
■ At a workshop held in Toulouse, France, in 1977,
Gallaire, Minker, and Nicolas stated that logic and
databases was a field in its own right. This was the
first time that this designation was made. The
impetus for it started approximately 20 years ago
in 1976 when I visited Gallaire and Nicolas in
Toulouse, France. In this article, I provide an
assessment about what has been achieved in the
20 years since the field started as a distinct disci-
pline. I review developments in the field, assess
contributions, consider the status of implementa-
tions of deductive databases, and discuss future
work needed in deductive databases.

The use of logic and deduction in databas-
es, as noted in Minker (1988b), started in
the late 1960s. Prominent among devel-

opments was work by Levien and Maron (1965)
and Kuhns (1967), and by Green and Raphael
(1968a), who were the first to realize the impor-
tance of the Robinson (1965) resolution princi-
ple for databases. For early uses of logic in data-
bases, see Minker (1988b), and for detailed
descriptions of many accomplishments made
in the 1960s, see Minker and Sable (1970).

A major influence on the use of logic in data-
bases was the development of the field of logic
programming: Kowalski (1974) promulgated
the concept of logic as a programming lan-
guage, and Colmerauer and his students devel-
oped the first Prolog interpreter (Colmerauer et
al. 1973). I refer to logic programs that are
function free as deductive databases (DDBs), or
as datalog. I do so because databases are finite
structures. Most of the results discussed can be
extended to include logic programming.

The impetus for the use of logic in databases
came about through meetings in 1976 in
Toulouse, France, when I visited Herve Gallaire
and Jean-Marie Nicolas while on sabbatical.
The idea of a workshop on logic and databases
was also conceived at this time. It is clear that

a number of other individuals also had the idea
of using logic as a mechanism to handle data-
bases and deduction, and they were invited to
participate in the workshop. The book Logic
and Data Bases (1978), edited by Gallaire and
Minker, was highly influential in the develop-
ment of the field, as were the two volumes of
Advances in Database Theory (Gallaire, Minker,
and Nocholas 1984a, 1981) that were the result
of two subsequent workshops held in Tou-
louse. Another influential development was
the article by Gallaire, Minker, and Nicolas
(1984b), which surveyed work in the field to
that point.

The use of logic in databases was received by
the database community with a great deal of
skepticism: Was deductive databases (DDBs) a
field? Did DDBs contribute to database theory
or practice (Harel 1980)? The accomplishments
I cite in this article are testaments to the fact
that logic has contributed significantly both to
the theory and the practice of databases. It is
clear that logic has everything to do with the
theory of databases, and many of those who
were then critical of the field have changed
their position. In the remainder of this article,
I describe what I believe to be the major intel-
lectual developments in the field, the status of
commercial implementations, and future
trends. As we see, the field of logic and data-
bases has been prolific.

Intellectual Contributions of
Deductive Databases

In 1970, Codd (1970) formalized databases in
terms of the relational calculus and the rela-
tional algebra. He provided a logic language
and the relational calculus and described how
to compute answers to questions in the rela-
tional algebra and the relational calculus. Both

Articles

FALL 1997 21

Logic and Databases
Past, Present, and Future

Jack Minker

Copyright © 1997, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1997 / $2.00

AI Magazine Volume 18 Number 3 (1997) (© AAAI)

between logic-based systems and knowledge-
based systems; (10) a formalization of how to
handle incomplete information in knowledge
bases; and (11) a correspondence that relates
alternative formalisms of nonmonotonic rea-
soning to databases and knowledge bases.

I address the area of implementations of
DDBs in Implementation Status of Deductive
Databases, where commercial developments
have not progressed as rapidly as intellectual
developments. I then discuss some trends and
future directions in Emerging Areas and Trends.

Formalizing Database Theory
Reiter (1984) was the first to formalize databas-
es in terms of logic and noted that underlying
relational databases were a number of assump-
tions that were not made explicit. One
assumption deals with negation, that facts not
known to be true in a relational database are
assumed to be false. This assumption is the
well-known closed-world assumption (CWA),
expounded earlier by Reiter (1978). The
unique-name assumption states that any item in
a database has a unique name and that indi-
viduals with different names are different. The
domain-closure assumption states that there are
no other individuals than those in the data-
base. Reiter then formalized relational databas-
es as a set of ground assertions over a language
L together with a set of axioms. The language
L does not contain function symbols. These
assertions and axioms are as follows:

Assertions: R(a1, …, an), where R is an n-ary
relational symbol in L, and a1

…, an are constant
symbols in L.

Unique-name axiom: If a1, …, ap are all the
constant symbols of L, then

(a1 ≠ a2), …, (a1 ≠ ap), (a2 ≠ a3), …,
(ap–1 ≠ ap) .

Domain-closure axiom: If a1, …, ap are all
the constant symbols of L, then

;X((X = a1) ~ … ~ (X = ap)) .

Completion Axioms: For each relational
symbol R, if R(a1

1,
… a1

n),
…, R(am

1,
…, am

n) denote
all facts under R, the completion axiom for R
is

;X1
…; Xn (R(X1, …, Xn) →

(X1 = a1
1 ` … ` Xn = a1

n) ~
… ~ (X1 =

= am
1 ` … ` Xn = am

n)) .

Equality Axioms:

;X(X = X)
;X ;Y ((X = Y) → (Y = X))
;X ;Y ;Z ((X = Y) ` (Y = Z) → (X = Z))
;X1

… ;Xn (P(X1, …, Xn) `
(X1 = Y1) ` … ` (Xn = Yn)
→ P(Y1, … Yn)) .

the relational calculus and the relational alge-
bra provide declarative formalisms to specify
queries. This was a significant advance over
network and hierarchic systems (Ullman 1989,
1988), which only provided procedural lan-
guages for databases. The relational algebra and
the relational calculus permitted individuals
who were not computer specialists to write
declarative queries and have the computer
answer the queries. The development of syn-
tactic optimization techniques (Ullman 1989,
1988) permitted relational database systems to
retrieve answers to queries efficiently and com-
pete with network and hierarchic implementa-
tions. Relational systems have been enhanced
to include views. A view, as used in relational
databases, is essentially a nonrecursive proce-
dure. There are numerous commercial imple-
mentations of relational database systems for
large database manipulation and for personal
computers. Relational databases are a forerun-
ner of logic in databases.

Although relational databases used the lan-
guage of logic in the relational calculus, it was
not formalized in terms of logic. The formal-
ization of relational databases in terms of logic
and the extensions that have been developed
are the focus of this article. Indeed, formaliz-
ing databases through logic has played a signif-
icant role in our understanding of what consti-
tutes a database, what is meant by a query,
what is meant by an answer to a query, and
how databases can be generalized for knowl-
edge bases. It has also provided tools and
answers to problems that would have been
extremely difficult without the use of logic.

In the remainder of the article, I focus on
some of the more significant aspects con-
tributed by logic in databases: (1) a formaliza-
tion of what constitutes a database, a query,
and an answer to a query; (2) a realization that
logic programming extends relational data-
bases; (3) a clear understanding of the seman-
tics of large classes of databases that include
alternative forms of negation as well as dis-
junction; (4) an understanding of relationships
between model theory, fixpoint theory, and
proof procedures; (5) an understanding of the
properties that alternative semantics can have
and their complexity; (6) an understanding of
what is meant by integrity constraints and
how they can be used to perform updates,
semantic query optimization (SQO), coopera-
tive answering, and database merging; (7) a
formalization and solutions to the update and
view-update problems; (8) an understanding of
bounded recursion and recursion and how
they can be implemented in a practical man-
ner; (9) an understanding of the relationship

Formalizing
databases

through logic
has played a

significant
role in our

understanding
of what

constitutes
a database,

what is
meant by

a query,
what is

meant by an
answer to

a query,
and how

databases
can be

generalized
for knowledge

bases.

Articles

22 AI MAGAZINE

Example 1 illustrates the translation of a
small database to logic. It is clear that handling
such databases through conventional tech-
niques will lead to a faster implementation.
However, it serves to formalize previously
unformalized databases.

The completion axiom was proposed by Clark
(1978) as the basis for his negation-as-failure
rule: It states that the only tuples that a relation
can have are those that are specified in the rela-
tional table. This statement is implicit in every
relational database. The completion axiom
makes this explicit. Another contribution of
logic programs and databases is that the formal-
ization of relational databases in terms of logic
permits the definition of a query and an answer
to a query to be defined precisely. A query is a
statement in the first-order logic language L.
Q(a) is an answer to a query, Q(X), over a data-
base DB if Q(a) is a logical consequence of DB.

Deductive Databases
Relational databases are a special case of DDBs.
A DDB can be considered as a theory, DDB, in
which the database consists of a set of ground
assertions, referred to as the extensional data-
base (EDB), and a set of axioms, referred to as
the intensional database (IDB), of the form

P ← Q1, …, Qn , (1)

where P, Q1, …, Qn are atomic formulas in the
language L. Databases of this form are termed
datalog databases (Ullman 1989, 1988). A dat-
alog database is a particular instance of a more
general Horn logic program that permits func-
tion symbols in clauses given by formula 1. The
recognition that logic programs are significant
for databases was understood by a number of
individuals in 1976 (see Gallaire and Minker
[1978] for references). The generalization per-
mits views to be defined that are recursive.

The recognition that logic programming
and databases are fundamentally related has
led to more expressive and powerful databases
than is possible with relational databases
defined in terms of the relational algebra.

That logic programming and DDBs are fun-
damentally related is a consequence of the fact
that databases are function-free logic pro-
grams. As shown in many papers and, in par-
ticular, Gottlob (1994), the expressive power of
logic programming extends that of relational
databases.

In addition to defining a database in terms
of an EDB and an IDB, it is necessary to formal-
ize what is meant by an integrity constraint.
Kowalski (1978) suggests that an integrity con-
straint is a formula that is consistent with the
DDB, but for Reiter (1984) and Lloyd and
Topor (1985), an integrity constraint is a theo-

rem of the DDB. For alternative definitions of
integrity constraints, see Reiter (1990, 1988)
and Demolombe and Jones (1996).

In DDBs, the semantic aspects of a data-
base’s design can be captured by integrity con-
straints. Information about functional depen-
dencies—that a relation’s key functionally
determines the rest of the relation’s attribute—
can be written via integrity constraints. For
example, assume the predicate flight for an air-
line database and that the attributes Airline
and No. are a composite key for the relation.
One of the functional dependencies—that the
departure time is functionally determined by
airline and flight number—is represented by

Dtime[1] = Dtime[2] ⇐
flight(Airline, No., Dtime[1],-, …,-),
flight(Airline, No., Dtime[2],-, …,-) ,

where ⇐ is used to distinguish a rule from an
integrity constraint.

Likewise, inclusion dependencies, which are

Articles

FALL 1997 23

FATHER father child
 j m
 j s

MOTHER mother child
 r m
 r s

Example 1. Translation of a Small Database to Logic.

The database translated to logic is given as follows; we do
not include the equality axioms because they are obvious.

Assertions: Father(j, m), Father(j, s), Mother(r, m), Mother(r,
s), where Father and Mother are predicates, and j, m, s, and r
are constants.

Unique-Name Axiom:
((j ≠ m), (j ≠ s), (j ≠ r), (r ≠ m), (r ≠ s), (m ≠ s)) .

Domain-Closure Axiom:
(;X)((X = j) ~ (X = m) ~ (X = s) ~ (X = r)) .

Completion Axioms:
(;X1;X2)(Father(X1, X2) ← ((X1 = j) ` (X2 = m)) ~
((X1 = j) ` (X2 = s))) .
(;X1;X2)(Mother(X1, X2) ← ((X1 = r) ` (X2 = m)) ~
((X1 = r) ` (X2 = s))) .

Consider the family database to consist of the Father rela-
tion with schema Father(father, child) and the Mother rela-
tion with schema Mother(mother, child). Let the database be

query fails, a user, in general, cannot tell why
the failure occurred. There can be several rea-
sons: The database currently does not contain
information to respond to the user, or there
will never be an answer to the query. The dis-
tinction could be important to the user. Anoth-
er aspect related to integrity constraints is that
of user constraints. A user constraint is a formula
that models a user’s preferences. It can con-
strain providing answers to queries in which
the user might have no interest (for example,
stating that in developing a route of travel, the
user does not want to pass through a particular
city) or provide other constraints that might
restrict the search. As shown by Gaasterland,
Godfrey, and Minker (1992b), user constraints,
which are identical in form to integrity con-
straints, can be used for this purpose. Although
integrity constraints provide the semantics of
the entire database, user constraints provide
the semantics of the user. User constraints can
be inconsistent with the database; hence, these
two semantics are maintained separately. To
maintain the consistency of the database, only
integrity constraints are relevant. A query can
be thought of as the conjunction of the query
itself and the user constraints. A query can be
optimized semantically based on both integrity
constraints and user constraints.

As noted previously, integrity constraints are
versatile; they do more than just represent
dependencies. General semantic information
can be captured as well. Assume that at the
national airport in Washington, D.C. (DCA),
that no flights are allowed (departures or
arrivals) after 10:00 PM or before 8:00 AM because
the airport is downtown, and night flights
would disturb city residents. This information
can be captured as an integrity constraint.

