with
multimedia features, the parser will generate the
most-probable parse tree, as shown in figure 6,
together with the probability for this tree. In
this parse tree, the nonterminals (for example,
random-access memory [RAM], multimedia)
are labels that capture the semantic categories
of the user input, and the terminals (for exam-
ple, at least 128 megabytes) are the actual user
expressions. This resulting parse tree is used by
the interpreter to extract constraints. The pars-
er is robust and fast and is not memory inten-
sive. It is packaged as a separate module and
receives parse requests using socket communi-
cation.

During the development, we collected
10,069 user queries about ThinkPads to build
the statistical parser model. We used 6,804
queries as a training set for the parser, 2,253 as
a validation set and 1,012 as a test set. The
queries were collected from user interactions
with a previous version of the system using a
finite-state parser (Chai et al. 2001a). We
utilized 32 labels to categorize different attrib-
utes of ThinkPads (for example, price, weight)
and 6 labels to categorize usage patterns (for
example, travel-use, multimedia). We have gone
through several cycles of revising the initial
annotation, fine tuning the parser features,
and retraining the model. 

Currently, the parser parses the test set with
an average precision of 92 percent and an aver-
age recall of 94 percent for identifying the
labels. In general, the parser works best for
labels associated with well-defined crisp
semantic meanings (for example, price, CPU
speed). If we only consider the labels corre-
sponding to product attributes, we obtain an
average precision of 94 percent and an average
recall of 98 percent for the test set. For labels
corresponding to usage categories that tend to
be more subjective in nature (for example, cut-
ting_edge), we obtain an average precision of 84
percent and an average recall of 80 percent for
the test set. Thus, our parser is good at identi-
fying common product attributes but works
less well for identifying all possible interpreta-
tions of subjective use categories. We believe
that training with more data and modifying
our label selection and annotation schemes
will help with identifying use categories.

Interpreter
The interpreter extracts a semantic representa-
tion (for example, propositional formula of
constraints over product attributes) from the
parse tree returned by the parser. Specifically,

from all the labeled chunks of text identified
by the parser, the interpreter extracts con-
straints that specify relations and values for
product attributes (for example, price < 2500,
weight = min, CPU type = Pentium). Furthermore,
to keep the context of a dialog, the interpreter
also integrates the constraints identified from
the current input with the constraints captured
previously in the session.

The interpreter first extracts constraints
from the labeled chunks of text describing
product specification. Depending on the
(abstract data) types of the attributes, we dis-
tinguish between numeric constraints (price <
2500), string constraints (CPU type = Pentium),
and constraints over pairs (resolution = 1600 x
1200). The values of numeric constraints are
normalized to canonical units of measure (dol-
lars for price, megahertz for CPU speed, and so
on) using finite-state transducers. For example,
given a user expression faster than 1.3 GHz,
which is categorized as CPU speed, the inter-
preter converts 1.3 GHz into 1300 MHz. 

We have explored two approaches for the
treatment of string-valued attributes. The first
approach uses finite-state patterns to produce a
canonical string value that is directly matched
(for example, using substring matching in SQL)
against string values in the product database.
This approach requires us to prespecify a
canonical list of values for each string-valued
product attribute. Thus, this approach requires
ongoing system maintenance costs as new
products are released with either new values
for existing attributes or with new attributes.

To avoid such dependencies on external (to
our dialog system) resources, we have imple-
mented an approach using information-
retrieval techniques. NLA matches the expres-
sion in a particular attribute category with
values of that attribute in the product database
and chooses the most similar one(s) using sim-
ilarity measurement. For example, for the
query I want a machine with win xp, the inter-
preter identifies the constraint (OS = win xp). If
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qualitative constraints, when such changes
occur, the business rule can remain the same,
although the constraint (HD size: high) will be
interpreted differently through a dynamic
mapping of high to a new range of values.

Constraints are grouped together with the
usual propositional connectives to form for-
mulas. Most often, the connectives are con-
junctions, and elements in the formulas are
either constraints or negated constraints. These
formulas are passed to the action manager to
retrieve products.

