
� We describe an approach to intelligent user inter-
faces, based on the idea of making the computer a
collaborator, and an application-independent
technology for implementing such interfaces.

What properties of a user interface
would make you want to call it intel-
ligent? For us, any interface that is

called intelligent should at least be able to
answer the six types of questions from users
shown in figure 1. Being able to ask and answer
these kinds of questions implies a flexible and
adaptable division of labor between the
human and the computer in the interaction
process. Unlike most current interfaces, an
intelligent user interface should be able to
guide and support you when you make a mis-
take or if you don’t know how to use the sys-
tem well.

What we are suggesting here is a paradigm
shift. As an analogy, consider the introduction
of the undo button. This one button funda-
mentally changed the experience of using
interactive systems by removing the fear of
making accidental mistakes. Users today
expect every interactive system to have an
undo button and are justifiably annoyed when
they can’t find it. By analogy, to focus on just
one of the question types in figure 1, what we
are saying is that every user interface should
have a “What should I do next?” button.

Note that we are not saying that each of the
questions in figure 1 must literally be a separate

button. The mechanisms for asking and
answering these questions could be spoken or
typed using natural (or artificial) language,
adaptive menus, simple buttons, or some com-
bination of these. We have experimented with
all these mechanisms in the various prototype
systems described later.

Finally, some readers might object that
answering the question types in figure 1
should be thought of as a function of the appli-
cation rather than the interface. Rather than
getting into a unproductive semantic argu-
ment about the boundary between these two
terms, we prefer instead to focus on what we
believe is the real issue, namely, whether this
characterization of intelligent user interfaces
can lead to the development of a reusable
middleware layer that makes it easy to incor-
porate these capabilities into diverse systems.

Again, there is a relevant historical analogy.
A key to the success of so-called WIMP (win-
dows, icons, menus, and pointers) interfaces
has been the development of widely used mid-
dleware packages, such as MOTIF and SWING.
These middleware packages embody generally
useful graphic presentation and interaction
conventions, such as tool bars, scroll bars, and
check boxes. We believe that the next goal in
user interface middleware should be to codify
techniques for supporting communication
about users’ task structure and process, as sug-
gested by the question types in figure 1. This
article describes a system, called COLLAGEN,
which is the first step in this direction.
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on a car engine together or two computer users
working on a spreadsheet together.

In a sense, our approach is a very literal-
minded way of applying collaborative dis-
course theory to human-computer interaction.
We have simply substituted a software agent
for one of the two humans that would appear
in figure 2 if it were a picture of human-human
collaboration. There might be other ways of
applying the same theory without introducing
the concept of an agent as separate from the
application (Ortiz and Grosz 2000), but we
have not pursued these research directions.

Notice that the software agent in figure 2 is
able both to communicate with and observe the
actions of the user and vice versa. Among other
things, collaboration requires knowing when a
particular action has been done. In COLLAGEN,
this collaboration can occur two ways: (1) a
reporting communication (“I have done x”) or
(2) direct observation. Another symmetrical
aspect of the figure is that both the user and the
agent can interact with the application pro-
gram.

There are many complex engineering issues
regarding implementing the observation and
interaction arrows in figure 2, which are
beyond the scope of this article (Lieberman
1998). In all our prototypes, the application
program has provided a program interface (API)
for performing and reporting primitive actions
and querying the application state. Communi-
cation between the user and the agent has var-
iously been implemented using speech recogni-
tion and generation, text, and menus.

Outline of the Article
The remainder of this article lays out the work
we have done in more detail, starting with
snapshots of four interface agents built by us
and our collaborators in different domains
using COLLAGEN. Following these examples
comes a description of the technical heart of
our system, which is the representation of the
discourse state and the algorithm for updating
it as an interaction progresses. Next, we discuss
another key technical contribution, namely,
how COLLAGEN uses plan recognition in a col-
laborative setting. Finally, we present the over-
all system architecture of COLLAGEN, emphasiz-
ing the application-specific versus application-
independent components. We conclude with a
brief discussion of related and future work.