Such knowledge, captured and recorded as
integrity constraints, can be used to answer
queries to the database more intelligently and
more informatively. If someone asks for flights
out of DCA to, say, Los Angeles International
Airport leaving between 10:30 PM and 12:00
AM, the database could simply return the emp-
ty answer set. (There will be no such flights if
the database is consistent with its constraints.)
It would be better, however, for the database
system to inform the querier that there can be
no such flights because of the Washington,
D.C., flight regulations.

Using user constraints and integrity con-
straints, one can develop a system that informs
users why a query succeeds or fails (Gaasterland
et al. 1992). Other features can be incorporated,
such as the ability to relax a query, termed
query relaxation, given that it fails, so that an
answer to a related request can be found. See

also common semantic information from a
database’s design, are easily represented. For
example, say the predicate airport records vari-
ous information about airports known to the
database. We want to ensure that any airport
that serves as a departure or an arrival of any
flight known to the database is also in the air-
port relation. The first of these—that the
departure airport is known—could be repre-
sented as follows:

airport(-, …, -, Fieldcode) ⇐ flight(-, …, -,
Fieldcode) .

The major use made of integrity constraints
has been in updating, to assure that the data-
base is consistent. Nicolas (1979) used tech-
niques from DDBs to speed database update.
Blaustein (1981) has also made contributions
to this problem. Reiter (1978a) showed that
one can query a Horn database with or without
integrity constraints, and the answer to the
query is the same. However, integrity con-
straints can be used to advantage in the query
process. Although integrity constraints do not
affect the result of a query, they can affect the
efficiency with which answers can be comput-
ed. Integrity constraints provide semantic
information about data in the database. If a
query requests a join for which there will never
be an answer because of system constraints,
then an unnecessary join on two potentially
large relational tables in a relational database
system or performing a long deduction in a
DDB is not needed when integrity constraints
imply the answer is empty. The process of using
integrity constraints to constrain a search is
called semantic query optimization (SQO)
(Chakravarthy, Grant, and Minker 1990).
McSkimin and Minker (1977) were the first to
use integrity constraints for SQO in DDBs.
Hammer and Zdonik (1980) and King (1981)
were the first to apply SQO to relational data-
bases. Chakravarthy, Grant, and Minker (1990)
formalized SQO and developed the partial sub-
sumption algorithm and method of residues.
The partial subsumption algorithm and
method of residues provides a general tech-
nique applicable to any relational database or
DDB that is able to perform SQO. The general
approach to SQO described in Chakravarthy,
Grant, and Minker (1990) has been extended to
perform bottom-up evaluation (Godfrey, Gryz,
and Minker 1996); to include databases with
negation in the body of clauses (Gaasterland
and Lobo 1993); and to handle recursive IDB
rules (Levy and Sagiv 1995).

A topic related to SQO is that of cooperative
answering systems. A cooperative answering sys-
tem provides information to users about why a
particular query succeeded or failed. When a

A cooperative
answering

system
provides

information
to users about

why a
particular

query
succeeded
or failed.

Articles

24 AI MAGAZINE

Gaasterland, Godfrey, and Minker (1992a) for a
survey of cooperative answering systems.

SQO, user constraints, and cooperative
answering systems are important contributions
both for relational database and DDB systems.
They will eventually be incorporated into com-
mercial relational database and DDB systems.

Indeed, I cannot imagine a DDB developed
for commercial systems to be successful if it
does not contain both SQO and cooperative
answering capabilities. How can one expect
users to understand why deductions succeed or
fail if such information is not provided? How
can queries doomed to fail because they violate
user constraints or integrity constraints be
allowed to take up a significant amount of
search time if the query cannot possibly suc-
ceed? I also believe that these techniques must
be incorporated into relational technology. As
discussed in Implementation Status of Deduc-
tive Databases, systems are beginning to incor-
porate SQO techniques. Practical considera-
tions of performing in a bottom-up approach
have been addressed by Godfrey, Gryz, and
Minker (1996).

Extended Deductive
Database Semantics
The first generalization of relational databases
was to permit function-free recursive Horn
rules in a database, that is, rules in which the
head of a rule is an atom, and the body of a
rule is a conjunction of atoms. These databases
are DDBs, or datalog databases. Subsequently,
other DDBs that might contain negated atoms
in the body of rules were permitted. These
alternative extensions and their significance
are described in the following subsections.

Horn Semantics and Datalog One of the
early developments was by van Emden and
Kowalski (1976), who wrote a seminal paper
on the semantics of Horn theories. Van Emden
and Kowalski made a significant contribution
to logic and databases by recognizing that the
semantics of Horn databases can be character-
ized in three distinct ways: (1) model theory,
(2) fixpoint theory, and (3) proof theory. These
three characterizations lead to the same
semantics.

Model theory deals with a collection of mod-
els that capture the intended meaning of the
database. Fixpoint theory deals with a fixpoint
operator that constructs the collection of all
atoms that can be inferred to be true from the
database. Proof theory deals with a procedure
that finds answers to queries with respect to
the database. van Emden and Kowalski (1976)
showed that the intersection of all Herbrand
models of a Horn DDB is a unique minimal

model. The unique minimal model is the same
as all the atoms in the fixpoint and are the
only atoms provable from the theory.

To find if the negation of a ground atom is
true, one can subtract, from the Herbrand base
(the set of all atoms that can be constructed
from the constants and the predicates in the
database), the minimal Herbrand model. If the
atom is contained in this set, then it is
assumed to be false, and its negation is true.
Alternatively, answering queries that consist of
negated atoms that are ground can be achieved
using negation-as-finite failure as described by
Reiter (1978b) and Clark (1978).

The first approaches to answering queries in
DDBs did not handle recursion and were pri-
marily top-down (or backward reasoning)
(Gallaire and Minker 1978). Answering queries
in relational database systems was a bottom-up
(or forward-reasoning) approach because all
answers are usually required, and it is more
efficient to do so in a bottom-up approach.
The major approaches to handling recursion
are based on the renaming of the Alexander
(Rohmer, Lescoeur, and Kerisit 1986) and mag-
ic set (Bancilhon et al. 1986) methods, which
make use of constants that appear in a query
and perform search by bottom-up reasoning.
Bry (1990) reconciles the bottom-up and top-
down methods to compute recursive queries.
He shows that the Alexander and magic set
methods based on rewriting and the methods
based on resolution implement the same top-
down evaluation of the original database rules
by means of auxiliary rules processed bottom-
up. For pioneering work on recursion and
alternative methods, see Minker (1996). Min-
ker and Nicolas (1982) were the first to show
that there are forms of rules that lead to bound-
ed recursion, in which the deduction process
must terminate in a finite number of steps.
This work has been extended by Naughton
and Sagiv (1987). Example 2 illustrates a rule
that terminates finitely regardless of the state
of the database.

The efficient handling of recursion and the
recognition that some recursive cases might
inherently be bounded contributes to the prac-
tical implementation of DDBs. An understand-
ing of the relationship between resolution-
based (top-down) and fixpoint–based
(bottom-up) techniques and how the search
space of the latter can be made identical to
top-down resolution with program transfor-
mation is another contribution of DDBs.

Extended Deductive Databases and
Knowledge Bases The ability to develop a
semantics for theories in which there are rules
with a literal (that is, an atomic formula or the

I cannot
imagine
a DDB
developed for
commercial
systems to
be successful
if it does not
contain both
SQO and
cooperative
answering
capabilities.

Articles

FALL 1997 25

negation of an atomic formula) in the head and
literals with possibly negated-by-default literals
in the body of a clause has significantly expand-
ed the ability to write and understand the
semantics of complex applications. Such claus-
es, referred to as extended clauses, are given by

L ← M1, …, Mn, not Mn+1, … not Mn+k , (2)

where L and the Mj, j = 1, …, (n + k) are literals.
Such databases combine both classical nega-
tion and default negation (represented by not
immediately preceding a literal) and are
referred to as extended DDBs. The combining
of classical and default negation provides users
with greater expressive power.

Logic programs where default negation can
appear in the body of a clause first appeared in
the Workshop on Foundations of Deductive
Databases and Logic Programming in August
1986. Selected papers from the workshop were
published in Minker (1988a). The concept of
stratification was introduced to logic programs
by Apt, Blair, and Walker (1988) and Van
Gelder (1988), who considered stratified theo-
ries in which L and the Mj in formula 2 are
atomic formulas, and there is no recursion
through negation. Apt, Blair, and Walker, and
Van Gelder, show that there is a unique pre-
ferred minimal model, computed from strata to
strata. Przymusinski (1988) termed this mini-
mal model the perfect model. When one has a
theory that is stratified, one can place clauses in
different strata, where predicates in the head of
a rule are in a higher stratum than predicates
that are negated in the body of the clause, as
explained in example 3. Thus, one can com-
pute the positive predicates in a lower stratum,
and the negated predicate’s complement is true
in the body of the clause if the positive atom
has not been computed in the lower stratum.

The theory of stratified databases was fol-
lowed by permitting recursion through nega-
tion in formula 2, where the L and Mj are
atomic formulas. Example 4 illustrates a data-
base that cannot be stratified. In the context of
DDBs, they are called normal DDBs. Many
papers have been devoted to defining the
semantics of these databases. A summary of
these semantics is given in Minker and Ruiz
(1994). The most prominent of this work for
the Horn case are the well-founded semantics
(WFS) of Van Gelder, Ross, and Schlipf (1988)
and the stable semantics of Gelfond and Lif-
schitz (1988). The WFS leads to a unique three-
valued model. Stable semantics can lead to a
collection of minimal models. For some DDBs,
this collection can be empty. Fitting (1985)
also defined a three-valued model to capture
the semantics of normal logic programs. For
additional work, see Minker (1996).

Articles

26 AI MAGAZINE

If a rule satisfies the condition that it is singular, then it is
bound to terminate in a finite number of steps independent
of the state of the database. A recursive rule is singular if it
is of the form

R ← F ` R1 ` … ` Rn ,

where F is a conjunction of possibly empty base (that is,
EDB) relations and R, R1, R2, …, Rn are atoms that have the
same relation name iff (1) each variable that occurs in an
atom Ri and does not occur in R only occurs in Ri and (2)
each variable in R occurs in the same argument position in
any atom Ri where it appears, except perhaps in at most one
atom R1 that contains all the variables of R.

Thus, the rule

R(X, Y, Z) ← R(X, Y’, Z), R(X, Y, Z’)

is singular because (1) Y’ and Z’ appear, respectively, in the
first and second atoms in the head of the rule (condition 1)
and (2) the variables X, Y, and Z always appear in the same
argument position (condition 2).

Example 2. Bounded Recursion.

Example 3. Stratified Program.

The rules

r1: p ← q, not r
r2: q ← p
r3: q ← s
r4: s
r5: r ← t

make up a stratified theory. Rule r5 is in the lowest stratum,
but the other rules are in a higher stratum. The predicate p
is in a higher stratum than the stratum for r because it
depends negatively on r. q is in the same stratum as p
because it depends on p. s is also in the same stratum as q.
The meaning of the stratified program is that s, q, and p are
true, but t and r are false. t is false because there is no defin-
ing rule for t. Because t is false, r is false. s is given as true;
hence, q is true. Because q is true, and r is false, from rule r1,
p is true.

There have been several implementations of
the WFS. Chen and Warren (1993) developed a
top-down approach to answer queries in this
semantics, while Leone and Rullo (1992) devel-
oped a bottom-up method for datalog databas-
es. Several methods have been developed for
computing answers to queries in stable model
semantics. Fernández et al. (1993) developed a
bottom-up approach based on the concept of
model trees. Every branch of a model tree is a
model of the database, where a node in a tree is
an atom that is shared by each branch below
the node. (See example 6 for an illustration of
a model tree.) Bell et al. (1993) developed a
method based on linear programming. See
Minker (1996) for additional methods to com-
pute the well-founded, the stable model, and
other related semantics.

A further extension of normal DDBs, pro-
posed by Gelfond and Lifschitz (1990) and
Pearce and Wagner (1989), permits clauses in
formula 2, where L and Mj are literals, and,
therefore, combines classical and default nega-
tion in one database. The semantics for normal
DDBs was described by Minker and Ruiz (1994).

These notions of default negation have been
used as separate ways to interpret and deduce
default information. That is, each application
has chosen one notion of negation and applied
it to every piece of data in the domain of the
application. Minker and Ruiz (1996) defined a
new class of more expressive DDBs that allow
several forms of default negation in the same
database. In this way, different pieces of infor-
mation in the domain can be treated appropri-
ately. They introduced a new semantics called
the well-founded stable semantics that character-
izes the meaning of DDBs that combine the
well-founded and the stable semantics. Schlipf
(1995) has written a comprehensive survey arti-
cle on complexity results for DDBs.

The development of the semantics of ex-
tended DDBs that permit a combination of
classical negation and multiple default nega-
tions in the same DDB are important contribu-
tions. The study and development of results in
the computational complexity of these data-
bases are important contributions to database
theory. They permit wider classes of applica-
tion to be developed.

