
■ The SCIFINANCE software synthesis system, licensed
to major investment banks, automates program-
ming for financial risk-management activities—
from algorithms research to production pricing to
risk control. SCIFINANCE’s high-level, extensible
specification language, aspen, lets quantitative
analysts generate code from concise model
descriptions written in application-specific and
mathematical terminology; typically, a page or less
produces thousands of lines of C. ASPEN’s abstrac-
tions help analysts focus on their primary
tasks—model description, validation, and analy-
sis—rather than on programming details. Com-
pared with manual programming, automation
produces codes that are more sophisticated, accu-
rate, and consistent. Analysts develop models
within a day that previously took weeks or were
not even attempted. SCIFINANCE extends a system
that generates scientific computing codes in a vari-
ety of target languages. The implementation inte-
grates an object-oriented knowledge base, refine-
ment and optimization rules, computer algebra,
and a planning system. The shared knowledge
base is used by the specification checker, synthesis
system, and information portal.

Financial risk management increasingly
demands new and customized simulation
codes to implement its sophisticated com-

putational models. These codes, typically
designed by the quantitative analysts at invest-
ment banks, help determine prices for invest-
ment products, make trading decisions, and
assess and control financial risk. The rate of
growth in this area is striking. For example, the
volume of the parent industry, custom (“over-
the-counter”) derivative securities trading, has
increased 12-fold from 1990 to 2000 to 80 tril-
lion dollars. Spending for modeling software is
close to a billion dollars a year, with an expect-
ed growth rate of about 10 percent. One way
quantitative analysts can keep on top of this
growth is with a tool like SCIFINANCE, which
automates code generation.

A derivative security is one whose value
depends on that of some other underlying
security. Derivatives allow firms to hedge risk.
For example, a multinational firm might use
foreign-exchange options to limit its exposure
to volatile exchange rates. In 1973, Myron
Scholes and Fischer Black derived a partial dif-
ferential equation, the Black-Scholes equation
(for which a Nobel Prize was later awarded),
that estimates the fair value of a derivative
security as a function of the characteristics of
the underlying security and time. Since then,
the mathematical theory of derivative pricing
has been refined greatly, supporting the explo-
sive growth in the volume and variety of deriv-
atives sold in the marketplace.

Large investment banks, brokerage firms,
insurance companies, and hedge funds utilize
quantitative analysts to develop pricing mod-
els for these complex derivative structures.
Analysts must create a new pricing model
whenever a customer needs a price quote on a
custom derivative instrument. As the global
derivatives market grows in size, complexity,
and competitiveness, clients increasingly
demand products tailored to their specific
investment requirements. As a bank’s suite of
investment products grows, corresponding
simulation codes must be produced rapidly
and accurately. This demand is straining the
ability of derivatives houses to model and price
these instruments in a timely manner. The
complexity of the deals might require a team
of analysts, financial engineers, and program-
mers to work days or even weeks to develop
the pricing model. Because a small program-
ming or design error can cost the holding insti-
tution millions of dollars, accuracy and consis-
tency of pricing strategies are critical. Quick
turnaround is also essential, or the institution
might lose the deal to a competitor.

The simulation codes involve the solution of
a set of partial differential equations (PDEs),
each of which is an equation like the Black-

Articles

SUMMER 2001 27

SCIFINANCE
A Program Synthesis Tool for

Financial Modeling
Robert L. Akers, Ion Bica, Elaine Kant, Curt Randall, and Robert L. Young

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

AI Magazine Volume 22 Number 2 (2001) (© AAAI)

the specifications do not exactly match an
existing library routine. Finer-grained libraries
shift the emphasis to problems of matching
interfaces and connecting components and fail
to provide component-spanning optimiza-
tions. Manual programming is time consuming
and error prone.

To address some of these shortcomings, both
object-oriented libraries (including in financial
applications) and expert systems (in other
application areas) have been developed.
Object-oriented libraries can provide more gen-
erality by abstracting data-structure representa-
tions, but they are usually not independent of
the specific equations being solved or of prop-
erties such as spatial dimensionality and order
of accuracy of the algorithm. Even with object-
oriented libraries, however, assembly and bot-
tom-up optimization of individual modules is
the analyst’s focus rather than top-down deci-
sion making and global optimization.

Conventional expert systems can select and
combine library modules, relieving the user of
some of the programming burden. However,
expert systems alone do not address issues such
as an appropriate specification level, genera-
tion of arbitrary higher-order methods, global
and problem-specific optimization, code inte-
gration, and platform retargeting.

Software synthesis can solve these problems
by integrating the best aspects of object
libraries and expert systems and augmenting
them with the power of computer algebra, pro-
gram transformation, and planning. Program
synthesis accepts specifications in financial
and mathematical terms, provides intelligent
assistance in making choices, validates specifi-
cations and generates error-checking code, and
optimizes globally with problem-specific
knowledge.

Application Description
SCIFINANCE transforms specifications written in
a high-level language called ASPEN (algorithm
specification notation) into executable C code.
The synthesis process allows mixed user-sys-
tem decision making and provides feedback to
users in the form of summaries of its work at a
sequence of levels of problem refinement. Fig-
ure 2 shows the SCIFINANCE work flow, from
financial deal sheet to ASPEN specification, to C
code. The C code can have its input and output
in a file, spreadsheet, or trading system. Figure
3 shows the output of a SCIFINANCE-generated
code that has been integrated into an EXCEL

spreadsheet using the SCIFINANCE spreadsheet
integration application, SCIXL.

SCIFINANCE is a customized version of an

Scholes equation described in figure 1. The
solution is subject to appropriate boundary
conditions, initial conditions, constraints, and
possible discrete events such as dividend pay-
ments. Especially important are the sensitivi-
ties of the solution to the various input para-
meters. Closed-form solutions are not available
for any but the most trivial examples of these
problems; thus, numeric approximation codes
must be written.

Analysts ensure the accuracy and efficiency
of models, but because they are highly trained
and compensated, they make very expensive
programmers. Consequently, the objective is to
greatly reduce programming time yet maintain
or improve the accuracy and consistency of the
pricing models. In addition, new tools must be
both easy to use and familiar enough to inspire
confidence in their function.