Application Examples
This section briefly describes four interface
agents built by us and our collaborators in four
different application domains using COLLAGEN.

Collaboration
What does all this have to do with the “collab-
orative discourse theory” in the title of this
article?  The goal of developing generic support
for communicating about the user’s task struc-
ture cannot, we feel, be achieved by taking an
engineering approach focused directly on the
questions in figure 1. We therefore started this
research by looking for an appropriate theoret-
ical foundation, which we found in the con-
cept of collaboration.

Collaboration is a process in which two or
more participants coordinate their actions
toward achieving shared goals. Most collabora-
tion between humans involves communica-
tion. Discourse is a technical term for an
extended communication between two or
more participants in a shared context, such as
a collaboration. Collaborative discourse theory
(see sidebar) thus refers to a body of empirical
and computational research about how people
collaborate. Essentially, what we have done in
this project is apply a theory of human-human
interaction to human-computer interaction.

In particular, we have taken the approach of
adding a collaborative interface agent (figure 2)
to a conventional direct-manipulation graphic
user interface. The name of our software sys-
tem, COLLAGEN (for COLLaborative AGENt), is
derived from this approach. (Collagen is also a
fibrous protein that is the chief constituent of
connective tissue in vertebrates.)

The interface agent approach mimics the
relationships that typically hold when two
humans collaborate on a task involving a
shared artifact, such as two mechanics working
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Who should/can/will do _____ ?

What should I/we do next ?

Where am/was I ?

When did I/you/we do _____ ?

Why did you/we (not) do _____ ?

How do/did I/we/you do _____ ?

Figure 1. Six Questions for an Intelligent Interface.
Adapted from the news reporter’s “five Ws.” The blanks are filled in with appli-
cation-specific terms, ranging from high-level goals, such as “prepare a market
survey” or “shut down the power plant,” to primitive actions, such as “under-
line this word” or “close valve 17.”



Theory

Systems Laboratory of Mitsubishi Electric in
Japan. The application program in this case is
a sophisticated graphic interface development
tool, called the SYMBOL EDITOR. Like many such
tools, the SYMBOL EDITOR is difficult for novice
users because there are too many possible
things to do at any moment, and the system
itself gives no guidance regarding what to do
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Figure 2. Collaborative Interface Agent.

We have also built agents for air travel plan-
ning (Rich and Sidner 1998) and e-mail (Gruen
et al. 1999). All these agents are currently
research prototypes.

Figures 3 through 6 show a screen image
and a sample interaction for each example
agent. Instances of the question types in figure
1 are underlined in the sample interactions.

Each screen image in figures 3 through 6
consists of a large application-specific window,
which both the user and the agent can use to
manipulate the application state, and two
smaller windows, labeled Agent and User,
which are used for communication between
the user and the agent. Two of the example
agents (figures 3 and 6) communicate using
speech-recognition and -generation technolo-
gy; the other two allow the user to construct
utterances using hierarchical menus dynami-
cally generated based on the current collabora-
tion state.

The agent in figure 3 helps a user set up and
program a video cassette recorder (VCR). The
image in the figure, which a real user would see
on his/her television screen, includes the VCR
itself so that the agent can point at parts of the
VCR during explanations (see line 12). In the
first part of the VCR agent transcript, the agent
helps the user eliminate the annoying blinking
12:00 that is so common on VCR clocks. Later
on, the agent walks the user through the task of
connecting a camcorder to the VCR.