Knowledge bases are important for AI and
expert system developments. A general way to
represent knowledge bases is through logic.
Work developed for extended DDBs concern-
ing semantics and complexity applies directly
to knowledge bases. Baral and Gelfond (1994)
describe how extended DDBs can be used to
represent knowledge bases. For an example of
a knowledge base, see example 5. Extended

DDBs, together with integrity constraints, per-
mit a wide range of knowledge bases to be
implemented. Many papers devoted to knowl-
edge bases consider them to consist of facts
and rules, which is one aspect of a knowledge
base, as is the ability to extract proofs. Howev-
er, integrity constraints supply another aspect
of knowledge and differentiate knowledge
bases, which can have the same rules but dif-
ferent integrity constraints. One should define
a knowledge base as consisting of an extended
DDB plus integrity constraints.

Since alternative extended deductive seman-
tics have been implemented, the knowledge
base expert can now focus on the problem to
be implemented, that is, on writing rules and
integrity constraints that characterize the
knowledge bases, selecting the particular se-
mantics that meets the needs of the problem,
and employing a DDB system that uses the
required semantics. The field of DDBs has con-
tributed to providing an understanding of
knowledge bases and their implementation.

Extended Disjunctive
Deductive Database Semantics
In the databases discussed previously, informa-
tion is definite. However, there are many situ-
ations where our knowledge of the world is
incomplete. For example, when a null value
appears as an argument of an attribute of a
relation, the value of the attribute is unknown.
Uncertainty in databases can be represented by
probabilistic information (Ng and Subrahman-
ian 1993). Another area of incompleteness aris-
es when it is unknown which among several
facts are true, but it is known that one or more

Articles

FALL 1997 27

Consider the database given by

r1: p(X) ← not q(X)
r2: q(X) ← not p(X)
r3: r(a) ← p(a)
r4: r(a) ← q(a) .

Notice that clauses r1 and r2 are recursive through negation.
Hence, the database is not stratifiable. According to the
WFS, {p(a), q(a), r(a)} are assigned unknown. However, for
the stable model semantics, there are two minimal models:
{{p(a), r(a)}, {q(a), r(a)}}. Hence, one can conclude that r(a) is
true, but the disjunct, p(a) ~ q(a) is true in the stable model
semantics.

Example 4. Nonstratifiable Database.

clauses are given by formula 3, where the liter-
als are restricted to atoms, and there is no
default negation in the body of a clause. Next,
I discuss the semantics of EDDDBs, where there
are no restrictions on clauses in formula 3.

Disjunctive Deductive Databases
As noted in Minker (1989), work in disjunctive
theories was pursued seriously after a work-
shop organized in 1986 (Minker 1986). The
field of DDDBs started approximately in 1982
with the appearance of a paper I wrote (Minker
1982), in which I described how one can
answer both positive and negated queries in
such databases. For a historical perspective of
disjunctive logic programming and DDDBs,
see Minker (1989). There is a major difference
between the semantics of DDBs and those for
DDDBs. Whereas DDBs typically have a
unique minimal model that describes the
meaning of the database, DDDBs generally
have multiple minimal models.

As shown in Minker (1982), it is sufficient to
answer positive queries over DDDBs by show-
ing that the query is satisfied in every minimal
model of the database. Thus, in the DDDB a ~
b, there are two minimal models: (1) {a} and (2)
{b}. The query, a?, is not satisfied in the model
b; hence, it cannot be concluded that a is true.
However, the query (a ~ b) is satisfied in both
minimal models; hence, the answer to the
query a ~ b is yes. To answer negated queries,
it is not sufficient to use Reiter’s (1978) CWA
because as he noted, from the theory DB = a ~
b, it is not possible to prove a, and it is not pos-
sible to prove b. Hence, by the CWA, not a and
not b follow. However, {a ~ b, not a, not b} is not
consistent. The generalized closed-world as-
sumption (GCWA) (Minker 1982) resolves this
problem by specifying that a negated atom be
considered true if the atom does not appear in
any minimal model of the database. The
GCWA provides a model-theoretic definition
of negation. An equivalent proof-theoretic def-
inition, also presented in Minker (1982), is
that an atom a can be considered false if when-
ever a ~ C can be proven from the database,
then C can also be proven from the database,
where C is an arbitrary positive clause. For
related work on negation in disjunctive theo-
ries, see Minker (1996). For surveys on nega-
tion in DDBs and DDDBs, see Shepherdson
(1987), Apt and Bol (1994), and Minker (1993).

In DDBs, it is natural for the fixpoint opera-
tor to map atoms to atoms. However, for
DDDBs, it is natural to map positive disjunc-
tions to positive disjunctions. A set of positive
disjunctions is referred to as a state. A model
state is a state whose minimal models all satisfy

is true. Therefore, it is necessary to be able to
represent and understand the semantics of
theories that include incomplete data. A natur-
al way to extend databases to include incom-
plete data is to permit disjunctive statements
as part of the language, where clauses can have
disjunctions in their heads. These clauses are
represented as

L1 ~ L2 ~ … ~ Lm ← M1, …, Mn, not Mn+1,
… not Mn+k (3)

and are referred to as extended disjunctive claus-
es. Such databases are referred to as extended
disjunctive deduct ive databases (EDDDBs). Foun-
dations of Disjunctive Logic Programming by
Lobo, Minker, and Rajasekar (1992) describes
the theory of disjunctive logic programs and
includes several chapters on disjunctive deduc-
tive databases (DDDBs). Example 5 illustrates
the use of such a theory of databases.

I first discuss the semantics of DDDBs, where

Articles

28 AI MAGAZINE

Consider the following database, where the predicate
p(X,Y) denotes that X is a professor in department Y, a(X,Y)
denotes that individual X has an account on machine Y,
and ab(W,Z) denotes that it is abnormal in rule W to be
individual Z.

We want to represent the following information, where
mike and john are professors in the Computer Science
Department:

First, as a rule, professors in the Computer Science
Department have Vax accounts. This rule is not applicable
to mike. He might or might not have an account on this
machine.

Second, every computer science professor has a Vax or an
IBM account but not both. These rules can be captured in
the following DDB:

p(mike, cs) ←
p(john, cs) ←
¬p(X, Y) ← not p(X, Y)
a(X, vax) ← p(X, cs), not ab(r4, X), not ¬a(X, vax)
ab(r4, mike) ←
a(X, vax) ~ a(X, ibm) ← p(X, cs), ab(r4, X)
¬ a(X, ibm) ← p(X, cs), a(X, vax)
¬a(X, vax) ← p(X, cs), a(X, ibm)
a(X, ibm) ← a(X, vax), p(X, cs) .

The third rule states that if by default negation, predicate
p(X, Y) fails, then p(X,Y) is logically false. The other rules
encode the statements listed previously.

From this formalization, one can deduce that john has a
Vax account, but mike has either a Vax or an IBM account
but not both.

Example 5. Knowledge Base (Baral and Gelfond 1994).

Consider the following example given by the database:
{a(1); a(2) ~ b(2); b(1) ~ b(2)}. There are two minimal mod-
els for this database {{a(1), a(2), b(1)}, {a(1), b(2)}}. These
models can be written as a tree (see figure above).

the DDDB. The concept of a state was defined
by Minker and Rajasekar (1990) as the domain
of a fixpoint operator Tp whose least fixpoint
characterizes the semantics of a disjunctive log-
ic program P. The operator is shown to be
monotonic and continuous; hence, it con-
verges in a countably infinite number (ω) of
iterations. The fixpoint computation operates
bottom-up and yields a minimal model state
that is logically equivalent to the set of mini-
mal models of the program. The Minker-
Rajasekar fixpoint operator is an extension of
the van Emden–Kowalski fixpoint operator. If
one considers all model states of a DDDB and
intersects them, then the resultant is a model
state, and among all model states, it is minimal.
Hence, one obtains a unique minimal model in
a Horn database, but one obtains a unique
model state in a DDDB. See Decker (1991) for a
related fixpoint operator for DDDBs.

Answering queries in DDDBs has been stud-
ied by a number of individuals, as described in
Minker (1996). I focus on the work of Fernán-
dez and Minker (1991), who developed the
concept of a model tree. They show how one
can incrementally compute sound and com-
plete answers to queries in hierarchical DDDBs.
A model tree is shown in example 6. A DDDB
is hierarchical if it contains no recursion. Fer-
nández et al. (1993) show how one can develop
a fixpoint operator over trees to capture the
meaning of a DDDB that includes recursion.
The tree representation of the fixpoint is equiv-
alent to the Minker-Rajasekar fixpoint (Minker
and Rajasekar 1990). Fernández and Minker
compute the model tree of the extensional
DDDB once. To answer queries, intensional
database rules can be invoked. However, the
models of the extensional disjunctive part of
the database do not have to be generated for
each query. Their approach to computing
answers generalizes both to stratified and nor-
mal DDDBs.

Loveland and his students (Loveland, Reed,
and Wilson 1993) have developed a top-down
approach when the database is near Horn.
They have developed a case-based reasoner
that uses Prolog to perform the reasoning.
This effort is one of the few that have imple-
mented DDDBs. Loveland, Reed, and Wilson
(1993) introduced a relevancy-detection algo-
rithm to be used with SATCHMO, developed by
Manthey and Bry (1988), for automated theo-
rem proving. Their system, termed SATCHMORE

(SATCHMO with RElevancy), improves on SATCH-
MO by limiting uncontrolled use of forward
chaining. Seipel (1995) has developed a sys-
tem, DISLOG, that incorporates many different
disjunctive theories and strategies. The system

is available on the World Wide Web.
See Minker (1996) for references to work on

the complexity of answering queries in dis-
junctive logic programs and Eiter and Gottlob
(1995) for complexity results for propositional
logic programs.

The development of model-theoretic,
fixpoint, and proof procedures placed the
semantics of DDDBs on a firm foundation.
Methods to handle DDDBs are being devel-
oped and should eventually enhance imple-
mentations. The GCWA and alternative theo-
ries of negation have enhanced our
understanding of default negation in DDDBs.
Complexity results provide an understanding
of the difficulties in finding answers to queries
in such systems.

Extended Disjunctive
Deductive Databases
Fernández and Minker (1995) present a new
fixpoint characterization of the minimal mod-
els of disjunctive and stratified DDDBs. They
prove that by applying the operator iteratively,
in the limit, it constructs the perfect model
semantics (Przymusinski 1988) of stratified
DDDBs. Given the equivalence between the
perfect model semantics of stratified programs
and prioritized circumscription (Przymusinski
1988), their fixpoint characterization captures
the meaning of the corresponding circum-
scribed theory. Based on these results, they pre-
sent a bottom-up evaluation algorithm for

Articles

FALL 1997 29

∈*

a(1)

a(2) b(2)

b(1)

Example 6. Model Tree.

Second, there is a positive (negative) arc
from a predicate node p to a rule node ζ iff p
appears positive (negative) in the body of ζ
and an arc from ζ to p (resp., and also an arc
from p to ζ) if p appears in the head of ζ.

The positive dependency graph of P is a sub-
graph of Gp containing only positive arcs. A
directed cycle in Gp is called negative if it con-
tains at least one negative arc. A DDB P is HCF
if for every two predicate names p and q, if p
and q are on a positive directed cycle in the
dependency graph Gp, then there is no rule in
P in which both p and q appear in the head. It
is shown in Ben-Elyahu, Palopoli, and Zem-
lyanker (1996) that answers to queries
expressed in this language can be computed in
polynomial time. Furthermore, the language is
sufficiently powerful to express all polynomial
time queries. It is further shown in Ben-Elyahu
and Palopoli (1994) that there is an algorithm
that performs, in polynomial time, minimal
model finding and minimal model checking if
the theory is HCF. An efficient algorithm for
solving the (co–NP-hard decision) problem of
checking if a model is stable in function-free
disjunctive logic programs is developed in
Leone, Rullo, and Scarcello (1996). They show
that the algorithm runs in polynomial time on
the class of HCF programs, and in the case of
general disjunctive logic programs, it limits the
inefficient part of the computation only to the
components of the program that are not HCF.

In addition to work on tractable databases,
consideration has been given to approximate
reasoning. In such reasoning, one can give up
soundness or completeness of answers. Efforts
have been developed both for DDBs and DDDBs
by Kautz and Selman (1992) and Selman and
Kautz (1996), who developed lower and upper
bounds for Horn (datalog) databases and compi-
lation methods; Cadoli (1993), who developed
computational and semantic approximations;
and del Val (1995), who developed techniques
for approximating and compiling databases. See
also Cadoli (1996) for additional references con-
cerning compilation, approximation, and
tractability of knowledge bases.

A second way to determine the semantics to
be used is through their properties. Dix (1992)
proposed a large number of criteria that are
useful in determining the appropriate seman-
tics to be used. Properties deemed useful are (1)
elimination of tautologies, where one wants the
semantics to remain the same if a tautology is
eliminated; (2) generalized principle of partial
evaluation, where if a rule is replaced by a one-
step deduction, the semantics is unchanged;
(3) positive-negative reduction; (4) elimination
of nonminimal rules, where a subsumed rule is

stratified DDDBs. This algorithm uses the mod-
el-tree data structure to represent the informa-
tion contained in the database and to compute
answers to queries. Fernández and Minker
(1992) develop the theory of DDDBs using the
concept of model trees. Work on updates in
DDDBs is described in Fernández, Grant, and
Minker (1996).