The problems of financial modeling, al-
though similar to those in other areas of engi-
neering and scientific computing, are especial-
ly acute because the field of finance evolves
much more rapidly, and new models are need-
ed much more quickly. Conventional ap-
proaches to producing modeling codes involve
combinations of library packages, object
libraries, and manual programming. However,
these approaches are unsatisfactory for many
users (one of our customers evaluated more
than 10 products before choosing SCIFINANCE).
The reason for the dissatisfaction is that such
approaches obscure the model and force the
problem solver to think at too low a level of
abstraction—reasons are described in more
detail in Akers et al. (1998). Thinking in terms
of the tools or components, rather than in
terms of the problem, application, and mathe-
matical solution techniques, can potentially
lead the analyst to make compromises that
cause inaccurate or incomplete solutions.
Large-grained library packages, for example, do
not address how to produce new codes when

Articles

28 AI MAGAZINE

The value V of a derivative security whose underlying

stock has current price S, dividend yield D0, volatility σ,

and risk-free interest rate r satisfies the equation:

∂
∂

+ ∂
∂

+ −() ∂
∂

− =V
t

S
V
S

r D S
V
S

rV
1
2

02 2
2

2 0σ

Figure 1. The Black-Scholes Equation.

underlying technology called SCINAPSE (Kant
1993), (Akers et al. 1997) and part of a general
tradition of software synthesis (for example,
Lowry and McCartney [1991]).1 Related tech-
niques include the use of planning, theorem
proving, or expert systems to compose library
modules or construct scripts. Although these
techniques have proved fruitful in other
domains, for example, using planning to
reconfigure software libraries for image analysis
(Chien et al. 1999), they typically do not gen-
erate the complex control structures and cus-
tomized data representations that are required
in financial applications.

Figure 4 illustrates the architecture of the SCI-
FINANCE system. SCIFINANCE successively refines
ASPEN specifications into C code through
increasingly detailed levels of representation,
paralleling a best-practice version of human
scientific software development. The levels-of-
refinement approach, consistent with state-of-
the-art literature (Gallopoulos and Sameh
1997), helps give the user a sense of familiarity
and confidence. SCIFINANCE applies financial
and mathematical knowledge to elaborate the
specifications into mathematical equations
and algorithm templates, with mixed user and
system decision making. Design choices

include questions about the desired results
(which only the user can answer) and selection
of numeric techniques. SCIFINANCE will make
selections in the absence of user specification.
SCIFINANCE then expands the algorithm tem-
plates and applies numeric analysis knowledge
to produce pseudocode. Finally, it applies rules
about data structures, program optimization,
and code generation to produce optimized C

code satisfying the specification.
The heart of the SCIFINANCE implementation

is the synthesis engine, which is built around
an object-oriented knowledge base containing
financial, mathematical, and programming
constructs. Abstract templates represent the
mathematical algorithms. Integrated with the
objects are program transformations (for pro-
gram elaboration, numeric approximation,
data-structure selection, and program opti-
mization), many of which make use of com-
puter algebra, and a scheduling mechanism.
SCIFINANCE communicates with users and devel-
opers about the system’s capabilities and the
synthesis in progress through an information
portal. The information portal and the under-
lying synthesis engine are implemented in
MATHEMATICA (Wolfram 1999).

Articles

SUMMER 2001 29

OUTPUT
File, Spreadsheet,

or
Trading System

C
Code

Deal Sheet
ASPEN
Spec File

INPUT
File, Spreadsheet,

or
Trading System

SciFinanceTM

Code Generator

Figure 2. The SCIFINANCE Work Flow.

attribute[object, value];

for objects with multiple instantiations (such
as variables). In many cases, the attribute val-
ues are unique, and the value alone can serve
as a simple keyword (such as

TriDiagonal;

rather than

Solver[TriDiagonal];

or

Double[K];

rather than the

Type[K, Double];

specification statement). An internal syntax
direction language makes it easy to customize
the specification language to satisfy more com-
plex or grouped specification requirements.

Specification Checking
A front-end specification parser processes spec-
ifications and sets up the object instances rep-

High-Level Specification Language
The ASPEN specification language represents
problems in a way that is both clear to the user
and suitable for manipulation by the system.
Because ASPEN is concise, expressive, and flexi-
ble, users can easily write both simple and
sophisticated specifications. Many numeric
algorithms, equations, and other mathematical
entities can be specified with keywords, and
ASPEN makes it easy to specify equations alge-
braically or define new, parameterized equa-
tion families. Design choices (such as numeric
approximation methods) can be specified but
are optional. The specification language can
easily be extended because constructs from the
internal knowledge representation can be pro-
moted to the specification level simply by
changing one facet of the object representa-
tion. The most basic ASPEN specification syntax
is

value[attribute];

(for global specifications) or

Articles

30 AI MAGAZINE

Figure 3. Output of a SCIFINANCE-Generated Code That Has Been Integrated into an EXCEL Spreadsheet Using SCIXL.

resenting the user’s problem statement. Its
extensive diagnostics trap and report specifica-
tion errors early in the synthesis process. The
parser is in part dynamically generated; it con-
structs its semantic actions based on the cur-
rent content of the knowledge base and auto-
matically incorporates the relevant knowledge
base content from the user’s problem specifica-
tion. Thus, the knowledge base itself defines
what the front end will process and many of
the actions it will take. In this sense, the front
end is merely a machine presenting and pro-
cessing a language defined in the knowledge
base, which means that new concepts can be
introduced with no impact on the front-end
processor.

Knowledge Representation
SCIFINANCE mixes rules and objects to represent
knowledge about mathematics and program-
ming and present design choices in appropri-
ate terms and in a logical order. Objects repre-
sent entities such as equation sets, individual
equations, variables, and solvers. Attributes on
object instances not only store object relation-

ships between equations and variables but also
store the design choices that must be made for
specific problems. For example, a representa-
tion attribute on an array variable can be filled
by alternatives such as full, diagonal, time
independent, and stencil. Associated design-
choice rules encapsulate the details of the
knowledge about how to make choices. Repre-
sentation choice rules, for example, examine
the equations in which a variable participates
to determine the best data structure for a vari-
able. Choices are not always from a fixed set
but can be algebraically constructed based on
equation discretizations.