The agent in figure 4 was developed in col-
laboration with the Industrial Electronics and

Grosz and Sidner (1986) proposed a
tripartite framework for modeling
task-oriented discourse structure. The
first (intentional) component records
the beliefs and intentions of the dis-
course participants regarding the tasks
and subtasks (purposes) to be per-
formed. The second (attentional) com-
ponent captures the changing focus
of attention in a discourse using a
stack of “focus spaces” organized
around the discourse purposes. As a
discourse progresses, focus spaces are
pushed onto, and popped off of, this
stack. The third (linguistic) compo-
nent consists of the contiguous
sequences of utterances, called seg-
ments, which contribute to a particu-
lar purpose.

Grosz and Sidner (1990) extended
this basic framework with the intro-
duction of SHAREDPLANs, which are a
formalization of the collaborative
aspects of a conversation. The SHARED-
PLAN formalism models how inten-
tions and mutual beliefs about shared
goals accumulate during a collabora-
tion. Grosz and Kraus (1996) provided
a comprehensive axiomatization of
SHAREDPLANs, including extending it
to groups of collaborators.

Most recently, Lochbaum (1998)
developed an algorithm for discourse
interpretation using SHAREDPLANs and
the tripartite model of discourse. This
algorithm predicts how conversants
follow the flow of a conversation
based on their understanding of each

other’s intentions and beliefs.
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1 User says “Hello.”
2 Agent says “Hello, what's your name?”
3 User says “Candy.”
4 Agent says “Hello, Candy!”
5 User says “Let's set the clock.”
6 Agent says “What is the time?”
7 User says “The time is 11:00 AM.”
8 Agent sets the clock to 11:00 AM. 

...

9 User says “How do I play back a video from my camcorder?”
10 Agent says “First, plug in the camcorder cables.”
11 User says “How do I plug in the camcorder cables?”
12 Agent points to where you plug in the camcorder cables.
13 Agent says “The red cable plugs into the red terminal, the black cable

plugs into the black terminal, and the yellow cable plugs into the yellow
terminal.  Make sure the other ends of the cables plug into the
corresponding colors on the camcorder.”

14 User says “What next?”
15 Agent says “Now press Play on your camcorder.  You should see a

picture on the TV screen.”
16 User says “Ok.”
17 Agent says “I don't see a picture.  Make sure the camcorder is plugged in

or has fresh batteries, and is turned on.”
18 User says “Ok.”
19 Agent says “Good. It's working.”

Figure 3. Example Video Cassette Recorder Agent Built with COLLAGEN.

1 Agent says “Please list the other (non-Boolean) attributes used in the
columns of the logic table.”

2 User says “The attributes are: voltage.”
3 Agent creates a new user-defined attribute.
4 Agent enters “voltage” as the name of the new attribute.
5 Agent says “Please select the data type of the new attribute.”
6 User selects float as the data type of the new attribute.
7 User clicks ok to accept the definition of voltage.
8 Agent says “Please edit the initial setting for the voltage attribute (if

necessary) and then click ok.”
9 User clicks ok to accept 0.0 as the initial setting for voltage.
10 Agent shows the expression editor for column 1.
11 Agent enters (voltage > 0.0) as the title for column 1.
12 Agent says “Please define an expression for column 1.”

       ...[user goes to lunch]...
14 User says “Where are we?”
15 Agent says “You are defining an expression for column 1, as part of

making a logic table.”
16 User enters (voltage >= 1000.0) as the title for column 1.
17 Agent shows the logical operator window.
18 Agent selects the >= operator.
19 Agent drags and drops >= into expression for column 1.
20 Agent selects the voltage attribute.
21 Agent drags and drops voltage into expression for column 1.
22 Agent types “1000.0” into expression for column 1.

Figure 4. Example Symbol Editor Agent Built with COLLAGEN.

1 Agent says “Let's start the generator.”
2 User says “Ok.”
3 Agent says “You take it from here.”
4 User presses the alarm reset button.
5 User says “What next?”
6 Agent says “Please press the gas turbine generator on button.”
7 Agent points to the gas turbine generator on button.
8 User presses the gas turbine generator button.
9 Agent says “Good. We have successfully started the generator.”