Furthermore, to keep the dialog context, the
interpreter merges the constraints identified
from the current input with those captured
previously in the session. It is possible to have
multiple constraints on the same attribute.
They could either have been specified directly
by the user or could occur because of the
expansion of business rules. We use the follow-
ing heuristics in the integration process. First,
constraints directly specified by the user over-
ride other constraints. For example, if the user
wants a multimedia machine (which implies
CPU speed: high, which, in turn, is expanded as
CPU speed > 1000), and the user explicitly
requested CPU speed > 900, then the resulting
constraint from the CPU speed would be CPU
speed > 900. Second, the most recent constraint
overrides previous constraints with the same
attribute and relation. For example, if the user
had previously specified Price < 2000 and is
now expressing a new constraint (Price < 1800),
the most recently expressed constraint (Price <
1800) will prevail. Third, constraints on the
same attribute with different compatible rela-
tions are preserved. For example, combining
Price < 2000 from a previous turn with Price >
1500 results in the range 1500 to 2000; that is,
both constraints are kept.

Action Manager
The action manager is responsible for the back-
end operations. In particular, the action man-
ager translates constraints generated by the
interpreter to an SQL statement. Based on this
SQL, the dialog manager retrieves products from
a relational database that contains product
information. For example, if in consecutive
turns, the user specifies 256 MB and fastest
under 2000 dollars, then the generated SQL is as
shown in figure 8.

To process the min-max constraints proper-
ly, the dialog manager considers the set of
products satisfying the constraints from previ-
ous turns and, among these, identifies prod-
ucts satisfying min-max constraints. Further-
more, when multiple min-max constraints are
given, the dialog manager first applies all con-

the values for the OS attribute in the database
are Microsoft Windows XP Professional, Windows
NT, Windows 2000 Professional, and Linux, the
best match is Microsoft Windows XP Profession-
al.

For expressions in the usage category, the
interpreter applies business rules to create con-
straints. Business rules provide a mechanism
for bridging the gap between user vocabulary
and business requirements. In other words, the
parser provides the usage categories identified
from the user input, and the business rules
specify how these categories relate to products
(by providing constraints on product specifica-
tions). For example, the multimedia use cate-
gory is defined by the business rule in figure 7.

The rule in figure 7 indicates that a machine
that can be used for multimedia purposes
should have a DVD, a high-CPU speed, a large
disk drive, and a display with at least 14.1 inch-
es. This example also shows the use of qualita-
tive constraints (for example, HD size: high)
that are low or high constraints on numeric
product attributes. The qualitative constraints
are further mapped to specific constraints such
as HD size > 20 GB based on automatic parti-
tioning of the current range of values. For
example, among all available values for the
hard-disk size, the top one-fifth are considered
high. Using qualitative constraints in business
rules can reduce the maintenance effort. For
example, the size of a hard disk that is consid-
ered large changes with time as larger disk
spaces are available in new products. By using
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MULTIMEDIA ::= (DEVICE = dvd) & 
(CPUSPEED: high) & 
(HDSIZE: high) & 
(DISPLAY ≥ 14.1).

Figure 7. An Example of a Business Rule.

SELECT * FROM table WHERE
ram = 256 AND 
price < 2000 AND 
cpuspeed = (SELECT max(speed) FROM table WHERE

price < 2000 AND
ram = 256).

Figure 8. An Example of an SQL Statement 
Generated by the Action Manager.



straints other than the min-max constraints
and then applies the min-max constraints in
reverse order of occurrence. This order of
applying constraints is necessary to ensure the
retrieved products correspond to the most
common linguistic interpretation of min-max
constraints. For example, for the query fastest,
lightest computer with 20 GB, the action manag-
er first searches for 20 GB; then the lightest;
and, finally, the fastest. That is, of all machines
with hard disk of 20 gigabytes, consider those
with minimum weight and among those select
the fastest. Any other order of processing con-
straints would correspond to a different inter-
pretation of the user constraints and might
result in unintended products being retrieved. 

Dialog Manager
The dialog manager generates the system
response based on the current user input, the
prior dialog in the session, and the retrieved
products. In particular, the dialog manager uti-
lizes a mixed-initiative strategy to interact with
a user. At the beginning of each session, the
dialog manager prompts users with a general
question (for example, NLA[1] in figure 2) to
solicit specific requests. Moreover, at any point
in the session, the dialog manager allows users
to bypass questions put to them and describe
their needs directly. Although giving the initia-
tive to users, the dialog manager also takes the
initiative by asking users very specific ques-
tions about different product attributes, thus
directing the users to achieve their dialog
goals. 