We developed an object-oriented program-
ming system, built on top of MATHEMATICA, that
supports dynamically created classes as well as
instances. Tools use the dynamic classes to
translate declarative, human-oriented descrip-
tions of discrete events, algorithm templates,
and discretization rules into the internal object
and rule representations. The goals and agen-
das mechanism, which manages the synthesis
and user interactions by ordering the resolu-
tion of object-attribute values according to

Articles

SUMMER 2001 31

Information Portal

Synthesis Engine
Object
System

Template
Translator

Symbolic
Algebra

Planning
System

ASPEN

Specification

Financial
knowledge

and
specification
elaboration

Math
equations

and
design
choices

Template
expansion

and
mathematical
elaboration

Pseudocode

Data
structures,
program

optimization,
and code

generation

C Code

Figure 4. The SCIFINANCE System Architecture.

Computer Algebra
SCIFINANCE would be much less powerful with-
out its extensive use of computer algebra to
make coordinate system transformations,
numeric approximations, error estimates, and
data-structure and operator optimizations. Var-
ious rule-based simplifiers and transformation
engines perform the algebraic manipulations
of problem entities. Examples include a
pseudocode optimizer integrated with a
pseudocode elaboration transformer; an
inequality simplifier; and translators to convert
the system’s low-level pseudocode to various
target languages, including Fortran and
dialects of C.

Platforms
The synthesis engine, SCIFINANCE, runs on a
wide variety of platforms (anything that MATH-
EMATICA runs on), including UNIX and WINDOWS

NT. SCIFINANCE-generated codes adhere to the
standards of the target languages (ANSI C,
Microsoft C, and Fortran-77) and can be com-
piled and run on any platform supporting
these languages.

The MATHEMATICA system has two separate
parts. The first part is an evaluator-interpreter
called the kernel in which SCIFINANCE objects
and rules are implemented. The other part is
the MATHEMATICA notebook, which provides win-
dow-based communication between a user and
the kernel. The notebooks provide access to a
built-in set of WYSIWYG document-writing
capabilities that can mix text and kernel
instructions. We have added new menus for
interacting with SCIFINANCE to those already
present on notebooks.

Information Portal
SCIFINANCE’s information portal (Young, Kant,
and Akers 2000) provides easy access to a suite
of MATHEMATICA notebooks presenting informa-
tion about the system’s capabilities and the
synthesis in process. The notebooks all use a
semantic network of information nodes. The
semantic network uses the same knowledge
representation tools as the rest of SCIFINANCE

and can refer to classes in the synthesis knowl-
edge base corresponding to domain entities.
The notebooks include reference documents,
example catalogs, summaries describing the
state of the problem (program) after each level
of refinement, and human-authored docu-
ments automatically processed to convert
selected references to hyperlinks.

Figure 5 shows an example-level summary
notebook, one of the notebooks that users see
after synthesis. It is a summary of the results of
a synthesis that has just been completed, orga-

their dependencies, is tightly integrated with
the object system. It allows attribute values to
be computed with methods, constraints,
heuristics, and both user-defined and system-
defined defaults. Thus, the object system is
used not only to organize the knowledge base
but also to encode the synthesis process itself.

Design-Choice Rules
Associated with each choice (object attribute)
are a result type, constraint and heuristic rules
(that both can use previous choices), and
defaults. Constraints filter the legal values of
the alternatives type. Heuristics (with a simple
voting scheme) and defaults are applied next if
the ASPEN specification or constraints do not
indicate a unique design choice. The specifica-
tion can contain general default choices, such
as an input file for variables not otherwise ini-
tialized.

Algorithm Templates
After most design decisions are made, SCIFI-
NANCE constructs a program by instantiating
the selected algorithm templates based on the
equations in the specification. Templates are
special objects that represent mathematical
algorithms, such as time-evolution loops,
equation-system solvers, and interpolations.
Template objects are generic algorithm descrip-
tions, free of specific equations and data-struc-
ture representations, that provide links to oth-
er synthesis entities, including other templates.
SCIFINANCE fills out the network of templates
and expands the template objects into
pseudocode, inserting assignment statements
and loops based on the specific equations and
representation selections.

Templates are defined declaratively. A tem-
plate translator processes these declarations and
incorporates them into the knowledge base so
that they are smoothly integrated with the syn-
thesis process.

Elaboration Rules and
Global Optimization
Unlike a library-combining process, SCIFINANCE

optimizes throughout synthesis, not just as a
final code-transformation pass. For example, it
eliminates unnecessary problem variables as
soon as possible, maximizes parallelism based
on equation dependencies, and makes space-
time trade-offs by algorithm choices and prob-
lem-specific representation selections. SCIFI-
NANCE also applies many conventional
optimizations such as the introduction of tem-
porary variables, loop merging, and loop
unrolling.

Articles

32 AI MAGAZINE

nized hierarchically by the level of the transfor-
mations, equation regions, and individual
equations. The keyword level is in view here,
showing the use of mathematical notation for
equations.

The level summary report provides ready
access to the objects that have been created
during the run. Their names are active wherev-
er they appear, and clicking on one opens an
object browser. Figure 6 shows a browser for
the object, VEqnc. It is a hierarchical presenta-
tion of one view of the Veqnc’s attributes and
values, the user’s view. A view filters and orga-
nizes the presentation of the attributes and val-
ues with a particular viewer in mind. There are
other views, for example, aimed at system
implementers.

Figure 7 shows a small part of the online
help system. It is scrolled to the alphabetical
part that provides explanations of words start-
ing with interior. The use of interior in the input
specification (reflected in figure 5) is explained
by the “Interior (a specification form)” entry.
Adjacent are other entries starting with interior.
One of them is “interior (a concept),” which
provides a simple explanation of the mathe-
matical notion of interior as it applies to
numeric solutions in general.