Figure 5. Example Gas Turbine Agent Built with COLLAGEN.



next. Our agent guides a user through the
process of achieving a typical task using the
SYMBOL EDITOR, automatically performing many
of the tedious subtasks along the way.

The agent in figure 5 was developed in collab-
oration with the Information Sciences Institute
of the University of Southern California (Rickel
et al. 2001). This agent teaches a student user
how to operate a gas turbine engine and gener-
ator configuration using a simple software sim-
ulation. The first time the agent teaches a new
task or subtask, it walks the student through all
the required steps. If a task has already been per-
formed once, however, the agent tells the stu-
dent to “take it from here” (line 3). If the stu-
dent later asks for help (line 5), the agent will
describe just the next step to be performed.

The gas turbine agent is part of a larger
effort, which also involves the MITRE Corpora-
tion (Gertner, Cheikes, and Haverty 2000), to
incorporate application-independent tutorial
strategies into COLLAGEN. Teaching and assisting
are best thought of as points on a spectrum of
collaboration (Davies et al. 2001) rather than as
separate capabilities.

Finally, Figure 6 shows an agent being devel-
oped at the Delft University of Technology to
help people program a home thermostat
(Keyson et al. 2000). The transcript here illus-
trates only a simple interaction with the agent.
This agent will eventually be able to help peo-
ple analyze their behavior patterns and con-
struct complicated heating and cooling sched-
ules to conserve energy. This work is part of a
larger research project at Delft to add intelli-
gence to products.

Discourse State
Participants in a collaboration derive benefit by
pooling their talents and resources to achieve
common goals. However, collaboration also
has its costs. When people collaborate, they
must usually communicate and expend mental
effort to ensure that their actions are coordi-
nated. In particular, each participant must
maintain some sort of mental model of the sta-
tus of the collaborative tasks and the conversa-
tion about them. We call this model the dis-
course state.

Among other things, the discourse state
tracks the beliefs and intentions of all the par-
ticipants in a collaboration and provides a
focus-of-attention mechanism for tracking
shifts in the task and conversational context.
All this information is used by an individual to
help understand how the actions and utter-
ances of the other participants contribute to
the common goals.

To turn a computer agent into a collaborator,
we needed a formal representation of a discourse
state and an algorithm for updating it. The dis-
course state representation currently used in COL-
LAGEN, illustrated in figure 7, is a partial imple-
mentation of Grosz and Sidner’s theory of
collaborative discourse (see sidebar); the update
algorithm is described in the next section.

COLLAGEN’s discourse state consists of a stack
of goals, called the focus stack (which will soon
become a stack of focus spaces to better corre-
spond with the theory), and a plan tree for each
goal on the stack. The top goal on the focus
stack is the “current purpose” of the discourse.
A plan tree in COLLAGEN is an (incomplete)
encoding of a partial SHAREDPLAN between the
user and the agent. For example, Figure 7
shows the focus stack and plan tree immediate-
ly following the discourse events numbered 1
through 3 on the right side of the figure.

Segmented Interaction History
The annotated, indented execution trace on
the right side of figure 7, called a segmented
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1 Agent says “Let's set the temperature in a room.”
2 User selects the bathroom.
3 User says    “What next?” 
4 
5 User says “18 degrees Centigrade.”
6 Agent sets the temperature in the bedroom to 18 degrees.

Agent says “What should the temperature setting be?”

Figure 6. Example Thermostat Agent Built with COLLAGEN.



ment, which include the keyword expecting,
indicate the steps in the current plan for the
segment’s purpose that have not yet been exe-
cuted. The steps which are “live” with respect
to the plan’s ordering constraints and precon-
ditions have the added keyword next.

Discourse Interpretation
COLLAGEN updates its discourse state after every
utterance or primitive action by the user or
agent using Lochbaum’s discourse-interpreta-
tion algorithm (see sidebar), with extensions to
include plan recognition (see next section) and
unexpected focus shifts (Lesh, Rich, and Sidner
2001).