Four alternative semantics were developed
for nonstratifiable normal DDDBs at approxi-
mately the same time: (1) Ross (1989), the
strong WFS; (2) Baral, Lobo, and Minker
(1990), the generalized disjunctive WFS
(GDWFS); and (3, 4) two semantics by Przy-
musinski, an extension of the stable model
semantics (Przymusinski 1990) for normal dis-
junctive databases and the stationary seman-
tics (Przymusinski 1990). A number of other
important semantics have been developed.
Przymusinski (1995) describes a new semantic
framework for disjunctive logic programs and
introduces the static expansions of disjunctive
programs. The class of static expansions
extends both the classes of stable, well-found-
ed, and stationary models of normal programs
and the class of minimal models of disjunctive
programs. Any static expansion of a program P
provides the corresponding semantics for P
consisting of the set of all sentences logically
implied by the expansion. The stable model
semantics has also been extended to disjunc-
tive programs (Gelfond and Lifschitz 1991;
Przymusinski 1991). The disjunctive WFS
(DWFS) of Brass and Dix (1995) is also of con-
siderable interest because it permits a general
approach to bottom-up computation in dis-
junctive programs.

As noted previously, a large number of dif-
ferent semantics exist for both EDDBs and
EDDDBs. A user who wants to use such a sys-
tem is faced with the problem of selecting the
appropriate semantics for his/her needs. No
guidelines have been developed. However,
many complexity results have been obtained
for these semantics. Schlipf (1995) and Eiter
and Gottlob (1995) have written comprehen-
sive survey articles that summarize the com-
plexity results that are known for alternative
semantics.

In addition to the results for extended dis-
junctive theories, there is work in investigating
tractable cases of disjunctive theories. Ben-
Eliyahu and Dechter (1994) introduced the
concept of a head-cycle–free (HCF) clause. Let
a clause consist of a disjunction of literals. A
dependency graph Gp is associated with each
program P as follows:

First, each clause of the form, formula 2, and
each predicate in P is a node.

Articles

30 AI MAGAZINE

eliminated, the semantics remains the same;
(5) consistency, where the semantics is not
empty for all disjunctive databases; and (6)
independence, where if a literal l is true in a pro-
gram P, and P’ is a program whose language is
independent of the language of P, then l
remains true in the program consisting of the
union of the two languages.

A semantics can have all the properties that
one might desire and be computationally
tractable and yet not provide answers that a
user expected. If, for example, the user expect-
ed an answer r(a) in response to a query r(X),
and the semantics were, for example, the WFS,
the user would receive the answer that r(a) is
unknown. However, if the stable model seman-
tics had been used, the answer returned would
be r(a). Perhaps, the best that can be expected
is to provide users with complexity results and
criteria by which they can decide which
semantics meets the needs of their problems.

Understanding the semantics of disjunctive
theories is related to nonmonotonic reasoning.
The field of nonmonotonic reasoning has
resulted in several alternative approaches to the
performance of default reasoning (Moore 1985;
McCarthy 1980; McDermott and Doyle 1980;
Reiter 1980). The survey article by Minker
(1993) and papers by Eiter and Gottlob (1995)
and Cadoli and Schaerf (1993) cite results
where alternative theories of nonmonotonic
reasoning can be mapped into extended dis-
junctive logic programs and databases. Hence,
DDDBs can be used to compute answers to
queries in such theories. See Cadoli and Lenz-
erini (1994) for complexity results concerning
circumscription and closed-world reasoning.
See also Yuan and You (1993) for a description
of the relationships between autoepistemic cir-
cumscription and logic programming. They use
two different belief constraints to define two
semantics: (1) the stable circumscriptive
semantics and (2) the well-founded circum-
scriptive semantics for autoepistemic theories.
The work in Yuan and You (1993) and that on
static semantics developed by Przymusinski
(1995) appear to be related.

Another area to which DDDBs have con-
tributed is the null-value problem. If an attribute
of a relation can have a null value, where this
value is part of a known set, then one can repre-
sent this information as a disjunction of rela-
tions, where in each disjunction, a different val-
ue is given to the argument. For papers on the
null-value problem both in relational and
deductive databases, see Minker (1996).

There are several significant contributions
of DDDBs:

First, greater expressive power is provided to

the user to develop knowledge base systems.
Second, alternative concepts of negation

have been developed as evidenced by the dif-
ferent semantics for logic programs (for exam-
ple, WFS and stable semantics for extended
logic programs and alternative semantics for
disjunctive logic programs).

Third, complexity results have been found
for alternative semantics of DDBs, including
alternative theories of negation.

Fourth, methods have been developed to
permit prototype systems to be implemented.

Fifth, DDBs can be used as the computation-
al vehicle for a wide class of nonmonotonic-
reasoning theories.

In this section, I showed how relational
databases can be formalized in terms of logic,
permitting databases to be extended beyond
what is possible with relational databases. Var-
ious extensions were discussed, such as DDBs.
EDDBs, DDDBs, and EDDDBs. Alternative the-
ories of negation were discussed, and the
semantics of the alternative databases, includ-
ing negation, were described. These extensions
were shown to be useful for developing com-
plex knowledge bases. The role of integrity
constraints and other constraints for such sys-
tems was described.

Implementation Status of
Deductive Databases

The field of DDBs has made significant intel-
lectual contributions over the past 20 years.
However, these contributions have not been
matched by implementations that are avail-
able in the commercial market. In the early
1970s, when Codd (1970) introduced the rela-
tional model, there were numerous debates in
the database community about the efficacy of
such systems relative to network and hierarchi-
cal systems (Date 1995). These debates ended
when an effective relational system was imple-
mented and shown to be comparable to these
systems. Now, some of those individuals who
are prominent in relational databases claim
that DDBs are not effective and are not need-
ed. Although I believe otherwise, these com-
ments can be addressed better either when a
full commercial implementation of a DDB is
available or when many of the techniques
introduced in DDBs find their way into rela-
tional databases. I believe that both of these
are beginning to happen.

In the following subsection, I discuss the
stages through which implementations of
DDBs have progressed and some contributions
made during each stage. Following this, I dis-
cuss the reasons why I believe that no current

The field
of DDBs
has made
significant
intellectual
contributions
over the past
20 years.
However,
these
contributions
have not
been
matched by
implementa-
tions that
are
available
in the
commercial
market.

Articles

FALL 1997 31

(1978) on the Deductively Augmented Data
Management (DADM) system, and Minker
(1978) on the Maryland Refutation Proof Pro-
cedure System (MRPPS 3.0) represent work dur-
ing the second stage of development of DDBs.
These papers appear in Gallaire and Minker
(1978). Table 2 provides a brief summary of
some of the features of these systems.

DADM precomputed unifications among
premises so they did not have to be recomput-
ed during deduction. Variables were typed.
Inference plans and database-access strategies
were created from a premise file without
requiring access to database values.

MRPPS 3.0 performed top-down searches for
large databases. It permitted arguments of
predicates to contain function symbols and
had a knowledge base index to access the data.
The deductive system used a typed unification
algorithm and a semantic network. The SQO
method described in McSkimin and Minker
(1977) was incorporated into the system.
Answer extraction, natural language process-
ing, and voice output were part of the system.

The DEDUCE 2 system performed deduction
over databases. Nonrecursive Horn rules were
used and were compiled in terms of base rela-
tions. Integrity constraints were used to per-
form SQO on queries. Problems with respect to
recursive rules and termination were also dis-
cussed (Chang 1981).

Third Stage: 1980 to Present A large
number of prototype DDBs were developed,
and most are described in Ramakrishnan and
Ullman (1995). I briefly discuss several major
efforts: work at the European Computer
Research Consortium (ECRC) led by Nicolas, at
the University of Wisconsin led by Ramakrish-
nan, and at Stanford led by Ullman. They
attempted to develop operational and possibly
commercial DDBs. They contributed signifi-
cantly to both the theory and the implemen-
tation of DDBs. Detailed descriptions of contri-
butions made by these systems and others can
be found in Ramakrishnan and Ullman (1995).
In table 3, I list some of the capabilities of sys-
tems developed in this stage, adapted from
Ramakrishnan and Ullman (1995).

Implementation efforts at ECRC on DDBs
started in 1984 and led to the study of algo-
rithms and prototypes: deductive query-evalu-
ation methods (QSQ-SLD and others) (Vieille
1986); integrity checking (SOUNDCHECK) (Deck-
er 1986); the DDB EKS(-V1) by Vieille and his
team (1990); hypothetical reasoning and
checking (Vieille, Bayer, and Kuechenhoff
1996); and aggregation through recursion
(Lefebvre 1994). The EKS system used a top-
down evaluation method and was released to

systems are commercially marketed and spec-
ulate on how this situation might change.

Deductive Database Systems
There have been three stages of implementa-
tions of DDBs: (1) pre-1970, (2) 1970 to 1980,
and (3) 1980 to the present. Each stage has
contributed toward understanding the prob-
lems inherent in developing DDB systems.

First Stage: Pre-1970s Two efforts stand
out during this period: the first by Levien, and
Maron (1965) and Kuhns (1967), who devel-
oped a prototype system that demonstrated
the feasibility of performing deduction in data-
bases and the second by Green and Raphael
(1968a, 1968b), who recognized that the reso-
lution method of Robinson (1965) was a uni-
form procedure based on a single rule of infer-
ence that could be used for DDBs. This was the
first general approach to DDBs. The work by
Levien and Maron (1965) and Kuhns (1967) on
Relational Data File (RDF) started in 1963. A
procedural language, INFEREX, executed infer-
ence routines. Plausible and formal inferenc-
ing were both possible in RDF, as was temporal
reasoning. The system was implemented on a
file consisting of some 55,000 statements. The
work by Green and Raphael (1968a, 1968b)
resulted in a system termed the question-
answering system (QA-3.5). It was an outgrowth
of Raphael’s thesis on semantic information
retrieval (SIR) (Raphael 1968) that performed
deduction. QA-3.5 included a natural language
component. Another deductive system, rela-
tional store structure (RSS), started in 1966 was
developed by Marrill (Computer Corporation
1967). The system had 12 deductive rules built
into the program and was able to incorporate
other deductive rules. The association store
processor (ASP), developed by Savitt, Love, and
Troop (1967), also performed deduction over
binary relational data. The inference rules,
specified as relational statements, were han-
dled by breadth-first, followed by depth-first,
search. These efforts, as well as those cited in
Minker and Sable (1970), were important pre-
cursors to DDBs. In table 1, adapted from
Minker and Sable (1970), I list some capabili-
ties of systems developed during this stage.

Second Stage: 1970 to 1980 Whereas the
first stage could be characterized as using ad
hoc techniques for deduction (except for the
work by Green and Raphael), the second-stage
systems were based on the Robinson resolu-
tion principle, as first recognized by Green and
Raphael. The SYNTEX system built by Nicolas
and Syre (1974) used logic as the basis for
deduction. The work by Chang (1978) on the
DEDUCE 2 system, Kellogg, Klahr, and Travis

Articles

32 AI MAGAZINE

ECRC shareholder companies in 1990.
Implementation efforts at MCC Corpora-

tion on a DDB started in 1984 and emphasized
bottom-up evaluation methods (Tsur and Zan-
iolo 1986) and query evaluation using such
methods as seminaive evaluation, magic sets
and counting (Beeri and Ramakrishnan 1991;
Bancilhon et al. 1986; Sacca and Zaniolo

1986), semantics for stratified negation and set
grouping (Beeri et al. 1991), investigation of
safety, the finiteness of answer sets, and join-
order optimization. The LDL system was imple-
mented in 1988 and released in the period
1989 to 1991. It was among the first widely
available DDBs and was distributed to univer-
sities and shareholder companies of MCC.

Articles

FALL 1997 33

Name QA-3.5 (Green and
Raphael 1968a,

1968b) (question-
answering system)

ASP (Savitt, Love,
and Troop 1967)

(association storing
processor)

RDF (Levien and
Maron 1965)

(relational data file)

RSS (Computer
Corporation 1967)

(relational
structures system)

Organization Stanford Research
Institute

Hughes Aircraft
Corp.