Examples of System Use
Quantitative analysts at risk-management
institutions, university professors, and indus-
try consultants use SCIFINANCE to price custom
equity-based derivative securities instruments
(such as convertible bonds) and foreign-
exchange instruments. Some of these pricing
codes are embedded in production systems for
securities valuations, and some are used in
research or for validating other approxima-
tions. Numerous examples have been pub-
lished (Brown and Randall 1999; Gatheral et al.
1999; Randall, Kant, and Chhabra 1998);
examples can also be found in the SCIFINANCE

user documentation. SCIFINANCE is also used in
university classes in computational finance.

A typical SCIFINANCE application is modeling
a derivative security. The model is specified in
mathematical and numeric terms familiar to a
financial analyst. Many common notions, such
as equations, discretization methods, special
problem conditions, and numeric algorithms
are denoted by name, with variants specifiable
by parameterization.

An Example Specification
The example in figure 8 specifies a simple but
nontrivial code that prices a “daycount
knockin, continuous knockout put option.”
The generated code will solve the one-dimen-

sional Black-Scholes equation in a two-dimen-
sional region defined by the underlying stock
price S and the knockin path variable L, which
counts the number of days. AutomaticBC is an
ASPEN specification statement that defines lin-
earity boundary conditions. A specific bound-
ary condition overrides this default at max[S]
to define the continuously monitored knock-
out boundary condition (at X2). The “put” is
described by the payoff condition

When[max[t], V == L*Max[0, K-S]/ nsamp];
The knockin condition—the fraction of sam-
ples (L/nsamp) for which the spot price is
below a second barrier (X1)—is given by the
DiscreteEvents[Path[...]]; specification. The
tsample in the path descriptor defines the set of
sampling dates, and the ReadFile specifies their
input source. By default, all other input are
read from the file DayCount.dat. The output is
the option value V interpolated to a specific
series of spot prices (read into the array
spottable from spottable.dat) and on a specific
value of L, namely, LSpot. The specification of
numeric methods is optional. For example, the

Articles

SUMMER 2001 33

Figure 5. Example-Level Summary Notebook.

expansion and rule-application procedure.
However, after attacking some complex exam-
ples, it became obvious the system had difficul-
ty understanding and controlling the rule
interactions and rule firings when generating
varied and sophisticated codes. Other ap-
proaches to software synthesis, such as auto-
mated deduction, do not seem appropriate
here for a number of reasons. For example, the
numeric methods are only approximations,
and the error is not always known, so proving
the methods or deriving them automatically
would be extremely difficult and time consum-
ing. Given the high degree of accuracy needed,
automated learning of methods from examples
also seems impractical, although a tool for rec-
ognizing common patterns in specifications
and learning how to make some default set-
tings of numeric parameters based on experi-
mentation could be useful.

We selected MATHEMATICA as the commercial
implementation platform that provided most
of the capabilities we need. It is a multiplat-
form, unified system that includes a symbolic
programming language with sophisticated pat-
tern matching, a computer algebra system, and
a notebook interface with a rich set of capabil-
ities for displaying or entering traditional-look-
ing mathematical notation. Many of our
potential customers are already MATHEMATICA

users. We built the missing object representa-
tion and user interface capabilities as addition-
al layers over MATHEMATICA.

A declarative knowledge representation and
a good model of the domain were key aspects
in developing SCIFINANCE. The domain model
includes problem structures, simulation code
structures, and the human code-construction
process. The synthesis process can thus be
derived directly from the domain model. The
combination of a good model with easy access
to the declarative knowledge and metaknowl-
edge unifies and simplifies many tasks.

SCIFINANCE classes representing mathemati-
cal and programming constructs have attribut-
es corresponding to their properties and vari-
ous design choices, along with methods for
elaborating these attributes. The methods are
elaboration and transformation rules that
sometimes include substantial algebraic
manipulations. The two technologies are
appropriately mixed: Knowledge representa-
tion provides meaningful locations for the
methods, and robust, high-quality algebraic
transformations produce the needed results.

The planner exploits the knowledge and
metaknowledge to set goals to decompose tasks
or instantiate objects and then refine them by
filling in attributes. Its agenda mechanism

discretization scheme CrankNicholson is giv-
en, but because no solver is given, SCIFINANCE

will make the choice. Given this simple ASPEN

specification, SCIFINANCE generates about 1000
lines of C code. Figure 9 shows that the result
produced by the SCIFINANCE code is a significant
improvement over traditional methods.

Uses of AI Technology
We attribute the success of SCIFINANCE to the
naturalness of its high-level specification lan-
guage and the extensibility of the specification
language and the implementation. As noted
previously, the implementation relies heavily
on the integration of object-oriented design
with transformation rules, symbolic algebra,
and plan-based scheduling. All these features
are extremely useful for a system that is easy to
build and extend, has sufficient mathematical
flexibility, and is fully automated. For example,
rather than plan-based scheduling, the original
prototype had a more straightforward concept

Articles

34 AI MAGAZINE

Figure 6. A Browser for the VEqnc Object.

schedules refinements and design decisions for
algorithms, numeric approximations, and data
structures. The planning system uses method
descriptions to automatically determine refine-
ment orderings that ensure that all data to
make choices are in place before decisions are
considered. Currently, SCIFINANCE customers
provide the specification in a file, but the
knowledge representation and planner are for-
mulated such that it would be easy to develop
specifications interactively if that became
desirable.

SCIFINANCE’s reflective implementation does
trade ease and speed of development for perfor-
mance. Fortunately, because the synthesis
speed is roughly proportional to central pro-
cessing unit speed, given reasonable amounts
of memory, we can take advantage of the hard-
ware improvement curve to increase the prac-
tical problem size that SCIFINANCE can handle
without major tuning.

Application Use and Payoff
SCIFINANCE was first announced in October
1998 after some beta testing, and the first com-
mercial sale came in January 1999 when Mer-
rill Lynch licensed the product for use by quan-
titative analysts in its Global Equity-Linked
Product and Technology Unit. As of August

2000, some other customers we are permitted
to list are Bear, Stearns Securities Corporation;
MeesPierson; and KBC Financial Products.

Customers’ Descriptions of Benefits
Our customers all report that specifying prob-
lems in a high-level language and automating
the code generation has many advantages, pri-
marily the ability to quickly develop complex
models; focus precious human resources on the
most critical analytic tasks; and reap accurate,
high-quality, and consistent code. We have no
way to obtain an exact count, but we know
that hundreds, perhaps thousands, of codes
have been generated.