According to Lochbaum, each discourse
event is explained as either (1) starting a new
segment whose purpose contributes to the cur-
rent purpose (and thus pushing a new purpose
on the focus stack), (2) continuing the current
segment by contributing to the current pur-
pose, or (3) completing the current purpose
(and, thus, eventually popping the focus
stack).

An utterance or action contributes to a pur-
pose if it either (1) directly achieves the purpose,
(2) is a step in a recipe for achieving the purpose,
(3) identifies the recipe to be used to achieve the

interaction history, is a compact, textual repre-
sentation of the past, present, and future states
of the discourse. We originally developed this
representation to help us debug agents and
COLLAGEN itself, but we have also experimented
with using it to help users visualize what is
going on in a collaboration (see discussion of
history-based transformations in Rich and Sid-
ner [1998]).

The numbered lines in a segmented interac-
tion history are simply a log of the agent’s and
user’s utterances and primitive actions. The
italic lines and indentation reflect COLLAGEN’s
interpretation of these events. Specifically,
each level of indentation defines a segment
(see sidebar) whose purpose is specified by the
italicized line that precedes it. For example, the
purpose of the top-level segment in figure 4 is
scheduling a program to be recorded.

Unachieved purposes that are currently on
the focus stack are annotated using the present
tense, such as scheduling, whereas completed
purposes use the past tense, such as done. (Note
in figure 7 that a goal is not popped off the stack
as soon as it is completed because it might con-
tinue to be the topic of conversation, for exam-
ple, to discuss whether it was successful.)

Finally, the italic lines at the end of each seg-
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DisplaySchedule

RecordProgram

AddProgram

RecordProgram

ReportConflictDisplaySchedule

Focus Stack Plan Tree
2 3

1

  Scheduling a program to be recorded.
1   User says "I want to record a program."

Done successfully displaying the recording schedule.
2    Agent displays recording schedule.
3    Agent says "Here is the recording schedule."

Next expecting to add a program to the recording schedule.
Expecting optionally to say there is a conflict.

Figure 7. Example Discourse State and Segmented Interaction 
History for Video Cassette Recorder Agent.



purpose, (4) identifies who should perform the
purpose or a step in the recipe, or (5) identifies a
parameter of the purpose or a step in the recipe.
These last three conditions are what Lochbaum
calls “knowledge preconditions.”

A recipe is a goal-decomposition method
(part of a task model). COLLAGEN’s recipe defini-
tion language (see figure 8) supports partially
ordered steps, parameters, constraints, precon-
ditions, postconditions, and alternative goal
decompositions.

Our implementation of the discourse-inter-
pretation algorithm described earlier requires
utterances to be represented in Sidner’s (1994)
artificial discourse language. For our speech-
based agents, we used standard natural-lan-
guage processing techniques to compute this
representation from the user’s spoken input.
Our menu-based systems construct utterances
in the artificial discourse language directly.

Discourse Generation
To illustrate how COLLAGEN’s discourse state is
used to generate, as well as interpret, discourse
behavior, we briefly describe here how the VCR

agent produces the underlined utterance on
line 5 in figure 9, which continues the interac-
tion in figure 7.

The discourse-generation algorithm in COL-
LAGEN is essentially the inverse of discourse
interpretation. Based on the current discourse
state, it produces a prioritized list, called the
agenda, of (partially or totally specified) utter-
ances and actions that would contribute to the
current discourse purpose according to cases 1
through 5 described earlier. For example, for
the discourse state in figure 7, the first item on
the agenda is an utterance asking for the iden-
tity of the program parameter of the AddPro-
gram step of the plan for RecordProgram.

In general, an agent can use any application-
specific logic it wants to decide on its next
action or utterance. In most cases, however, an
agent can simply execute the first item on the
agenda generated by COLLAGEN, which is what
the VCR agent does in this example. This utter-
ance starts a new segment, which is then com-
pleted by the user’s answer on line 6.