RAND Corp. Computer
Corporation of

America

Designers Raphael, Green,
and Coles

Savitt, Love, and
Troop

Levien and Maron Marill

Computer PDP 10 IBM 360/65 IBM 7044 360/65 IBM 360/75

Programming
language

Lisp 1.5 Assembly language Assembly language Assembly language

Input language
model

 Near–natural
language model
based on simple

transformations and
context-free

grammar

Stylized input form
and a procedural

language

Stylized input forms
analyzed by

FOREMAN language

Near–natural
language model

based on matching
sentence templates

Syntactic analysis
technique

 Earley algorithm
for context-free

grammar

N/A N/A Match of sentence
against stored

templates

Semantic analysis
technique

Semantics stack
built during syntax

analysis phase

N/A N/A Pattern ⇐ action
operation invoked

as a result of
template match

Intermediate
language

First-order
predicate calculus

Binary relations Binary relations n-ary relations (n ≤
7 as implemented)

Data structures Lisp-chained list
structures

Relational
statement elements
randomized (coded)

and replicated
statements stored

under each element

Files quadruplicated
and ordered by

statement number
and three elements

Statement elements
are hash coded and

open statements
linked to

corresponding
closed statements

Inference
procedures

Formal theorem
proving by

Robinson resolution
procedure

Inference rules
specified as
relational

statements handled
by breadth first

followed by depth

Plausible inference
rules specified in a

procedural language
called INFEREX

Twelve general
rules of deductive

logic used

Output language Near–natural
language generated
in a synthesis phase

Relational
statements

Relational
statements

Near–natural
language generated
from n-ary relational

statements

Table 1. First-Stage Deductive Database Implementations (adapted from Minker and Sable [1970]).

optimization by selecting from among alterna-
tive control choices. CORAL provides imperative
constructs such as update, insert, and delete
rules. Disk-resident data are supported using
the EXODUS storage manager, which also pro-
vides transaction management in a client-serv-
er environment.

Implementation at Stanford started in 1985
on NAIL! (Not Another Implementation of
Logic!). The effort led to the first paper on
recursion using the magic set method (Bancil-
hon et al. 1986). Other contributions were
aggregation in logical rules and theoretical
contributions to negation: stratified negation
by Van Gelder (1988); well-founded negation
by Van Gelder, Ross, and Schlipf (1991); and

Implementation efforts at the University of
Wisconsin on the CORAL DDBs started in the
1980s. Bottom-up and magic set methods were
implemented. The system, written in C and
C++, is extensible and provides aggregation for
modularly stratified databases. CORAL supports
a declarative language and an interface to C++
that allows for a combination of declarative
and imperative programming. The declarative
query language supports general Horn clauses
augmented with complex terms, set grouping,
aggregation, negation, and relations with
tuples that contain universally quantified vari-
ables. CORAL supports many evaluation strate-
gies and automatically chooses an efficient
evaluation strategy. Users can guide query

Articles

34 AI MAGAZINE

Name MRPPS 3.0 (Minker 1978)
(Maryland refutation

proof procedure system)

DADM (Kellogg, Klahr,
and Travis 1978)

(Deductively augmented
data management)

DEDUCE 2 (Chang 1978)

Organization University of Maryland System Development
Corp.

IBM San Jose

Designers Minker, McSkimin,
Wilson, and Aronson

Kellogg, Klahr, and Travis Chang

Computer UNIVAC 1108 N/A N/A

Programming language SIMPL N/A N/A

Input language model Multisorted, well-formed
formulas

Primitive conditional
statements and natural

language

DEDUCE (Chang 1976)
(based on symbolic logic)

Intermediate language Clausal form Primitive conditional
statements

DEDUCE

Data structures Semantic networks,
knowledge base index

Predicate array, premise
array, semantic network,

predicate connection
graph (Sickel 1976;

Kowalski 1975)

Connection graph

Inference procedures SL resolution (Kowalski
and Kuehner 1971) and

Lush resolution (Hill
1974)

Connection graph Connection graph

Output language Natural language voice
and English (Powell 1977)

Primitive condition
statements

DEDUCE

Features Semantic query
optimization, multisorted
variables, no recursion,

non-Horn clauses, clauses
not necessarily function
free, relations not in first

normal form

Semantic query
optimization, multisorted

variables, no recursion

Semantic query
optimization

Table 2. Second-Stage Deductive Database Implementations.
SL = Linear resolution with Selection function.

LUSH = Linear resolution with Unrestricted Selection function for Horn clauses.

Articles

FALL 1997 35

Name Developed Recursion Negation Aggregation Update Integrity
constraints

Optimization Storage Interfaces

ADITI
(Vaghani

et al.
1991)

U.
Melbourne

General Stratified Stratified No No Magic sets,
seminaive

Extensio
nal

database,
inten-
sional

database

Prolog

COL
(Abitebo

ul and
Grumbac
k 1991)

INRIA ? Stratified Stratified No No None Main
memory

Machine
learning

CONCEPT
BASE

(Jeusfeld
and

Staudt
1993)

U. Aachen General Locally
Stratified

No Yes No Magic sets,
seminaive

EDB only C, Prolog

CORAL
(Ramakri

shnan,
Srivastav

a, and
Sudarsha
n 1992)

U.
Wisconsin

General Modular
Stratified

Modular
Stratified

No No Magic sets,
seminaive,

context
factoring,
projection
pushing

Extensio
nal

database,
inten-
sional

database

C, C++,
extensible

EKS-V1
(Vieille
et al.
1992)

ECRC General Stratified General Yes Yes Query-
subquery,
left-right

linear

Exten-
sional

database,
inten-
sional

database

Persistent
Prolog

DECLARE
(Kiesslin

g and
Schmidt

1994)

MAD
Intelligent

Systems

General Locally
Stratified

General No No Magic sets,
seminaive,
projection
pushing

EDB only C,
Common

Lisp

LDL,
LDL++,
SALAD

(Chimen
ti et al.
1990)

MCC General Stratified Stratified Yes No Magic sets,
seminaive,
left-right

linear,
projection
pushing

Extensio
nal

database
only

C, C++, SQL

LOGRES
(Cacace

et al.
1990)

Polytech. of
Milan

Linear Inflationa
ry

semantics

Stratified Yes Yes Seminaive,
algebraic X

forms

Exten-
sional

database,
inten-
sional

database

INFORMIX

NAIL-
GLUE

(Morishit
a, Derr,

and
Phipps
1993)

Stanford U. General Well
founded

Glue only Glue
only

No Magic sets,
seminaive,
right linear

EDB only None

STARBURS
T

(Mumick
et al.
1990)

IBM
Almaden

General Stratified Stratified No No Magic sets,
seminaive
(variant)

Exten-
sional

database,
inten-
sional

database

Extensible

Table 3. Existing Implementations of Deductive Databases (adapted from Ramakrishnan and Ullman [1995]).

VALIDITY is now being further developed
and marketed by Next Century Media,
Inc., a California corporation in which
Groupe Bull has some equity interests. Its
principal office [is] in the San Francisco
area.

The VALIDITY DOOD software platform is
currently mainly used to develop NCM’s
products in electronic media for interac-
tive media applications. Two of these
products enable marketers to target their
advertising messages to household clus-
ters, to individual households, and to spe-
cific consumers, based on the user’s
expressed and implied interests and pref-
erences, and to convert the data coming
from the user into a database of ongoing
and useful information about these cus-
tomers. A third product enables marketers
to measure the effectiveness of their
media plan and expenditures in a timely
manner, based on a full census of the
entire audience, rather than on samples
which are fraught with inherent biases
and errors.

No commercial systems exist for several rea-
sons. First, most prototypes were developed at
universities. Without commercial backing for
the venture, universities are not positioned to
either develop or support maintenance
required for large system developments. Sys-
tems developed in research organizations con-
trolled by consortia (ECRC and MCC) have not
had full backing of consortia members. Sec-
ond, implementation efforts to develop a com-
mercial product were vastly underestimated. A
large investment must be made to develop a
DDB that both competes and extends relation-
al technology. According to industry stan-
dards, an investment on the order of $30 to
$50 million is required to develop and place a
database system in the market, no matter what
technology it relies on. Furthermore, research-
ers tend to change their interests rather than
consolidate their work and invest in technolo-
gy transfer toward industry. Third, until
recently, no convincing demonstration has
been made of a large commercial problem that
requires a DDB, which might be why the MCC
and ECRC developments were terminated.
However, now, a large number of applications
could take advantage of this technology, as evi-
denced by the book by Ramakrishnan (1995)
and the applications being performed by the
VALIDITY deductive object-oriented database
(DOOD) system. In addition, Levy et al. (1995)
studied the problem of computing answers to
queries using materialized views and note that
this work is related to applications such as

modularly stratified negation by Ross (1990). A
language called GLUE (Morishita, Derr, and
Phipps 1993), developed for logical rules, has
the power of SQL statements as well as a con-
ventional language for the construction of
loops, procedures, and modules.

Implementations of DDBs in the first, sec-
ond, and third stages of their development
have demonstrated the feasibility and practi-
cality of the technology. Tools and techniques
have been developed to produce efficient
DDBs.

Prospects for Commercial Implemen-
tation of Disjunctive Databases1

One might address why after 20 years of theo-
retical research in DDBs, no commercial sys-
tems exist. To place this statement in perspec-
tive, it is well to recall that approximately 12
years passed before relational systems were
available commercially. As Ullman has stated
on a number of occasions, DDB theory is more
subtle than relational database theory. Howev-
er, many prototypes have been developed start-
ing from the 1960s, as described in the previous
subsection. However, none of the systems in
Ramakrishnan and Ullman (1995) are likely to
become commercial products, with, possibly,
two exceptions: (1) ADITI (Ramamohanarao
1993) and (2) VALIDITY (Friesen et al. 1995; Ling,
Mendelzon, and Vieille 1995), developed at the
Bull Corporation. According to a personal com-
munication with Ramamohanarao, leader of
the ADITI effort, that I had in May 1996, they are
perhaps one year from having a commercial
product. In a communication that I received
from him on 20 February 1997, he stated: “We
have now completed most of the difficult parts
of the low-level implementation of ADITI. I am
very hopeful of getting the beta release of the
system by December 1997. The task was much
harder and time consuming than I have ever
anticipated.”

Whether it becomes a product remains to be
seen. I believe it will depend on moving the
system from a university setting to industry.
Implementers and application specialists,
rather than university researchers, are required.

At the Bull Corporation, Nicolas and Vieille
have headed an effort to develop the VALIDITY

DDB system that integrates object-oriented fea-
tures. In Minker (1996), I reported that the
VALIDITY DDB effort had been ongoing for about
four years. It appeared to be entering the mar-
ketplace and was being moved from the Bull
Corporation to a new company that will be
responsible for its maintenance, marketing,
and improvements. In a personal communica-
tion with Nicolas on 7 March 1997, he stated:

… we should
not abandon

all research
on theories of
negation and

alternative
semantics,

but we must
take stock of

what we have
accomplished

and make
it more

accessible
for users.

Articles

36 AI MAGAZINE

global information systems, mobile comput-
ing, view adaptation, and the maintenance of
physical data independence. Levy et al. (1996)
describe how DDBs can be used to provide uni-
form access to a heterogeneous collection of
more than 100 information sources on the
World Wide Web. Fourth, apparently no uni-
versity researchers have tried to obtain venture
capital to build a product outside the universi-
ty. Efforts by some from MCC to obtain ven-
ture capital did not succeed.

Does lack of a commercial system at this
date forebode the end of logic and databases?
I believe that such a view is naive. First, there
still is a strong prospect, as noted previously, of
commercial DDBs. Second, considering that it
took 12 years before relational database tech-
nology entered the marketplace, there is no
need for alarm. Third, as the following devel-
opments portend, relational databases are
starting to incorporate techniques stemming
from research in DDBs.

Indeed, many of the techniques introduced
within DDBs are finding their way into rela-
tional technology. The new SQL standards for
relational databases are beginning to adopt
many of the powerful features of DDBs. In the
SQL-2 standards (also known as SQL-92) (Melton
and Simon 1993), a general class of integrity
constraints called asserts allow for arbitrary
relationships between tables and views to be
declared. These constraints exist as separate
statements in the database and are not
attached to a particular table or view. This
extension is powerful enough to express the
types of integrity constraint generally associat-
ed with DDBs. However, only the full SQL-2
standard includes assert specifications. The
intermediate SQL-2 standard, the basis for most
current commercial implementations, does
not include asserts. The relational language for
the next-generation SQL, SQL3, currently pro-
vides an operation called recursive union that
supports recursive processing of tables (Melton
1996). As noted in Melton (1996): “The use of
the recursive union operator allows both linear
(single-parent, or tree) recursion and nonlinear
(multiparent, or general directed graph) recur-
sion. This solution will allow easy solutions to
bill-of-material and similar applications.”

Linear recursion is currently a part of the
client server of IBM’s DB2 system. IBM is using
the magic set method to perform linear recur-
sion. Also, indications are that the ORACLE data-
base system will support some form of recursion.

A further development is that SQO is begin-
ning to be incorporated into relational databas-
es. In DB2, cases are recognized when only one
answer is to be found, and the search is termi-

nated. In other systems, equalities and other
arithmetic constraints are being added to opti-
mize search. I believe it will not be long before
join elimination is introduced into relational
technology. One can now estimate when it will
be useful to eliminate a join (Godfrey, Gryz,
and Minker 1996). The tools and techniques
already exist, and it is merely a matter of time
before users and system implementers have
them as part of their database systems.

Another technology available for commer-
cial use is cooperative databases. The tools and
techniques exist, as evidenced by COBASE (Chu,
Chen, and Merzbacher 1994) and CARMIN

(Gaasterland et al. 1992). With the introduc-
tion of recursion and SQO techniques into
relational database technology, it will be neces-
sary to provide users with cooperative respon-
ses so they understand why certain queries fail
or succeed. It will also permit queries to be
relaxed when the original query fails, permit-
ting reasonable, if not logically correct,
answers to be provided to users. Because user
constraints can be handled in the same way
that integrity constraints are handled, we will
see relational systems that incorporate the
needs of individual users into a query, as rep-
resented by their constraints.