Promoting a Focus on the Modeling Tasks
Analysts at Merrill Lynch have been using SCI-
FINANCE since early 1999. In a detailed case
study coauthored with SciComp (Gatheral et al.
1999), they write that software synthesis makes
it much easier to handle complex problems and
allows them to focus on the problem and mod-
eling choices rather than on programming and
debugging. In doing research, they can now
solve within a day or two problems that
appeared too complex to solve in a reasonable
time using conventional techniques. In addi-
tion, quick turnaround gives their busy analysts
the time to experiment with alternative tech-
niques and fine-tune production codes. The

Articles

SUMMER 2001 35

Figure 7. SciFinance Help Notebook for the Word Interior.

Increasing Code Accuracy and
Development Speed
Anastasios Politis, currently a quantitative ana-
lyst at KBC Financial Products, has been using
SCIFINANCE since 1999 to generate codes for
pricing new options (both for research and pro-
duction) and determine whether closed-form
solutions are precise enough. Politis says that
SCIFINANCE makes code development faster and
easier for him and that his bank benefits from
more accurate models and fewer deals lost
because of slow pricing. SCIFINANCE allows Poli-
tis to develop many models within a single day
rather than over the course of a week. Using
conventional manual programming methods
to develop finite-difference codes of the variety
SCIFINANCE produces, he says, is immensely
time consuming (exactly how time consuming
depends on the resemblance to existing codes).
By putting the correct numeric elements, such
as solvers, at his disposal, SCIFINANCE enables
Politis to develop some new models in just a
few hours. For generating certain types of mod-
el (those for American-style options and barrier
options), SCIFINANCE has become Politis’s pre-
ferred method. He finds codes generated by SCI-
FINANCE to be superior to the more traditional
lattice-based codes. In addition, because cer-
tain features can be expressed with a single
ASPEN specification statement, SCIFINANCE great-
ly facilitates his pricing of the varied complex
features of options such as convertible bonds.

Gaining Confidence in Models
MeesPierson analysts use SCIFINANCE primarily
to gain confidence in their existing models and
test new modeling approaches. They expect to
generate production pricing models in the
future. With SCIFINANCE, analysts have been
able to rapidly generate a variety of accurate,
PDE-based codes to validate existing pricing
products. Also, they can more quickly and con-
fidently test new pricing models, which helps
bring new exotic-option products to market
faster. MeesPierson analysts also use SCIFINANCE

to research new pricing approaches and con-
duct experiments that give them a better feel
for more sophisticated models.

Changes to Business Processes
For many financial institutions, using SCIFI-
NANCE would require changing the way they
integrate codes into their production environ-
ment. To minimize these changes, ASPEN pro-
vides several integration constructs, both to
produce top-level codes that are callable from
spreadsheets or C++ methods and to provide
stub functions to call customer routines. Cus-
tomizing these interfaces is also relatively
straightforward because ASPEN can easily be

analysts have also found that automatically
generating codes ensures a consistent set of
assumptions about the valuation of a portfolio
and a consistent style across all models, even
when these models are generated by different
people over an extended period of time.

Reducing Labor in a Risk-Control
Environment
Raymond Hawkins, associate director of risk
control at Bear, Stearns Securities Corporation,
uses SCIFINANCE in a risk-control, rather than
trading, environment. The risk-control depart-
ment performs risk analysis for clearance of
client portfolios on a daily basis, repricing
every single security within a portfolio and
doing a variety of stress tests to determine the
portfolio risk. For each security, the depart-
ment first develops an ASPEN specification that
incorporates the terms and conditions of the
security, then develops a pricing tool from the
code that SCIFINANCE generates. Bear, Stearns
Securities previously depended on proprietary
models for the pricing tools but moved to SCI-
FINANCE because it felt it would be an extremely
cost-effective approach. For Hawkins, an
important feature of software synthesis is its
ability to reduce labor yet produce consistent,
highly accurate programs. With program syn-
thesis, highly trained analysts can focus their
energy on the analysis and risk control, not on
programming.

Articles

36 AI MAGAZINE

(* Continuous knockout put, barrier X2, leveraged by
number of samples below X1 *)

Region[SMin<=S<=X2 && 0<=L<=LMax && 0<=t<=TMax,
Cartesian[{S,L},t]];

When[Interior, BlackScholes1D[]];
When[Boundary,AutomaticBC];
When[max[S], V==0];
When[max[t], V==L*Max[0,K-S]/nsamp];
DiscreteEvents[

Path[direction[L],
function[L==SumOf[if[S<=X1,1,0]]],
ReadFile[tsample, “tsamp.dat”],
nsample==nsamp]];

Output[V, “atSpot.out”, spottable,
L==LSpot, Labelled, NoInitialOutput];

ReadTable[spottable, nspot, “spottable.dat”];
Default[TaggedInputFile[“DayCount.dat”]];
CrankNicholson;

Figure 8. ASPEN Specification for a Daycount Problem.

extended. In addition, the recently added
SCIXL package automates the process of turn-
ing C codes into EXCEL add-ins.

Merrill Lynch analysts, after first writing new
codes with SCIFINANCE, are now rewriting many
of their existing codes using the ASPEN specifica-
tions as documentation for what the codes do.
They consider the business-process changes to
be positive, indicating an evolution from hav-
ing traders responsible for everything from
designing models to executing transactions
into a mature industry characterized by a coop-
erative division of labor. This division pairs the
customer’s regular uncovering of new mathe-
matical problems in their derivative-structur-
ing activity with SciComp’s experience with
numeric PDE solution techniques, thus bene-
fiting both parties.

Future Benefits
As synthesis from high-level languages be-
comes more widely used, we can expect con-
tinued extensions in the varieties of financial
and numeric methods made available and con-
tinued improvements in the efficiency of the
generated codes. We also expect analysts to
increasingly delegate the responsibility for
design choices about numeric methods and
parameters to automated systems with exper-
tise in these areas. In addition, as more knowl-
edge is incorporated into the systems, specifica-
tions will be couched in even more natural
“deal-sheet” terms.

