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ence exists between parametric and
nonparametric statistical tests. Para-
metric tests are only valid if the data
satisfy certain assumptions. If these as-
sumptions hold, they will, however,
typically give more accurate results.
The analysis of statistical learning the-
ory has very much the flavor of a non-
parametric statistical test. Almost no

The scientific method aims to derive
mathematical models that help us to
understand and exploit phenomena,
whether they be natural or human
made. Machine learning, and more
particularly learning with neural net-
works, can be viewed as just such a
phenomenon. Frequently remarkable
performance is obtained by training
networks to perform relatively com-
plex AI tasks. Despite this success,
most practitioners would readily ad-
mit that they are far from fully under-
standing why and, more importantly,
when the techniques can be expected
to be effective. The need for a fuller
theoretical analysis and understand-
ing of their performance has been a
major research objective for the last
decade. Neural Network Learning: Theo-
retical Foundations reports on im-
portant developments that have been
made toward this goal within the
computational learning theory frame-
work.

Results from computational learn-
ing theory typically make fewer as-
sumptions and, therefore,  stronger
statements than, for example, a Bayes-
ian analysis. This generality can be
both a strength and a weakness. Its
strength is in the general applicability
of the results. However, its weakness
follows because a more general result
must be more pessimistic to still hold
true in the worst case. A similar differ-

bility or significance) approximately
correct (that is the generalization error
is low), or pac. The weakness of pac,
therefore, is that its results must hold
true even in worst-case distributions.

There is, however, a new twist to
this story in that the more recent pac-
style results are able to take account of
observed attributes of the function
that has been chosen by the learner,
for example, its margin on the train-
ing set. Such attributes measure how
beneficial the particular distribution is
and feed directly into the bound on
the generalization, hence helping to
motivate learning strategies that at-
tempt to minimize the particular
bound, for example, by maximizing
the margin. For this reason, the new
style of analysis is often referred to as
data dependent. Bartlett and Anthony
have been two of the researchers driv-
ing these developments and, hence,
are particularly well placed to produce
a book, one of whose main goals is to
show the reader how these new results
affect neural network learning.

The first part of the book looks at
classification using binary-output neu-
ral networks. The approach presented
is the “classical” (non–data-depen-
dent) pac learning analysis of binary
classifiers based on the Vapnik-Cher-
vonenkis dimension and associated
growth function. A thorough coverage
is given of these results, including
proofs of all the main theorems. An al-
ternative proof of Sauer’s lemma owed
to Steele (1978) is given, and a detailed
description is included of the crucial
symmetrization lemma that forms the
core of the Vapnik-Chervonenkis the-
orem. It is clear by this point that the
book aims to give a comprehensive ac-
count not only of the results but also
of their detailed proofs. This thorough-

assumptions are made about the distri-
bution generating the data. In addi-
tion, its bounds hold with high proba-
bility in the same way that significance
in a statistical test indicates the proba-
bility that the data have misled you in-
to accepting a particular hypothesis.
For this reason, computational learn-
ing theory results are often referred to
as probably (that is, with high proba-
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ness extends to the lower bounds on
the sample complexity in terms of the
Vapnik-Chervonenkis dimension and
even to the bound on the Vapnik-
Chervonenkis dimension of sigmoidal
neural networks following Karpinski
and Macintyre (1997). Without doubt,
the presentation is the fullest exposi-
tion of this collection of results in a
single text.

Part two turns to using real-valued
functions for classification. The book
aims to break new ground here by in-
troducing the recent data-dependent
results relating the generalization of
such a classifier to its margin on the
training set or, more generally, the
margin together with the number of
points failing to meet this margin.
Viewing a classifier at a certain scale of
margin effectively lowers the com-
plexity of the function class for the
particular learning problem. This ap-
proach, however, does not correspond
to choosing a simple subclass of func-
tions because there is no restriction on
which function from the full class can
be chosen. It is as though having cho-
sen the solution, we view the class
through a margin-scaled filter. Hence,
we only need to find functions that
can approximate the behavior of the
class on the training set to a scale pro-
portional to the margin. Such a set of
exemplar functions is known as a cov-
er. The log of the size of the cover plays
the role of the Vapnik-Chervonenkis
dimension in bounding the general-
ization, and for large margins, this val-
ue can be significantly smaller than
the Vapnik-Chervonenkis dimension.
Furthermore, the Vapnik-Chervo-
nenkis dimension can be replaced by a
scale-sensitive version known as the
fat-shattering, or P� dimension, which
can be used to bound the size of the
covers in a manner analogous to that
in which Sauer’s lemma bounds the
growth function in terms of the Vap-
nik-Chervonenkis dimension.