Plan Recognition
Plan recognition (Kautz and Allen 1986) is the
process of inferring intentions from actions.
Plan recognition has often been proposed for
improving user interfaces or to facilitate intel-
ligent help features. Typically, the computer
watches “over the shoulder” of the user and
jumps in with advice or assistance when it
thinks it has enough information.

In contrast, our main motivation for adding
plan recognition to COLLAGEN was to reduce the
amount of communication required to main-
tain a mutual understanding between the user
and the agent of their shared plans in a collabo-
rative setting (Lesh, Rich, and Sidner 1999).
Without plan recognition, COLLAGEN’s discourse-
interpretation algorithm onerously required the
user to announce each goal before performing a
primitive action that contributed to it.

Although plan recognition is a well-known

Articles

WINTER 2001   21

public recipe RecordRecipe achieves RecordProgram {

step DisplaySchedule display;

step AddProgram add;

optional step ReportConflict report;

constraints {

display precedes add;

add precedes report;

add.program == achieves.program;

report.program  == achieves.program;

report.conflict == add.conflict;

}

}

Figure 8. Example Recipe in Video Cassette Recorder Task Model.
Definition of the recipe used in figure 7 to decompose the nonprimitive Record-
Program goal into primitive and nonprimitive steps. COLLAGEN task models are
defined in an extension of the JAVA language, which is automatically processed to
create JAVA class definitions for recipes and act types.

Figure 9. Continuing the Interaction in Figure 7.

     Scheduling a program to be recorded.     

1 User says "I want to record a program."

Done successfully displaying the recording schedule.}

2      Agent displays recording schedule.

3      Agent says "Here is the recording schedule."

4 User says "Ok." Done identifying the program to be recorded.

5      Agent says "What is the program to be recorded?"

6      User says "Record 'The X-Files'."

Next expecting to add a program to the recording schedule.

Expecting optionally to say there is a conflict.



recognizer determines the set of minimal
extensions to the plan that are consistent with
the recipes and include the user performing k.
If there is exactly one such extension, the
extended plan becomes part of the new dis-
course state. If there is more than one possible
extension, action k is held and reinterpreted
along with the next event, which can disam-
biguate the interpretation (which l does not),
and so on. The next event might in fact be a
clarification.

Our algorithm also computes essentially the
same recognition if the user does not actually
perform an action but only proposes it, as in,
“Let’s achieve G.” Another important, but sub-
tle, point is that COLLAGEN applies plan recogni-
tion to both user and agent utterances and
actions in order to correctly maintain a model
of what is mutually believed.

System Architecture
Figure 11 summarizes the technical portion of
this article by showing how all the pieces
described earlier fit together in the architecture
of a collaborative system built with COLLAGEN.
This figure is essentially an expansion of figure
2, showing how COLLAGEN mediates the interac-
tion between the user and the agent. COLLAGEN

is implemented using JAVA BEANS, which makes
it easy to modify and extend this architecture.

feature of human collaboration, it has proven
difficult to incorporate into practical computer
systems because of its inherent intractability in
the general case. We exploit three properties of
the collaborative setting to make our use of
plan recognition tractable. The first property is
the focus of attention, which limits the search
required for possible plans.

The second property of collaboration we
exploit is the interleaving of developing, com-
municating about, and executing plans, which
means that our plan recognizer typically oper-
ates only on partially elaborated hierarchical
plans. Unlike the “classical” definition of plan
recognition, which requires reasoning over
complete and correct plans, our recognizer is
only required to incrementally extend a given
plan.

Third, it is quite natural in the context of a
collaboration to ask for clarification, either
because of inherent ambiguity or simply
because the computation required to under-
stand an action is beyond a participant’s abili-
ties. We use clarification to ensure that the
number of actions the plan recognizer must
interpret will always be small.