Two significant developments have taken
place in the implementation of commercial
DDBs. First is the incorporation of techniques
developed in DDDBs into relational technolo-
gy. Recursive views that use the magic set tech-
nique for implementation are being permitted,
and methods developed for SQO are being
applied. Second is the development of a
DOOD, VALIDITY, that is in commercial use as
well as the development of the ADITI DDB that
is scheduled to undergo beta testing in Decem-
ber 1997. It remains to be seen how long one
can make patches to relational technology to
simulate the capabilities of DDB systems.

Emerging Areas and Trends
In the previous sections, we discussed many
theories and semantics for negation in both
extended DDBs and DDBs. We understand a
great deal about negation, except for how and
when to use a given theory, which will be an
area of confusion when users want to apply
the work. Much more work is needed if the
areas of implementation and application are to
catch up with the intellectual developments
achieved over the past 20 years. The field is sat-
urated with alternative theories of semantics,
and work is needed on more fertile topics.
Unless we do so, funding for logic and data-
bases will wane, as I believe it has in the United

Articles

FALL 1997 37

(1995) noted the need for declarative seman-
tics of triggers. He has developed a unified
semantics for active DDBs and has shown how
active database rules relate to transaction-con-
scious stable model semantics. Baral and Lobo
(1996) proposed a first step toward characteriz-
ing active databases. A clear semantics, sound
implementations, and a better understanding
of complexity issues are required in active
databases. Work in the situation calculus and
datalog extensions apply here.

Data mining and inductive inference deal
with finding generalizations extracted from a
database or a logic program. Generalizations
can be integrity constraints that must be true
with respect to the database or generalizations
that might be true of the current state but
might change if there are updates. Database
administrators will need to determine which
generalizations are integrity constraints and
which apply only to the current state. SQO can
handle either case and inform the user which
constraint might be applicable to a query. As
demonstrated in Muggleton and De Raedt
(1994), logic programming can be used to form
inductive inferences, and Knowledge Discovery
in Databases (Piatetsky-Shapiro and Frawley
1991) covers work on knowledge data mining.
Laurent and Vrain (1996) discuss how to cou-
ple DDBs and inductive logic programming to
learn query rules for optimizing databases with
update rules.

Integrating production systems with DDBs
is needed to develop a formal approach to inte-
grate and develop the semantics of rule-based
systems. See Minker (1996) for references.

Logical foundations of DOODs is needed.
No formal definition exists that covers all
aspects of object-oriented databases. Efforts
have been undertaken by Kifer and his cowork-
ers (Kifer, Lausen, and Wu 1995) to develop a
formal foundation for object-oriented data-
bases. Work is required to develop techniques,
a formal theory of updating, and all tools and
techniques for DDBs.

Description logics restrict knowledge repre-
sentation so that deduction is tractable but suf-
ficiently powerful to represent knowledge nat-
urally. See Minker (1996) for references to
systems that incorporate description logics. In
DDBs, representational power is also limited to
allow for more tractable deduction. Some of
these limits are a restriction to Horn clauses,
no logical terms, no existential quantification,
and so forth. Research in DDBs has sought to
extend the representational power yet preserve
tractability to the greatest extent possible: For
example, DDDBs allow for general clauses, and
the addition of null values allows for a type of

States. However, we should not abandon all
research on theories of negation and alterna-
tive semantics, but we must take stock of what
we have accomplished and make it more acces-
sible for users.

The role of logic will be of increasing impor-
tance because of the need to handle highly
complex data (partly as a result of the advances
in networking technology and the reduction
in the cost of both processing time and prima-
ry, secondary, and tertiary memory). These
data will require more complex models of data
access and representation. Advances will
require formal models of logic rather than ad
hoc solutions. Below, I briefly mention some
fertile areas for further exploration. This listing
of important areas to investigate is not intend-
ed to be exhaustive.

Temporal databases, which deal with time,
are important for historical, real-time data-
bases and other aspects of databases. Work in
this area has been done by Snodgrass (1987),
Chomicki (1995), and Sistla and Wolfson
(1995). A paper on applying transition rules to
such databases for integrity constraint check-
ing appears in Martin and Sistac (1996).

Transactions and updates need further
attention. Semantic models of updates exist
(Fernández, Grant, and Minker 1996) that
assure views and data are updated correctly.
Transactions that require sequences of
updates, long-duration transaction models,
and work-flow management are areas that
require work. In emerging applications of data-
base systems, transactions are viewed as
sequences of nested, and most probably inter-
active, subtransactions that can sparsely occur
over long periods of time. In this scenario, new
complex transaction systems must be
designed. Logic-based transaction systems will
be essential to assure that an appropriate and
correct transaction is achieved. See Minker
(1996) for references.

Active databases consist of data that protect
their own integrity and describe the database
semantics. They are represented by the formal-
ism event-condition-action (ECA) (Xerox
Technologies 1989) and denote that whenever
an event E occurs, if condition C holds, then
trigger action A. It has a behavior of its own
beyond passively accepting statements from
users or applications. On recognition of certain
events, it invokes commands and monitors
and manages itself. It can invoke external
actions that interact with systems outside the
database and can activate a potentially infinite
set of triggers. Although declarative con-
straints are provided, the ECA formalism is
essentially procedural in nature. Zaniolo

Articles

38 AI MAGAZINE

The
role of

logic
will

be of
increasing

importance
because

of the
need to
handle
highly

complex
data.

existential quantification. DDBs and descrip-
tion logics have remained distinct, but their
goals are similar.

Heterogeneous databases integrate multiple
databases into one system that do not neces-
sarily share the same data models. There is the
need for a common logic-based language for
mediation and a formal semantics of such
databases. Work on HERMES by Subrahmanian
et al. (1994), on TSIMMIS by Chawathe et al.
(1994), and by Ramakrishnan (Miller, Ioanni-
dis, and Ramakrishnan 1994) and his col-
leagues illustrate the efforts in this area. Het-
erogeneous databases are also needed to
handle textual data. Kero and Tsur (1996)
describe the IQ system that uses a DDB
LDL++ to reason about textual information.
Language extensions for the semantic integra-
tion of DDBs is proposed by Asirelli, Renso,
and Turini (1996). The language allows media-
tors to be constructed, using a set of operators
for composing programs and message-passing
features.

Multimedia databases (Subrahmanian and
Jajodia 1995) is an emerging area for which
new data models are needed. These databases
have special problems, such as the manipula-
tion of geographic databases; picture retrieval
where a concept orthogonal to time can
appear in the database: space; and video data-
bases, where space and time are combined.
Temporal and spatial reasoning are needed.
Logic will play a major role in the develop-
ment of query languages for these new data
models and will permit deductive reasoning,
and a formal semantics will provide a firm the-
oretical basis for them.

Combining databases relates both to hetero-
geneous and multimedia systems. Here, one is
trying to combine databases that share the
same integrity constraints and schema. Such
databases arise in distributed system work and
the combining of knowledge bases. In addition
to handling problems that arise because the
combined databases might be inconsistent, one
has to handle priorities that can exist among
individual facts. A formal treatment and refer-
ences appear in Pradhan and Minker (1995).

Integrity constraints, SQO, and constraint
logic programming (CLP) are related topics.
SQO uses constraints in the form of integrity
constraints to prune the search space. These
integrity constraints introduce equalities,
inequalities, and relations into a query to help
optimize search (Chakravarthy, Grant, and
Minker 1990). CLP introduces domain con-
straints. These constraints might be equalities
or inequalities and might even be relations
(Jaffar and Maher 1994). Constraint databases

and constraint-intensive queries are required
in many advanced applications. Constraints
can capture spatial and temporal behavior that
is not possible in existing databases. Relation-
ships between these areas need to be explored
further and applied to DDBs. Spatial databases
defined in terms of polynomial inequalities are
investigated by Kuipers et al. (1996), who con-
sider termination properties of datalog pro-
grams.

Abductive reasoning is the process of find-
ing explanations for observations in a given
theory. Given a set of sentences T (a theory)
and a sentence G (an observation), the abduc-
tive task can be characterized as the problem of
finding a set of sentences (abductive explana-
tion for G) such that T < ∆ |= G, T < ∆ is con-
sistent, and ∆ is minimal with respect to set
inclusion (Kakas, Kowalski, and Toni 1993).

A comprehensive survey and critical
overview of the extension of logic program-
ming to the performance of abductive reason-
ing (abductive logic programming) is given in
Kakas, Kowalski, and Toni (1993). They outline
the framework of abduction and its applica-
tions to default reasoning and introduce an
augmentation-theoretic approach to the use of
abduction as an interpretation for negation as
failure. They show that abduction has strong
links to extended disjunctive logic program-
ming. Abduction is shown to generalize nega-
tion as failure to include not only negative but
also positive hypotheses and to include gener-
al integrity constraints. They show that abduc-
tive logic programming is related to the justifi-
cation-based truth maintenance system of
Doyle (1979). Inoue and Sakama (1996) devel-
oped a fixpoint semantics for abductive logic
programs in which the belief models are char-
acterized as the fixpoint of a disjunctive pro-
gram obtained by a suitable program transfor-
mation. For a summary of complexity results
on abductive reasoning and nonmonotonic
reasoning, see Cadoli and Schaerf (1993).

High-level robotics is an area of active
research in which logic plays a significant role.
Knowledge bases are used to solve problems in
cognition required to plan actions for robots
and deal with multiple agents in complicated
environments. Work in deductive and disjunc-
tive databases relates to this problem. In some
instances, a robot can have several options
that can be represented by disjunctions. Addi-
tional information derived from alternative
information sources such as sensors can serve
to disambiguate the possibilities. Universities
engaged in this research are the University of
Toronto (Lesperance et al. 1994), the Universi-
ty of Texas at El Paso (Baral, Gelfond, and

Abductive
reasoning
is the
process of
finding
explanations
for
observations
in a given
theory.

Articles

FALL 1997 39

many new areas that will be important in the
near- and long-term future. It is clear that the
field of logic and databases had a significant
prehistory before 1970 and a well-defined area
of research, complete with past achievements
and continued future areas of work.

In the past 20 years, we have seen logic and
databases progress from a fledgling field to a
fully developed, mature field. The new areas
that I cited that need further investigation
show that we have not nearly exhausted the
work in this field. I envision that many more
workshops will be held on this topic. Logic and
databases have helped the field of databases be
a scientific endeavor rather than an ad hoc col-
lection of techniques. We understand what
constitutes a database, a query, and an answer
to a query and where knowledge has its place.
I look forward to the next 20 years of this field.
I hope that I will have an opportunity, then, to
look back and see a field that has accomplished
much and is still vibrant. To remain vibrant,
we will have to take on some of the new chal-
lenges rather than be mired in the semantics of
more exotic databases. We will have to address
implementation issues, and we will have to be
able to provide guidance to practitioners who
will need to use the significant developments
in logic and databases.

Acknowledgments
This article is a condensation, and in some cas-
es an expansion, of an invited keynote address
presented at the Workshop on Logic in Data-
bases in San Miniato, Italy, in 1996. Those
interested in the longer version of the article
should refer to Minker (1996). A number of my
colleagues contributed their thoughts on what
they considered to be the significant develop-
ments in the field, including Robert Demo-
lombe, Hervé Gallaire, Georg Gottlob, John
Grant, Larry Henschen, Bob Kowalski, Jean-
Marie Nicolas, Raghu Ramakrishnan, Kotagiri
Ramamohanarao, Ray Reiter, and Carlo Zanio-
lo. Many of my former and current students
also contributed thoughts, including Sergio
Alvarez, Chitta Baral, Jose Alberto Fernández,
Terry Gaasterland, Parke Godfrey, Jarek Gryz,
Jorge Lobo, Sean Luke, and Carolina Ruiz.
Although many of the views reflected in the
article might be shared by those who made
suggestions, I take full responsibility for them.
The full paper is dedicated in honor of Hervé
Gallaire and Jean-Marie Nicolas with whom I
have worked as co-author, co-editor, colleague,
and friend and who have helped to make the
field of deductive databases a reality. Support
for this article was received from the National
Science Foundation under grant IRI 9300691.

Provetti 1996), the University of Texas at
Austin (Gelfond and Lifschitz 1993), and the
University of Linkoping (Sandewall 1994).
Kowalski and Sadri (1996) discuss a unified
agent architecture that combines rationality
with reactivity that relates to this topic.

Applications of DDB techniques will be
important. Greater emphasis is required to
apply DDB technology to realistic problems.
DDBs have been shown to be important for
both relational and deductive systems on such
topics as SQO (Chakravarthy, Grant, and
Minker 1990), cooperative answering (Gaaster-
land, Godfrey, and Minker 1992), and global
information systems and mobile computing
(Levy et al. 1995).