The ASPEN language itself can become a use-
ful communication tool within a large compa-
ny or even industrywide. It provides a clear
conceptual framework for computational
models that separates the problem from
numeric algorithms and is free from unimpor-
tant implementation details. ASPEN could
become a concise vehicle for auditors, risk
managers, and regulators to assess portfolio
risk at a high level of abstraction. However,
because it is tied to a code-generating tool, the
exchange and refinement of ASPEN specifica-
tions can lead directly into producing high-
quality executable models. We also see a pos-
sibility for ASPEN to evolve into the
next-generation language for more general
mathematical modeling.

Application Development
and Deployment

Our ongoing goal is the development of an
extensible technology from which to deploy
software synthesis products in a variety of
application areas. In 1996, we settled on finan-
cial modeling as an initial application, and

have, since this time, continued to refine and
extend SCIFINANCE to satisfy customer demands.

A Brief History
SCIFINANCE and its underlying SCINAPSE technol-
ogy evolved over about eight years with an
average of two or three computer scientists as
implementers and one or two mathematicians
and physicists as advisers, testers, and users.
The precursor project, called SINAPSE, began at
Schlumberger in late 1990 with the application

Articles

SUMMER 2001 37

80 85 90 95 100 105 110
S

- 0.4

- 0.2

0

0.2

0.4

V
 -

 V
b

80 85 90 95 100 105 110
S

0

5

10

15

20

25

V

a

Figure 9. Numeric Results for Daycount.
A. The present value of a daycount-knockin/continuous knockout put option as
a function of present stock price: The smooth curve shows results from the finite-
difference code generated by SciFinance, and the dots show the results of the
Monte Carlo (random-number simulation) code. B. The difference between the
methods: The Monte Carlo code has a slight overpricing bias near the barrier at
110, is noisy, and is about a factor of 50 slower than the finite-difference code.

published some textbook-level financial mod-
eling examples in August 1996, potential cus-
tomers started sending us challenge problems.
We generated some increasingly sophisticated
financial modeling codes and eventually com-
mitted ourselves to finance as our initial appli-
cation area. At this time, we stopped new work
on parallel computing and Fortran, both useful
for numeric modeling but not necessary for
SCIFINANCE.

Deployment Issues
Customers typically evaluate SCIFINANCE for
several months before deciding to buy. During
this period, quantitative analysts learn how to
write ASPEN specifications and determine how
easy it is to produce the codes they need. Usu-
ally, they generate the equivalent of some of
their own codes and compare them for accura-
cy and efficiency. When convinced that auto-
matically generated codes are of at least compa-
rable quality, they move on to a current
problem of substantially greater difficulty to
ensure that it too can be specified and correctly
generated. The last step is usually to determine
whether they can easily adapt the generated
codes to the bank’s production environment.
In some cases, this process involves a cus-
tomization of the ASPEN interface specification
features to the particular information technol-
ogy needs of the bank.

Convincing analysts that they can spare the
time to try a new paradigm is a continuing
hurdle. Enormous consequence falls on the
appropriateness and accuracy of their models,
and they are accustomed to working with
familiar methods in a tightly controlled way.
Some analysts do not regularly use PDE meth-
ods. Although time is still a major issue, the
initial skepticism about whether SCIFINANCE

could generate sophisticated and accurate
codes is rapidly diminishing as our customer
list and technical publication list grow. We
must, however, continually increase the scope
of the system’s applications and mathematical
sophistication to keep existing customers and
attract the new customers that already have
substantial bases of existing codes.

Rapidly developing interfaces to customers’
proprietary environments is an important
part of making the system useful to a broad
range of institutions. Unfortunately, there are
no industry standards for trading system
interfaces or error handling. There are too
many different commercial and in-house
developed back-office systems to develop in
advance for all possibilities. Instead, we pro-
vided some basic solutions and developed
tools to simplify customization. ASPEN has

of modeling seismic and acoustic logging tools
and with a target language of Connection
Machine Fortran. Several generated codes (after
some hand tuning) were used in internal log-
ging tool design projects. In 1995, Elaine Kant,
the head of the Schlumberger SINAPSE project,
acquired the rights to the code and founded
SciComp to further develop the system. A
three-year National Institute of Standards and
Technology Advanced Technology Program
Award funded additional research to advance
software synthesis technology for scientific
computing on multiple architectures. After
about two years, the focus began to narrow to
financial applications and the generation of C

code. After some venture funding from the Ver-
ticality Investment Group and about a year of
additional development and beta testing, full-
fledged commercial sales of SCIFINANCE began in
October 1998.2

The development process, although not for-
mal, is close in spirit to a spiral model. After
initial prototyping, system evolution was
essentially incremental, adding new mathe-
matical constructs and new programming or
optimization knowledge based on project
plans and customer demand. Major replace-
ment of the specification language and parser,
the planning system, and the code generator
occurred without interruption to system avail-
ability. After every major change, a growing set
of regression tests (based on examples generat-
ed in house and examples that customers
chose to share) is run. Subsets of the tests are
run after smaller changes.

Development Issues
Building a rapidly extensible underlying
technology has always been a goal and has
occupied much of the first years of SCINAPSE

development. Success has been based on the
object-oriented design, with an emphasis on
making the system interface, specification lan-
guage, and documentation self-generative
from the knowledge base (it took three tries to
develop the most workable specification lan-
guage). Also, the template representation of
algorithms brings regularity and discipline to
the definition of new algorithms and their
availability in specifications. In addition, MATH-
EMATICA, despite its shortcomings in execution
speed, programming environment, and user
interface modifiability, has served as a flexible
programming language that integrates pro-
gramming, computer algebra, and notebook
interface in a single system.

Focusing on the application area and involv-
ing users in the process began early, although
even earlier would have been better. After we

Articles

38 AI MAGAZINE

many constructs for reading and otherwise
initializing data, specifying external calls to
user functions, and making the generated
codes callable. It also has ways to specify
dynamic memory management (in C) and an
error-handling scheme that propagates error
codes. Based on customer requests, we have
created half a dozen parameterizations for the
structure of the top-level generated routine,
and we have modified the original error-han-
dling scheme to make it thread safe.