NLA differentiates between two types of users.
If the user’s initial query expresses require-
ments on any product attributes directly, the
dialog manager classifies the user as a technolo-
gy savvy user, and for the remainder of the ses-
sion, the dialog manager only prompts
him/her with questions concerning specific
product attributes. Alternatively, if the user’s
initial query expresses only usage patterns, for
the remainder of the session, the dialog man-
ager only prompts the user for information on
general uses. 

The dialog manager utilizes different strate-
gies to deal with different situations. When no
constraints are identified from a user input, the
dialog manager presents a clarification screen
suggesting possible queries and explaining the
capabilities of NLA. When a user specifies an
invalid constraint (for example, User[1] in fig-
ure 2), the dialog manager presents the valid
range of constraints for the attributes in ques-
tion and prompts the user to reformulate
his/her query. If the action manager retrieves
more than one product based on constraints

identified to this point, the dialog manager
prompts the user for constraints on product
attributes or usage categories (depending on
the first query, as explained earlier) that best
discriminate among the retrieved products. If
the action manager retrieves exactly one prod-
uct based on constraints identified to this
point, the dialog manager recommends the
product to the user, explains the reason for the
recommendation, and invites the user to start
another search. 

In a special situation where constraints iden-
tified result in no products being retrieved, the
dialog manager uses the following strategy:
The dialog manager (by way of the action man-
ager) separately retrieves a pool of products for
each constraint. If any of these product pools is
empty, the dialog manager prompts the user
with the range of values for the corresponding
product attribute. The dialog manager then
merges (union of sets) all the nonempty prod-
uct pools and sorts them using a distance mea-
sure that measures the closeness of a product to
the set of constraints. This merged product
pool is presented to the user along with an
alert about the conflicting nature of the identi-
fied constraints. For example, if the user inputs
under 1000 dollars and at least 900 MHz, the
action manager will not retrieve any products
because no laptop satisfies both these con-
straints. In this case, the dialog manager
instructs the action manager to separately
retrieve the pool of laptops that are priced
under $1000 and the pool of laptops that have
at least 900-megahertz CPU speed. These two
product pools are merged and sorted with
respect to closeness to both the constraints.
The sorted list is presented to the user. If all the
product pools are empty, the user is prompted
to reformulate his/her query.

The dialog manager maintains a dialog his-
tory that records the user input, the set of iden-
tified constraints, the list of products retrieved,
and the system output at each turn of the dia-
log. Unlike other systems that have complex
structures capturing user intentions and the
focus of attention (for example, LINLIN [Jonsson
1997]), our dialog history is simple. However,
we found that this simple representation is suf-
ficient for our application. 

Data Management and Maintenance
We have developed various tools and processes
to maintain the NLA system to ensure that
updates to products and other resources are
seamlessly reflected in user interactions. In a
business setting, various databases are often
predesigned for other purposes and, hence,
present problems for our system; for example,
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and the statistical parser. The tool automatical-
ly extracts n-grams from logs of user queries
and allows manual updates of business rules
through an editing interface. A parts-of-speech
tagger and a noun phrase grammar are used to
select new input patterns. The new patterns are
labeled through the interface and added to the
training examples for the statistical parser. Fig-
ure 9 shows the interface where automatically
identified bi-grams can be added to existing
categories.

In addition to coping with the evolving data
from the technology aspect, it is worth point-
ing out that human interaction is important in
the data management process. In a business
organization, different groups are responsible
for different product parameters. Thus, inter-
acting with different groups to understand the
structure and the type of the data is important.
Such interactions usually take a lot of effort
and add the complexity of data management.

the database might not have the right data
types, or multiple attributes might be repre-
sented in a single database column. To address
these issues, we maintain a local database that
is populated directly from the original databas-
es. We implemented an automated process to
access the product databases to convert data
types and extract product specification on a
daily basis. Our script robustly copes with miss-
ing data values, multiple attributes merged
into one attribute, and so on. In addition, we
have also explored the direct extraction from
product web pages using a web-based tool that
uses finite-state patterns to extract product
specifications. 