Commercial implementations of DDBs and
DOODs are needed. The deductive model of
databases is beginning to take hold, evidenced
by the textbook by Abiteboul, Hull, and Vianu
(1995). The prospect that the ADITI (Ramamo-
hanarao 1993) system might be available in a
year and the applications for which the DDB
VALIDITY are being used indicate that progress is
being made in developing a commercial DDB.
The merger of object-oriented and deductive
formalisms is taking place, as illustrated by the
proceedings of the DOOD conference series
(Ling, Mendelzon, and Vieille 1995; Ceri,
Tanaka, and Tsur 1993; Delobel, Kifer, and
Masunaga 1991; Kim, Nicolas, and Nishio
1989). That the VALIDITY (Friesen, Lefebvre, and
Vielle 1996) system is currently in use by cus-
tomers indicates that the object-oriented and
deductive formalisms are soon to be available
commercially. Additional features will be
required for commercial systems such as coop-
erative answering (Gaasterland, Godfrey, and
Minker 1992a) and arithmetic and aggregate
operators (Dobbie and Topor 1996).

It is clear from this discussion that logic and
databases can contribute significantly to a
large number of exciting new topics. Hence,
the field of logic and databases will continue to
be a productive area of research and imple-
mentation.

Summary
I discussed major accomplishments that have
taken place in logic and databases during the
20 years since 1976. Among these accomplish-
ments are the extension of relational data-
bases, the development of the semantics and
complexity of these alternative databases, the
ability to permit knowledge base systems to be
represented and developed, and the use of log-
ic programming and DDBs to implement non-
monotonic reasoning systems. I discussed

Logic and
databases

have helped
the field

of databases
be a

scientific
endeavor

rather than
an ad hoc
collection

of
techniques.

We
understand

what
constitutes a

database,
a query,
and an
answer

to a query
and where
knowledge

has its
place.

Articles

40 AI MAGAZINE

Note
1. This subsection reflects comments made at the
Workshop on Logic in Databases in San Miniato,
Italy, 1 to 2 July, 1996, in the panel session, Deduc-
tive Databases: Challenges, Opportunities, and
Future Directions, by Arno Siebes, Shalom Tsur, Jeff
Ullman, Laurent Vieille, and Carlo Zaniolo, and in a
personal communication by Jean-Marie Nicolas. I
am wholly responsible for the views expressed in
this subsection.

References
Abiteboul, S., and Grumback, S. 1991. A Rule-Based
Language with Functions and Sets. ACM Transactions
on Database Systems 16(1): 1–30.

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Founda-
tions of Databases. Reading, Mass.: Addison-Wesley.

Apt, K., and Bol, R. 1994. Logic Programming and
Negation: A Survey. Journal of Logic Programming
19–20: 9–71.

Apt, K.; Blair, H.; and Walker, A. 1988. Towards a
Theory of Declarative Knowledge. In Foundations of
Deductive Databases and Logic Programming, ed. J.
Minker, 89–148. San Francisco, Calif.: Morgan Kauf-
mann.

Asirelli, P.; Renso, C.; and Turini, F. 1996. Language
Extensions for Semantic Integration of Deductive
Databases. In Logic in Databases (LID’96), eds. D.
Pedreschi and C. Zaniolo, 415–434. New York:
Springer-Verlag.

Bancilhon, F.; Maier, D.; Sagiv, Y.; and Ullman, J.
1986. Magic Sets and Other Strange Ways to Imple-
ment Logic Programs. In Proceedings of the ACM
Symposium on Principles of Database Systems, 1–15.
New York: Association of Computing Machinery.

Baral, C., and Gelfond, M. 1994. Logic Programming
and Knowledge Representation. Journal of Logic Pro-
gramming 19–20: 73–148.

Baral, C., and Lobo, J. 1996. Formal Characterization
of Active Databases. In Logic in Databases (LID’96),
eds. D. Pedreschi and C. Zaniolo, 195–215. New
York: Springer-Verlag.

Baral, C.; Gelfond, M.; and Provetti, A. 1997. Repre-
senting Actions: Laws, Observations, and Hypothe-
sis. Journal of Logic Programming 31(1–3): 201–243.

Baral, C.; Lobo, J.; and Minker, J. 1990a. Generalized
Disjunctive Well-Founded Semantics for Logic Pro-
grams: Declarative Semantics. In Proceedings of the
Fifth International Symposium on Methodologies for
Intelligent Systems, 465–473. New York: North Hol-
land.

Baral, C.; Lobo, J.; and Minker, J. 1990b. Generalized
Disjunctive Well-Founded Semantics for Logic Pro-
grams: Procedural Semantics. In Proceedings of the
Fifth International Symposium on Methodologies for
Intelligent Systems, 456–464. New York: North Hol-
land.

Beeri, C., and Ramakrishnan, R. 1991. On the Power
of Magic. Journal of Logic Programming 10(3–4):
255–300.

Beeri, C.; Naqvi, S.; Shmueli, O.; and Tsur, S. 1991.
Set Constructors in a Logic Database Language. Jour-
nal of Logic Programming 10(3–4): 181–253.

Bell, C.; Nerode, A.; Ng, R.; and Subrahmanian, V.
1993. Implementing Stable Model Semantics by Lin-
ear Programming. In Proceedings of the 1993 Inter-
national Workshop on Logic Programming and
Non-Monotonic Reasoning, June, Lisbon, Portugal.

Ben-Eliyahu, R., and Dichter, R. 1994. Propositional
Semantics for Disjunctive Logic Programs. Annals of
Mathematics and Artificial Intelligence 12:53–87.

Ben-Eliyahu, R., and Palopoli, L. 1994. Reasoning
with Minimal Models: Efficient Algorithms and
Applications. In Proceedings of the Fourth International
Conference on the Principles of Knowledge Representa-
tion and Reasoning, 39–50. San Francisco, Calif.: Mor-
gan Kaufmann.

Ben-Eliyahu, R.; Palopoli, L.; and Zemlyanker, V.
1996. The Expressive Power of Tractable Disjunction.
Paper presented at the Twelfth European Conference
on Artificial Intelligence (ECAI96), 12–16 August,
Budapest, Hungary.

Blaustein, B. 1981. Enforcing Database Assertions:
Techniques and Applications. Ph.D. thesis, Comput-
er Science Department, Harvard University.

Brass, S., and Dix, J. 1995. A General Approach to
Bottom-Up Computation of Disjunctive Semantics.
In Nonmonotonic Extensions of Logic Programming, eds.
J. Dix, L. Pereira, and T. Przymusinski, 127–155. Lec-
ture Notes in Computer Science 927. New York:
Springer-Verlag.

Bry, F. 1990. Query Evaluation in Recursive Databas-
es: Bottom-Up and Top-Down Reconciled. Data and
Knowledge Engineering 5:289–312.

Cacace, F.; Ceri, S.; Crespi-Reghizzi, S.; and Zicari, R.
1990. Integrating Object-Oriented Data Modeling
with a Rule-Based Programming Paradigm. In Pro-
ceedings of the ACM SIGMOD Conference on Man-
agement of Data, 225–236. New York: Association of
Computing Machinery.

Cadoli, M. 1996. Panel on “Knowledge Compilation
and Approximation”: Terminology, Questions, Ref-
erences. In Proceedings of the Fourth International
Symposium on Artificial Intelligence and Mathemat-
ics (AI/Math-96), 183–186. Available from Martin
Columbic, Bar-Ilan University, Department of Com-
puter Science, Tel Aviv, Israel.

Cadoli, M. 1993. Semantical and Computational
Aspects of Horn Approximations. In Proceedings of
the Thirteenth International Joint Conference on
Artificial Intelligence, 39–44. Menlo Park, Calif.:
International Joint Conferences on Artificial
Intelligence.

Cadoli, M., and Lenzerini, M. 1994. The Complexity
of Closed-World Reasoning and Circumscription.
Journal of Computer and Systems Science 43:165–211.

Cadoli, M., and Schaerf, M. 1993. A Survey of Com-
plexity Results for Non-Monotonic Logics. Journal of
Logic Programming 13:127–160.

Ceri, S.; Tanaka, K.; and Tsur, S., eds. 1993. Proceed-
ings of the Third International Conference on Deductive
and Object-Oriented Databases—DOOD’93. Heidel-
berg: Springer-Verlag.

Articles

FALL 1997 41

Decker, H. 1986. Integrity Enforcement on Deduc-
tive Databases. In Proceedings of the First International
Conference on Expert Database Systems, 381–395. Men-
lo Park, Calif.: Benjamin Cummings.

Delobel, C.; Kifer, M.; and Masunaga, Y., eds. 1991.
Proceedings of the Second International Conference on
Deductive and Object-Oriented Databases (DOOD’91).
Heidelberg: Springer-Verlag.

del Val, A. 1995. An Analysis of Approximate Knowl-
edge Compilation. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Demolombe, R., and Jones, A. J. I. 1996. Integrity
Constraints Revisited. Journal of the IGPL (Interest
Group in Pure and Applied Logics): An Electronic Journal
on Pure and Applied Logic 4(3): 369–383.

Dix, J. 1992. A Framework for Representing and
Characterizing Semantics of Logic Programs. In Prin-
ciples of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference (KR ‘92),
eds. B. Nebel, C. Rich, and W. Swartout, 591–602.
San Francisco, Calif.: Morgan Kaufmann.

Dobbie, G., and Topor, R. 1996. Arithmetic and
Aggregate Operators in Deductive Object-Oriented
Databases. In Logic in Databases (LID’96), eds. D.
Pedreschi and C. Zaniolo, 399–407. New York:
Springer-Verlag.

Doyle, J. 1979. Truth Maintenance System. Artificial
Intelligence 12(3): 231–272.

Eiter, T., and Gottlob, G. 1995. On the Computation
Cost of Disjunctive Logic Programming: Proposi-
tional Case. Annals of Mathematics and Artificial Intel-
ligence 15(3–4): 289–323.

Fernández, J., and Minker, J. 1995. Bottom-Up Com-
putation of Perfect Models for Disjunctive Theories.
Journal of Logic Programming 25(1): 33–51.

Fernández, J., and Minker, J. 1992. Semantics of Dis-
junctive Deductive Databases. In Proceedings of the
International Conference on Database Theory, 332–356.
Berlin: Springer-Verlag.

Fernández, J. A., and Minker, J. 1991. Bottom-Up
Evaluation of Hierarchical Disjunctive Deductive
Databases. In Logic Programming Proceedings of the
Eighth International Conference, ed. K. Furukawa,
660–675. Cambridge, Mass.: MIT Press.

Fernández, J.; Grant, J.; and Minker, J. 1996. Model-
Theoretic Approach to View Updates in Deductive
Databases. Journal of Automated Reasoning 17(2):
171–197.

Fernández, J. A.; Lobo, J.; Minker, J.; and Subrahman-
ian, V. 1993. Disjunctive LP + Integrity Constraints =
Stable Model Semantics. Annals of Mathematics and
Artificial Intelligence 8(3–4): 449–474.

Fitting, M. 1985. A Kripke-Kleene Semantics for Log-
ic Programs. Journal of Logic Programming 2:295–312.

Friesen, O.; Lefebvre, A.; and Vieille, L. 1996.
VALIDITY: Applications of a DOOD System. In Proceed-
ings of the Fifth International Conference on Extending
Database Technology—EDBT’96, 131–134. Lecture
Notes in Computer Science 1057. New York:
Springer-Verlag.

Chakravarthy, U. S.; Grant, J.; and Minker, J. 1990.
Logic-Based Approach to Semantic Query Optimiza-
tion. ACM Transactions on Database Systems 15(2):
162–207.

Chang, C. 1981. On Evaluation of Queries Contain-
ing Derived Relations. In Advances in Database Theo-
ry, Volume 1, ed. H. G. J. M. J.-M. Nicolas, 235–260.
New York: Plenum.

Chang, C. 1978. DEDUCE 2: Further Investigations of
Deduction in Relational Databases. In Logic and
Databases, ed. H. G. J. Minker, 201–236. New York:
Plenum.

Chang, C. 1976. DEDUCE—A Deductive Query Lan-
guage for Relational Databases. In Pattern Recognition
and Artificial Intelligence, ed. C. Chen, 108–134. San
Diego, Calif.: Academic.

Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ire-
land, K.; Papakonstantinou, Y.; Ullman, J.; and
Widom, J. 1994. The TSIMMIS Project: Integration of
Heterogeneous Information Sources. Paper present-
ed at IPSJ Conference, October, Tokyo, Japan.

Chen, W., and Warren, D. 1993. A Goal-Oriented
Approach to Computing Well-Founded Semantics.
Journal of Logic Programming 17(2–4): 279–300.

Chimenti, D.; Gamboa, R.; Krishnamurthy, R.;
Naqvi, S.; Tsur, S.; and Zaniolo, C. 1990. The LDL
System Prototype. IEEE Transactions on Knowledge
and Data Engineering 2(1): 76–90.

Chomicki, J. 1995. Efficient Checking of Temporal
Integrity Constraints Using Bounded History Encod-
ing. ACM Transactions on Database Systems 20(2):
111–148.

Chu, W. W.; Chen, Q.; and Merzbacher, M. A. 1994.
COBASE: A Cooperative Database System. In Nonstan-
dard Queries and Nonstandard Answers, Studies in Logic
and Computation 3, eds. R. Demolombe and T.
Imielinski, 41–73. Oxford, U.K.: Clarendon.