A number of potential customers told us that
SCIFINANCE would not be useful to them unless
it could be interfaced with EXCEL; So recently,
we extended the interface-generation system to
make this possible. We added constructs to
specify EXCEL formatting and grouping and pro-
duce an XML description of the generated C

code’s input and output. Now, a new SCIXL
product (codeveloped with Planatech Solu-
tions Ltd.) builds a sample EXCEL spreadsheet
and add-in function from the XML description
and the SCIFINANCE-generated C code.

Maintenance and Evolution
SCIFINANCE serves a competitive market with
rapidly evolving needs. As a commercial prod-
uct, it will grow and be maintained for a long
time. Evolution includes not only bug fixes
but also the addition of new algorithms, per-
formance enhancements, better design-choice
heuristics, new design-choice options, and
interface extensions. As previously discussed,
SCIFINANCE was designed with continuous
update in mind, and many system features are
derived directly from the knowledge base,
which also has many internal consistency
checks. We update the internal development
version continually, with commercial releases
about once every two months. A release typi-
cally includes about a half dozen new or
extended features as well as several bug fixes.

Users can make some extensions through
specification macros, and eventually we will
make an algorithm description language avail-
able. More extensive additions to the knowl-
edge base must be made by the developers
based on suggestions from customer or staff
mathematicians and financial analysts. Typi-
cally, staff mathematicians and computer sci-
entists must work together to devise the most
appropriate generalizations of the financial
construct and mathematical optimization sug-
gestions before they are implemented. Over
the long term, we can expand into additional
areas of financial modeling, produce generic
PDE packages for students and professional
engineers, extend the system to specific appli-

cations, and provide interfaces for less techni-
cally oriented users.

In the spring of 2001, several new capabili-
ties were added, and SCIFINANCE was split into a
suite of three products: (1) SCIPDE (the original
SCIFINANCE); (2) SCIXL (the EXCEL spreadsheet
add-in generator); and (3) SCIMC, an extension
that incorporates a complete new class of
methods, Monte Carlo simulations. SCIMC uses
the basic underlying specification and synthe-
sis technology from SCIFINANCE and shares
much of the knowledge base, but it adds new
ASPEN specification constructs, new algorithm
templates, and new data structures. SCIPDE and
SCIMC are available either separately or as a
combined package.

Case-based reasoning (CBR) might be useful
in extending the system in several different
ways: A case-based system can help users find
and adapt specifications that are close to their
problem descriptions. It can critique specifica-
tions and suggest possible improvements based
on previous examples. Certain failures in the
behavior of the generated code (such as in the
accuracy) can suggest repairs to the specifica-
tion. CBR could also be used to help define
higher-level constructs by examining the grow-
ing case base of specifications to find patterns
of lower-level constructs that are currently
needed to express an application concept.
Finally, an important part of making simula-
tions accessible to less expert users is setting
the numeric parameters that are not intrinsic
to the application being modeled but are part
of the specific numeric method chosen. It
might be possible to use CBR to learn how to
set these parameters in different contexts.

It is crucial that SCIFINANCE generate correct
code, which is especially challenging because
the system is most attractive to people who
push the limits with complex, marginally
tractable problems (professional practitioners
already have solutions to the easy problems).
We attack the correctness problem with the
specification parsing previously described and
with automated development-time tests and
regression tests. During development, the tem-
plate translator uses extensive semantic check-
ing, providing diagnostic assistance like that of
a helpful compiler. The object methods are
checked for circularity and type conformance.
Synthesis-time appropriateness checks encod-
ed in our object methods help guarantee that
the process is running as expected. An object
examiner and various process-monitoring tools
assist in unit testing and debugging. Much of
the documentation is regenerated from the sys-
tem’s semantic network of information when-
ever it changes, minimizing maintenance

Articles

SUMMER 2001 39

effort and eliminating the possibility of mak-
ing certain kinds of error. A mechanical validi-
ty check of the information network verifies
that every alleged node reference is to a node
that actually exists and checks that every node
in the network can be reached. We always sub-
ject proposed system updates to extensive
regression testing, which compares the regen-
erated codes with previous versions, runs them
through PURIFY, tests the numeric results, and
monitors execution times. We test widely over
the cross-product of new features, including
incorrect specifications, to ensure graceful error
recovery and cogent diagnostics.

Summary
SCIFINANCE brings an integrated set of AI and
computer algebra techniques to bear on the
real-world problems of numeric modeling,
providing a commercial software synthesis
system for solving the equations of computa-
tional finance. Customers testify that the sys-
tem increases productivity, reduces develop-
ment time, and yields consistently
high-quality codes that can conform to insti-
tutional environments. The system’s mathe-
matical knowledge can lower the entry barrier
for nonmathematicians, and the extensive
data structure and programming knowledge
completely relieve the user of coding burdens.
The system’s common knowledge base mini-
mizes maintenance efforts. The evolution of
the target application from sonic and seismic
modeling to computational finance demon-
strates the adaptability of the system’s funda-
mental design. This flexibility also allows
developers to respond rapidly to user needs, a
necessity in the fast-moving world of securi-
ties option pricing.

Acknowledgments
SCIFINANCE would not exist as a product with-
out contributions from our consultants and
other SciComp team members; thanks to Stan-
ly Steinberg, David Johansen, Larry Schumann,
Miriam Boral, and Monica Garcia. We also are
grateful to Elaine Rich and the IAAI reviewers
for critical readings of this article and to our
customers-colleagues who have graciously
shared their experiences.

This work was supported in part by the
National Institute of Standards and Technolo-
gy under Advanced Technology Program
Cooperative Agreement 70NANB5H1017.

Note
1. W. L. Johnson and B. Nuseibeh, editors, Automated
Software Engineering: An International Journal.

Articles

40 AI MAGAZINE

2. More details about the company and its products
can be found at www.scicomp.com.

References
Akers, R.; Kant, E.; Randall, C.; Steinberg, S.; and
Young, R. 1997. SCINAPSE: A Problem-Solving Envi-
ronment for Partial Differential Equations. IEEE
Computational Science and Engineering 4(3): 32–42.