Furthermore, when new products or features
are introduced, the business rules need to be
updated accordingly. When more and more
user input are collected, the statistical parser
needs to be retrained. Thus, we have imple-
mented a tool for maintaining business rules
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Implementation
NLA is implemented as a client-server system
using JAVA servlets, WEBSPHERE, and DB2. We uti-
lize HTTP to communicate between the client
and the server. The system development was
done under VISUAL AGE for JAVA. The user inter-
faces were implemented using DHTML (HTML4.0,
cascading style sheets, and JAVASCRIPT), JAVA

server pages, and JAVA servlets. We have devel-
oped versions of NLA for different geographies
as well as for different product lines. 

For efficiency reasons, the statistical parser is
implemented in C. The NLA system connects to
the parser with sockets. For training the parser,
we preannotated data using a finite-state parser
used in a previous version of the system (Chai
et al. 2001b). These raw annotations were
reviewed manually using a graphic user inter-
face annotation tool. We have also used exam-
ples artificially generated using a Prolog defi-
nite clause grammar (DCG) to cover more
variations in user input. 

System Evolution 
by Iterative Design

The present version of NLA has evolved through
various cycles of iterative design. Specifically,
we went through four stages of system devel-
opment: (1) concept proof, (2) prototyping, (3)
pilot deployment, and (4) postpilot enhance-
ment. During these stages, we incrementally
designed and implemented different versions
of NLA and conducted user studies to evaluate
the technology and improve the system. In
this section, we share our experience and the
results from the user studies carried out at sep-
arate stages of development.

Proof of Concept
For the proof of concept, we developed HAPPY

ASSISTANT, a simple rule-based system that pro-
vided limited language processing and dialog
capabilities (Chai et al. 2001a). At this initial
stage of development, it was important to learn
users’ reactions to this novel navigation
approach as opposed to traditional approaches
(for example, menu-driven navigation). Thus,
we compared HAPPY ASSISTANT with a menu-dri-
ven system. We were particularly interested in
finding answers to the following questions:
Can natural language–based navigation be
more efficient (number of clicks, time spent
searching, and so on) and easier to use than
menu-driven navigation and by how much?
What are users’ responses toward natural lan-
guage–based navigation as opposed to menu-
driven navigation? How do users with different

levels of online experience react to the natural
language dialog–based navigation?

Seventeen subjects were recruited for the
comparative study: Four had advanced com-
puter skills, eight were deemed to be at the
intermediate level of proficiency, and five had
limited experience with the internet. Each par-
ticipant was asked to use both the HAPPY ASSIS-
TANT and the menu-driven system, following a
set of predefined scenarios. The scenarios were
designed to let the users experience the naviga-
tion of each web site to form an opinion of the
tool’s concept. They were then asked to rank
the tasks on a 1 to 10 scale (where 10 is easy)
with regard to the ease of navigation and the
series of events leading to the result. 

The results of this study showed that to
accomplish these tasks, HAPPY ASSISTANT required
less time and user movements (mouse clicks)
than the menu-driven system. Specifically, HAP-
PY ASSISTANT reduced the average number of
clicks by 63 percent and the average interac-
tion time by 33 percent (compared with a
menu-driven system). Furthermore, the less
experienced users preferred the natural lan-
guage–enabled navigation much more than
the experienced users. Table 1 shows the rating
from different user groups in terms of the ease
of use of the two systems. Overall, respondents
preferred the natural language dialog–based
navigation (HAPPY ASSISTANT) to the menu-driven
navigation two to one (2:1).

In this study, we also found that users are
accustomed to typing in keywords or simple
phrases (for example, moderately priced laptop,
computer with internet access + games, a high-
speed computer). Despite the moderator’s assur-
ance that the user could type anything he/she
wanted, complete sentences were seldom
observed. The average length of a user query
was 5.31 words (with a standard deviation of
2.62). Analysis of the user queries reveals the
brevity and relative linguistic simplicity of the
input; hence, shallow parsing techniques seem
adequate to extract the necessary meaning
from the user input. Therefore, in such con-
text, sophisticated dialog management is more
important than the ability to handle complex
natural language sentences. We also learned
that to improve the functions of an electronic-
business site, the natural language dialog nav-
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System Novice Intermediate Experienced
HAPPY ASSISTANT 9.4 8.5 8.3
Menu-Driven System 6.3 8.1 8.9

Table 1. Ratings of Ease of Use of the Two Systems.



helped us jump-start the development of NLSA.
We believe this kind of market survey could be
one approach to help customizing our technol-
ogy to a different domain. 