Once again, the book gives us the
full treatment of these results, includ-
ing the bounding of the size of the
covers of multilayer neural networks
with weights bounded in a manner
reminiscent of weight decay. Thus, the
authors can provide a theoretical justi-
fication for the use of weight decay in
neural network training to create a

large separation between the positive
and negative training examples.

The third part of the book deals
with learning real-valued functions, a
task often referred to as regression. It is
possible to treat regression with the
tools developed for classification if we
are happy to bound the probabilities
that a regressor makes an error greater
than some threshold on a randomly
drawn test point, an approach referred
to by the authors as approximate inter-
polation. The authors initially prefer to
consider the more usual measure of
the expected quadratic loss, that is,
E(f(x) – y)2 as the generalization error
of the function f, where the expecta-
tion is over the distribution generating
the data pairs (x, y). This analysis re-
quires the use of covers over different
metrics, although the form of the re-
sults is reminiscent of those for classi-
fication using real-valued functions,
with the fat-shattering dimension
playing a central role. Once again, re-
sults for neural networks suggest the
use of weight decay as a strategy for
controlling the capacity of the net-
work without having to reduce its size
or the number of weights. There are
short sections dealing with convex
classes for which tighter bounds can
be derived with general loss functions,
multiple output networks, and the ap-
proximate interpolation approach
mentioned earlier.

The final part of the book deals with
the question of algorithmics. It was
Valiant in his seminal paper who first
placed algorithmic efficiency as a core
requirement of learning theory. The
first three parts of the book ignored this
question, preferring to concentrate on
estimating how much data are required
to obtain good generalization with
high probability under the assumption
that we can make the best use of these
data. In practice, we must be able to
find a hypothesis or, in the case of neu-
ral networks, a weight setting that op-
timizes the derived criteria, for exam-
ple, maximizes the margin but keeps
the size of the weights controlled.

Unfortunately, the so-called loading
problem for neural networks is hard
under the normal complexity assump-
tion that RP ≠ NP. These results are de-
scribed before going on to consider
the single neuron or perceptron. Even

in this case, the problem of minimiz-
ing the number of training errors is
hard. Only by restricting considera-
tion to fixed fan-in perceptrons can ef-
ficient learning algorithms be de-
scribed; although even in this case,
they have the flavor of enumerating
all possible dichotomies that can be
realized, an approach that is unlikely
to be practical for realistically sized
problems.

The book, however, is able to offer
more positive results for convex combi-
nation constructive algorithms when
learning real-valued functions because
it can be shown that a good approxi-
mation to the global optimum can be
found, provided each iteration uses a
close to optimal component. This re-
sult has a close relationship to the re-
sults for sample complexity of convex
combinations and lead into a discus-
sion of boosting algorithms for classifi-
cation, another example of an efficient
procedure that is guaranteed to give
small training error and exploits the
margin ideas to frequently give good
generalization error.

Anthony and Bartlett have given us
the most thorough treatment of the
statistical analysis of neural network
learning available to date. They have
presented a complete picture of how
the proofs are derived right down to
an appendix listing the background
results that are used in their deriva-
tions. The book is therefore an invalu-
able reference for the learning theo-
rist, at the same time providing the
first full treatment of the data-depen-
dent analysis that has brought learn-
ing theory significantly closer to the
practitioner. Although it is too soon to
expect the actual results to provide re-
alistic bounds on the generalization of
particular classifiers, the form of the
results is already able to motivate algo-
rithmic strategies that frequently do
improve generalization performance.
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