Akers, R.; Baffes, P.; Kant, E.; Randall, C.; Steinberg,
S.; and Young, R. 1998. Automatic Synthesis of
Numerical Codes for Solving Partial Differential
Equations. Special Issue Nonstandard Applications of
Computer Algebra of Mathematics and Computers in
Simulation 45(1–2): 3–22.

Brown, G., and Randall, C. 1999. If the Skew Fits.
Risk Magazine 12(4): 62–65.

Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.; and Gree-
ley, R. 1999. Using Artificial Intelligence Planning to
Automate Science Data Analysis for Large Image
Databases. Intelligent Data Analysis 3(2): 159–176.

Gallopoulos, E., and Sameh, A. 1997. CSE: Content
and Product. IEEE Computational Science and Engi-
neering 4(2): 39–43.

Gatheral, J.; Epelbaum, Y.; Han, J.; Laud, K.; Lubovit-
sky, O.; Kant, E.; and Randall, C. 1999. Implement-
ing Option-Pricing Models Using Software Synthe-
sis. Computing in Science and Engineering 1(6): 54–64.

Kant, E. 1993. Synthesis of Mathematical Modeling
Software. IEEE Software 10(3): 30–41.

Lowry, M. R., and McCartney, R. D., eds. 1991.
Automating Software Design. Menlo Park, Calif.: AAAI
Press.

Randall, C.; Kant, E.; and Chhabra, A. 1998. Using
Program Synthesis to Price Derivatives. Journal of
Computational Finance 1(2): 97–129.

Wolfram, S. 1999. The MATHEMATICA Book. Cambridge,
U.K.: Cambridge University Press.

Young, R. L; Kant, E.; and Akers, L. A. 2000. A
Knowledge-Based Electronic Information and Docu-
mentation System. In Proceedings of the 2000 Inter-
national Conference on Intelligent User Interfaces,
280–285. New York: Association of Computing
Machinery.

Robert L. Akers, a senior comput-
er scientist at SciComp, has over
21 years of experience in comput-
er science, with interests in pro-
gramming languages and seman-
tics, program transformation and
analysis, program synthesis,
mathematical modeling, and soft-
ware engineering. His contribu-

tions at SciComp include co-design of a PDE prob-
lem representation structure, formulation of the
ASPEN language, design and implementation of a
front-end processor that checks and transforms
ASPEN specifications into an internal representation,
and design and implementation of a template decla-
ration language and processor and template imple-
mentation. He received his B.A. in mathematics and
his M.A. and Ph.D. in computer science from the

University of Texas at Austin. His e-mail
address is akers@scicomp.com.

Ion Bica is a senior soft-
ware developer at Sci-
Comp. His primary area
of research has been
numeric methods for
solving partial-differen-
tial equations, and he
has recently expanded
his interest to include

computational finance. He holds a B.Sc. in
mathematics from the University of
Bucharest, Romania, and a Ph.D. in math-
ematics from New York University. At Sci-
Comp, his primary duties include design-
ing and testing new mathematical
algorithms, translating them into SCINAPSE

pseudocode templates, testing and debug-
ging the generated codes, and providing
customer support. His e-mail address is
bica@scicomp.com.

Elaine Kant is president and chief execu-
tive officer of SciComp Inc. Previous posi-
tions have included senior research scien-
tist at Schlumberger and assistant professor
at Carnegie Mellon University. She has a
B.S. in mathematics from the Massachu-

setts Institute of Technol-
ogy and a Ph.D. in com-
puter science from Stan-
ford University. She has
been elected a fellow of
the American Associa-
tion of Artificial Intelli-
gence and a fellow of the
American Association for

the Advancement of Science. Her interest
centers on software synthesis, understand-
ing and automating algorithm design, and
scientific computing environments. She is
the chief architect of the SCINAPSE system,
focusing on how to represent the mathe-
matical knowledge on SCINAPSE’s problem-
solving engines. Her e-mail address is
kant@scicomp.com.

Curt Randall, Sci-
Comp’s vice president of
applications, has worked
in computational fi-
nance, computational
physics, and engineering
for more than 25 years.
He has been a researcher,
consultant, and project

manager in fields as diverse as the pricing

Articles

SUMMER 2001 41

Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI-01)
August 2–5, 2001, Seattle, Washington, USA

The Conference on Uncertainty in Artificial Intelligence, organized annually under the auspices of the Association for
Uncertainty in AI (AUAI), is the premier international forum for exchanging results on the use of principled uncer-
tain-reasoning methods in intelligent systems. The conference will be held at the University of Washington in Seattle,
Washington. The main technical program will be run from August 3–5, with UAI's regular tutorial program to be held
on August 2nd. This year the conference will be co-located with the International Joint Conference on Artificial Intel-
ligence (IJCAI-01).

Invited Speakers
Eugene Charniak, Geoffery Hinton, Anna Karlin, Peyton Young, Steve Young

For information about the technical program, schedule, registration, and accomodations, please go to the conference web site at
<http://robotics.Stanford.edu/~uai01>

Conference Organization

Conference Chair
Moises Goldszmidt <moises@peakstone.com>

Program Cochairs
Jack Breese <breese@microsoft.com>
Daphne Koller <koller@CS.Stanford.EDU>

of derivative securities, controlled fusion
research, and geophysics. He holds a Ph.D.
in applied physics from the University of
California. At SciComp, he is primarily
involved with the development of finan-
cial applications and algorithms and is the
company’s principal liaison to the risk-
management and derivatives community.
His e-mail address is randall@scicomp.
com.

Robert L. Young, SciComp’s director of
technology, has focused on using MATHE-
MATICA notebooks as an interface to the SCI-
FINANCE system and the knowledge
required to support these interactions. His
principal interest is in knowledge-rich
problem-solving environments in which
users and systems work together, each con-
tributing what they do best. He pursued
this interest for more than 10 years at
Schlumberger in a number of contexts
(geophysical interpretation, manufactur-
ing, mechanical computer-aided design,
and automatic test equipment design)
before joining SciComp. He received his
Ph.D. in computer science from the Uni-
versity of Texas at Austin in 1982. His e-
mail address is ryoung@scicomp.com.

Articles

42 AI MAGAZINE