We also conducted the second user study to
test the usability of NLSA. In this study, we
focused on evaluating the dialog flow and the
ease of use. Thirty-four subjects with beginner
or intermediate computer skills were inter-
viewed for the study. Again, they were asked to
find laptops for a variety of scenarios using
three different systems: (1) the NLSA, (2) a
directed dialog system (through predesigned
questions and answers), and (3) a menu-driven
navigation system. Participants were asked to
rate each system for each task on a 1 to 10 scale
(10 being easiest) with respect to the ease of
navigation, clarity of terminology, and their
confidence in the system responses. The focus
of the second study was to compare systems of
similar function and draw conclusions about
the functions of NLSA. 

The results showed that the users clearly pre-
ferred dialog-based searches to non–dialog-
based searches (79 percent to 21 percent). Fur-
thermore, they liked the narrowing of the
product list based on identified constraints as
the interaction proceeded. Our analysis reveals
statistical differences in terminology ratings
among the three systems for the category of
beginner users only. There were no statistical
differences found in the other ratings of navi-
gation and confidence across the three sites for
different categories of users. The results suggest
that asking questions relative to the right level
of end-user experience is crucial. Asking users
questions about their lifestyle and how they
were going to use a computer accounted for a
slight preference for the directed dialog system
over the NLSA, which uses questions presented
on the basis of understanding features and
functions of computer terms.

Again, as in the first user study, we learned
that it is important to show users that the sys-
tem understands them. Users remarked in our
study that they appreciated the recommended
results because the system offered some expla-
nation. This feature allows the user to trust the
system. Good navigation aids can be provided
by summarizing the user’s requests, paraphras-
ing them using context history, engaging in
conversations with the user. Our studies found
that robust natural dialog had a big influence
on user satisfaction—almost all the respon-
dents appreciated the additional questions
prompted by their input and the summary of
their previous queries.

The studies pointed toward improvements
in the area of system responsiveness, including

igation and the menu-driven navigation
should be combined to meet users’ needs.
Although the menu-driven approach can pro-
vide choices for the user to browse around or
learn some additional information, the natural
language dialog provides the efficiency, flexi-
bility, and the natural touch to the users’
online experience. Moreover, in designing nat-
ural language dialog–based navigation, one of
the key issues is to show users that the system
understands their requests before giving any
recommendation or relevant information. 

Prototyping
Based on what we learned from the first user
study, we developed the NATURAL LANGUAGE SALES

ASSISTANt (NLSA). NLSA applied a shallow noun
phrase parser to process user input. To enhance
the dialog capability, NLSA used a mixed-initia-
tive, state-based dialog manager. Because the
first user study highlighted a definite need for
system acknowledgment and feedback, NLSA

incorporated an explanation model that
explained to the user what was understood and
why a particular product was recommended.
Furthermore, NLSA addressed the issue of real-
time data management and provided tools for
managing data and knowledge used in online
interaction. A detailed description of NLSA can
be found in Chai et al. (2001b). 

Prior to the development of NLSA, we con-
ducted a user survey to help understand specific
user needs and collect user vocabulary. Users
were given three sets of questions. The first set
contained three questions: (1) What kind of
notebook computer are you looking for? (2)
What features are important to you? (3) What
do you plan to use this notebook computer for?
By applying statistical n-gram models and a
shallow noun phrase grammar to the user
responses, we extracted keywords and phrases
expressing users’ needs and interests. In the sec-
ond set of questions, users were asked to rank
10 randomly selected terms from 90 notebook-
related terms in order of familiarity to them.
The third set of questions asked for demograph-
ic information about users such as their gender,
years of experience with notebook computers,
and native language. We derived correlations
between vocabulary-terms and user demo-
graphic information. This study allowed us to
group technical terms into different complexity
groups and better formulate system responses
to different user groups. Over a 30-day period,
we received 705 survey responses. After approx-
imately 400 responses, the number of extracted
keywords and phrases started to converge.
From this survey, we extracted 195 keywords
and phrases. These keywords and phrases
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tuning up the follow-up questions, prompts,
and explanations to the user’s input. To a large
extent, the success of a dialog system has been
shown to depend on the kind of questions
asked and the type of feedback provided. User’s
confidence in the system decreases if the sys-
tem responses are not consistent with the
user’s input. The system feedback and the fol-
low-up questions should manage a delicate bal-
ance between exposing system limitations to
the user and making sure the user understands
the degree of flexibility and advantages of
using a dialog system.