Figure 10 illustrates roughly how plan
recognition works in COLLAGEN. Suppose the
user performs action k. Given the root plan (for
example, A) for the current discourse purpose
(for example, B) and a set of recipes, the plan
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Events [k, l ]

Plan
A

Focus   B

A  →        B, C
B      →        G,  h
C →          k, D
G →         k,  l

A     →      D,  d,  f
B          →         k,  J
D→             l, n
 J                     →              l, m

Recipes

Plan
Recognizer

Two extensions of the 
input plan, which
"minimally explain" 
events k and l by applying 
recipes below the focus B. 

B C

A

B

G

k l

A

k J

l m

C B C

h

Figure 10. Plan Recognizer Input and Output in a Collaborative Setting.



The best way to understand the basic execu-
tion cycle in figure 8 is to start with the arrival
of an utterance or an observed action (from
either the user or the agent) at the discourse-
interpretation module at the top center of the
diagram. The discourse-interpretation algo-
rithm (including plan recognition) updates the
discourse state as described earlier, which then
causes a new agenda to be computed by the
discourse-generation module. In the simplest
case, the agent responds by selecting and exe-
cuting an entry in the new agenda (which can
be either an utterance or an action), which pro-
vides new input to discourse interpretation.

In a system without natural language under-
standing, a subset of the agenda is also present-
ed to the user in the form of a menu of cus-
tomizable utterances. In effect, this menu is a
way of using expectations generated by the col-
laborative context to replace natural language
understanding. Because this is a mixed-initia-

tive architecture, the user can, at any time, pro-
duce an utterance (for example, by selecting
from this menu) or perform an application
action (for example, by clicking on an icon),
which provides new input to discourse inter-
pretation.

In this simple story, the only application-
specific components an agent developer needs
to provide are the recipe library and an API
through which application actions can be per-
formed and observed (for an application-inde-
pendent approach to this API, see Cheikes et al.
[1999]). Given these components, COLLAGEN is a
turnkey technology—default implementations
are provided for all the other needed compo-
nents and graphic interfaces, including a
default agent that always selects the first item
on the agenda.

In each of the four example applications (fig-
ures 3 through 6), however, a small amount
(for example, several pages) of additional appli-
cation-specific code was required to achieve the

Articles

WINTER 2001   23

Figure 11. Architecture of a Collaborative System Built with COLLAGEN.
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declaring the action to be unrelated to the cur-
rent activity. This function is particularly useful
in tutoring applications of COLLAGEN.

We have, in fact, recently become increas-
ingly interested in tutoring and training appli-
cations (Gertner, Cheikes, and Haverty 2000;
Rickel et al. 2001), which has revealed some
implicit biases in how COLLAGEN currently oper-
ates. For example, COLLAGEN’s default agent will
always, if possible, itself perform the next
action that contributes to the current goal. This
behavior is not, however, always appropriate in
a tutoring situation, where the real goal is not
to get the task done but for the student to learn
how to do the task. We are therefore exploring
various generalizations and extensions to COL-
LAGEN to better support the full spectrum of col-
laboration (Davies et al. 2001), such as creating
explicit tutorial goals and recipes and recipes
that encode “worked examples.”

We are also working on two substantial
extensions to the theory underlying COLLAGEN.
First, we are adding an element to the atten-
tional component (see sidebar) to track which
participant is currently in control of the con-
versation. The basic idea is that when a seg-
ment is completed, the default control (initia-
tive) goes to the participant who initiated the
enclosing segment.

Second, we are beginning to codify the nego-
tiation strategies used in collaborative dis-
course. These strategies are different from the
negotiation strategies used in disputations
(Kraus, Sycara, and Evanchik 1998). For exam-
ple, when the user rejects an agent’s proposal
(or vice versa), the agent and the user should be
able to enter into a subdialogue in which their
respective reasons for and against the proposal
are discussed.

Note
1. Verbmobil, 2000, http://verbmobil.dfki.de.
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