Pilot Deployment
We made further improvements to NLSA based
on the results of the user studies and deployed
NLSA on an external IBM web site for a few
months as a pilot. During the pilot, we collect-
ed valuable feedback from real users that great-
ly helped subsequent system improvements. 

For the pilot data, the average user query was
6.1 words long, which is significantly higher
than the roughly 2.2 words a query for search
engines. We also found that users were open to
typing in long natural language expressions to
find ThinkPads. The maximum query length
was over 150 words long. 

Perhaps the most surprising finding of the
pilot study was that a large proportion of user
queries were technical in nature, expressing
very specific needs about different product
attributes. Users freely (and without any coach-
ing or guidance) expressed relational operators
(for example, less than, at least, etc.) and con-
junctions of multiple constraints. This suggests
that NLSA is useful for technology-savvy users,
enabling them to quickly get to the products of
interest to them. Moreover, if a user has very
specific technical requirements (for example,
an xga computer with at least 20 gb, 128 mb ram,
and 15” tft display), NLSA is often the best mech-
anism for finding the relevant products quickly
(compared to keyword search or menu-driven
navigation).

Postpilot Enhancement
Having carried out the two user studies and
learned the lessons from the pilot deployment,
we are now developing the third version of the
system: the NATURAL LANGUAGE ASSISTANT (NLA).
The system described in this article is the result
of this effort. 

In particular, as described earlier, we
redesigned the questions that NLA asks users to
be simpler and focus on usage patterns rather
than technical features. Subsequently, we
added functions that classified users into gen-
eral versus technical categories. If the technical

category of users was detected, a technical pool
of questions would apply. We also integrated a
statistical parser with NLA to more robustly
handle varied user input. The statistical parser
should enable NLA to scale to multiple lan-
guages and multiple domains in a more robust
and reliable fashion. In addition, we have
designed a more uniform, more compact, and
consistent user interface. 

While developing NLA, we iterated through
various design phases, as described earlier,
which helped us learn more about user require-
ments and system limitations and enabled us
to incrementally improve the system in a sys-
tematic fashion. Our studies confirmed the
hypothesis that a natural language dialog
interface is a significant improvement over
existing product-retrieval mechanisms. In
future studies, we would like to focus more on
defining quantitative and objective measures
of system’s success.

Conclusion
This article describes a natural language dialog
system that helps users find products satisfying
their needs on electronic-commerce sites. The
system leverages technologies in natural lan-
guage processing and human-computer inter-
action to create a faster and more intuitive way
of interacting with web sites. By combining
techniques in robust statistical parsing with
traditional AI rule-based technology, the sys-
tem is able to accommodate both customer
needs and business requirements. 

Our studies show that dialog-based naviga-
tion is preferred over menu-driven navigation
(79 percent to 21 percent) and confirm the effi-
ciency of using natural language dialog in
terms of the number of clicks and the amount
of time required to obtain the relevant infor-
mation. Compared to a menu-driven system,
the average number of clicks used in the natur-
al language system was reduced by 63.2 per-
cent, and the average time was reduced by 33.3
percent. In a pilot study, we found that when
presented with the right interface, users do
type long, technical queries (average of 6.10
words a turn), for example, expressing relation-
al constraints on multiple product attributes or
usage categories. Moreover, our pilot study
revealed that technical users were able to use
NLA successfully to quickly find products of
interest to them. Thus, a shallow natural lan-
guage layer on top of a relational database
offers a powerful alternative to traditional key-
word search or menu-driven systems for elec-
tronic-commerce sites. Additionally, the use of
a thin dialog layer makes the system accessible
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