Clark, K. L. 1978. Negation as Failure. In Logic and
Data Bases, eds. H. Gallaire and J. Minker, 293–322.
New York: Plenum.

Codd, E. 1970. A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM
13(6): 377–387.

Colmerauer, A.; Kanoui, H.; Pasero, R.; and Roussel,
P. 1973. Un Systeme de Communication Homme-
Machine en Francais (A System of Man-Machine
Communication in French). Technical Report,
Groupe de Intelligence Artificielle Universitae de
Aix-Marseille II, Marseille.

Computer Corporation. 1967. Relational Structures
Research. Technical Report, Computer Corporation
of America, Cambridge, Massachusetts.

Date, C. 1995. An Introduction to Database Systems,
6th ed. Reading, Mass.: Addison-Wesley.

Decker, H. 1991. On the Declarative, Operational,
and Procedural Semantics of Disjunctive Computa-
tional Theories. In Proceedings of the Second Inter-
national Workshop on the Deductive Approach to
Information Systems and Databases, 9–11 Septem-
ber, Aiguablava, Spain.

Articles

42 AI MAGAZINE

Friesen, O.; Gauthier-Villars, G.; Lefebvre, A.; and
Vieille, L. 1995. Applications of Deductive Object-
Oriented Databases Using DEL. In Applications of Logic
Databases, ed. R. Ramakrishnan, 1–22. New York:
Kluwer Academic.

Gaasterland, T., and Lobo, J. 1993. Processing Nega-
tion and Disjunction in Logic Programs through
Integrity Constraints. Journal of Intelligent Informa-
tion Systems 2(3): 225–243.

Gaasterland, T.; Godfrey, P.; and Minker, J. 1992a. An
Overview of Cooperative Answering. Journal of Intel-
ligent Information Systems 1(2): 123–157.

Gaasterland, T.; Godfrey, P.; and Minker, J. 1992b.
Relaxation as a Platform for Cooperative Answering.
Journal of Intelligent Information Systems 1:293–321.

Gaasterland, T.; Godfrey, P.; Minker, J.; and Novik, L.
1992. A Cooperative Answering System. In Proceed-
ings of the Logic Programming and Automated Reason-
ing Conference, ed. A. Voronkov, 478–480. Lecture
Notes in Artificial Intelligence 624. New York:
Springer-Verlag.

Gaasterland, T.; Godfrey, P.; Minker, J.; and Novik, L.
1992. A Cooperative Answering System. In Proceed-
ings of the Logic Programming and Automated Reason-
ing Conference, ed. A. Voronkov, 478–480. Lecture
Notes in Artificial Intelligence 624. New York:
Springer-Verlag.

Gallaire, H., and Minker, J., eds. 1978. Logic and
Databases. New York: Plenum.

Gallaire, H.; Minker, J.; and Nicolas, J.-M., eds.
1984a. Advances in Database Theory, Volume 2. New
York: Plenum.

Gallaire, H.; Minker, J.; and Nicolas, J.-M. 1984b.
Logic and Databases: A Deductive Approach. ACM
Computing Surveys 16(2): 153–185.

Gallaire, H.; Minker, J.; and Nicolas, J.-M., eds. 1981.
Advances in Database Theory, Volume 1. New York:
Plenum.

Gelfond, M., and Lifschitz, V. 1993. Representing
Actions and Change by Logic Programs. Journal of
Logic Programming 17(2–4): 301–323.

Gelfond, M., and Lifschitz, V. 1991. Classical Nega-
tion in Logic Programs and Disjunctive Databases.
New Generation Computing 9:365–385.

Gelfond, M., and Lifschitz, V. 1990. Logic Programs
with Classical Negation. In Proceedings of the Seventh
International Conference on Logic Programming, eds. D.
Warren and P. Szeredi, 579–597. Cambridge, Mass.:
MIT Press.

Gelfond, M., and Lifschitz, V. 1988. The Stable Mod-
el Semantics for Logic Programming. In Proceedings
of the Fifth International Conference and Symposium on
Logic Programming, eds. R. Kowalski and K. Bowen,
1070–1080. Cambridge, Mass.: MIT Press.

Godfrey, P.; Gryz, J.; and Minker, J. 1996. Semantic
Query Evaluation for Bottom-Up Evaluation. In Pro-
ceedings of the Ninth International Symposium on
Methodologies for Intelligent Systems, June,
Zakopane, Poland.

Gottlob, G. 1994. Complexity and Expressive Power
of Disjunctive Logic Programming (Research
Overview). In International Logic Programming Sympo-
sium ILPS’94, ed. M. Bruynooghe, 23–42. Cambridge,
Mass.: MIT Press.

Green, C., and Raphael, B. 1968a. Research in Intel-
ligent Question-Answering Systems. In Proceedings
of the ACM Twenty-Third National Conference,
169–181. New York: Association of Computing
Machinery.

Green, C., and Raphael, B. 1968b. The Use of Theo-
rem-Proving Techniques in Question-Answering Sys-
tems. In Proceedings of the Twenty-Third ACM
National Conference. New York: Association of
Computing Machinery.

Hammer, M., and Zdonik, S. 1980. Knowledge-Based
Query Processing. In Proceedings of the Sixth Inter-
national Conference on Very Large Data Bases,
137–147. Washington, D.C.: IEEE Computer Society.

Harel, D. 1980. Review Number 36,671 of Logic and
Data Bases by H. Gallaire and J. Minker. Computing
Reviews 21(8): 367–369.

Hill, R. 1974. Lush Resolution and Its Completeness.
Technical Report, DCL Memo 78, Department of
Artificial Intelligence, University of Edinburgh.

Inoue, K., and Sakama, C. 1996. A Fixpoint Charac-
terization of Abductive Logic Programs. Journal of
Logic Programming 27(2): 107–136.

Jaffar, J., and Maher, M. 1994. Constraint Logic Pro-
gramming: A Survey. Journal of Logic Programming
19–20: 503–581.

Jeusfeld, M., and Staudt, M. 1993. Query Optimiza-
tion in Deductive Object Bases. In Query Processing
for Advanced Database Applications, eds. G. Vossen, J.
C. Feytag, and D. Maier. San Francisco, Calif.: Mor-
gan Kaufmann.

Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1993.
Abductive Logic Programming. Journal of Logic and
Computation 6(2): 719–770.

Kautz, H., and Selman, B. 1992. Forming Concepts
for Fast Inference. In Proceedings of the Tenth
National Conference on Artificial Intelligence,
786–793. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Kellogg, C.; Klahr, P.; and Travis, L. 1978. Deductive
Planning and Pathfinding for Relational Data Bases.
In Logic and Data Bases, eds. H. Gallaire and J.
Minker, 179–200. New York: Plenum.

Kero, B., and Tsur, S. 1996. The CALLIGRAPHIC IQ Sys-
tem: A Deductive Database Information Lens for
Reasoning about Textual Information. In Logic in
Databases (LID’96), eds. D. Pedreschi and C. Zaniolo,
377–395. New York: Springer-Verlag.

Kiessling, W., and Schmidt, H. 1994. DECLARE and SDS:
Early Efforts to Commercialize Deductive Database
Technology. VLDB Journal 3(2): 211–243.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical Foun-
dations of Object-Oriented and Frame-Based Lan-
guages. Journal of the ACM 42(4): 741–843.

Articles

FALL 1997 43

Levy, A., and Sagiv, Y. 1995. Semantic Query Opti-
mization in Datalog Programs. In Principles of Data-
base Systems 1995 (PODS95), 163–173. New York:
Association of Computing Machinery.

Levy, A.; Rajaraman, A.; and Ordille, J. 1996. Query-
ing Heterogeneous Information Sources Using
Source Descriptions. In Proceedings of the Twenty-Sec-
ond Very Large Data Base Conference, 251–262. San
Francisco, Calif.: Morgan Kaufmann.

Levy, A.; Mendelzon, A.; Sagiv, Y.; and Srivastava, D.
1995. Answering Queries Using Views. In Proceed-
ings of the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems
(PODS-95), 95–104. New York: Association of Com-
puting Machinery.

Ling, T.-W.; Mendelzon, A.; and Vieille, L., eds. 1995.
Proceedings of the Fourth International Conference on
Deductive and Object-Oriented Databases (DOOD’95).
LNCS 1013. Heidelberg: Springer-Verlag.

Lloyd, J. W., and Topor, R. W. 1985. A Basis for
Deductive Database Systems. Journal of Logic Pro-
gramming 2(2): 93–109.

Lobo, J.; Minker, J.; and Rajasekar, A. 1992. Founda-
tions of Disjunctive Logic Programming. Cambridge,
Mass.: MIT Press.

Loveland, D.; Reed, D.; and Wilson, D. 1993. SATCH-
MORE: SATCHMO with Relevancy. Technical report, CS-
1993-06, Department of Computer Science, Duke
University.

McCarthy, J. 1980. Circumscription—A Form of
Non-Monotonic Reasoning. Artificial Intelligence
13:27–39.

McDermott, D., and Doyle, J. 1980. Nonmonotonic
Logic I. Artificial Intelligence 13:41–72.

McSkimin, J., and Minker, J. 1977. The Use of a
Semantic Network in Deductive Question-Answer-
ing Systems. In Proceedings of the Fifth Internation-
al Joint Conference on Artificial Intelligence, 50–58.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Manthey, R., and Bry, F. 1988. SATCHMO: A Theorem
Prover Implemented in PROLOG. In Proceedings of the
Ninth International Conference on Automated Deduc-
tion (CADE), 415–434. Lecture Notes in Computer
Science 310. New York: Springer-Verlag.

Martin, C., and Sistac, J. 1996. Applying Transition
Rules to Bitemporal Deductive Databases for Integri-
ty Constraint Checking. In Logic in Databases
(LID’96), eds. D. Pedreschi and C. Zaniolo, 111–128.
New York: Springer-Verlag.

Melton, J. 1996. An SQL3 Snapshot. In Proceedings of
the Twelfth International Conference on Data Engi-
neering, 666–672. Washington, D.C.: IEEE Comput-
er Society.

Melton, J., and Simon, A. R. 1993. Understanding the
New SQL: A Complete Guide. San Francisco, Calif.: Mor-
gan Kaufmann.

Miller, R.; Ioannidis, Y.; and Ramakrishnan, R. 1994.
Translation and Integration of Heterogeneous
Schemas: Bridging the Gap between Theory and
Practice. Information Systems 19(1): 3–31.

Kim, W.; Nicolas, J.-M.; and Nishio, S., eds. 1990.
Proceedings of the First International Conference on
Deductive and Object-Oriented Databases (DOOD’89).
Amsterdam: North-Holland.

King, J. 1981. QUIST: A System for Semantic Query
Optimization in Relational Databases. In Proceed-
ings of the Seventh International Conference on
Very Large Data Bases, 510–517. Washington, D.C.:
IEEE Computer Society.

Kowalski, R. 1978. Logic for Data Description. In Logic
and Data Bases, ed. H. G. J. Minker, 77–102. New York:
Plenum.

Kowalski, R. 1974. Predicate Logic as a Programming
Language. In Proceedings of the International Feder-
ation for Information Processing (World Computer
Congress) 4, 569–574. Amsterdam: North-Holland.

Kowalski, R., and Sadri, F. 1996. Toward a Unified
Agent Architecture That Combines Rationality with
Reactivity. In Logic in Databases (LID’96), eds. D.
Pedreschi and C. Zaniolo, 131–150. New York:
Springer-Verlag.

Kowalski, R. A. 1975. A Proof Procedure Using Con-
nection Graphs. Journal of the ACM 22(4): 572–595.

Kowalski, R. A., and Kuehner, D. 1971. Linear Reso-
lution with Selection Function. Artificial Intelligence
2:227–260.

Kuhns, J. 1967. Answering Questions by Computer:
A Logical Study. Technical Report, The Rand Corpo-
ration, Santa Monica, California.

Kuipers, B.; Paredaens, J.; Smits, M.; and den Buss-
che, J. V. 1996. Termination Properties of Spatial Dat-
alog Programs. In Logic in Databases (LID’96), eds. D.
Pedreschi and C. Zaniolo, 95–109. New York:
Springer-Verlag.

Laurent, D., and Vrain, C. 1996. Learning Query
Rules for Optimizing Databases with Update Rules.
In Logic in Databases (LID’96), eds. D. Pedreschi and
C. Zaniolo, 173–192. New York: Springer-Verlag.

Lefebvre, L. 1992. Towards an Efficient Evaluation of
Recursive Aggregates in Deductive Databases. Paper
presented at the Fourth International Conference on
Fifth-Generation Computer Systems (FGCS), 1–5
June, Tokyo, Japan.

Leone, N., and Rullo, P. 1992. The Safe Computation
of the Well-Founded Semantics for Logic Program-
ming. Information Systems 17(1): 17–31.

Leone, N.; Rullo, P.; and Scarcello, F. 1996. Stable
Model Checking for Disjunctive Programs. In Logic
in Databases (LID’96), eds. D. Pedreschi and C. Zan-
iolo, 281–294. New York: Springer-Verlag.

Lesperance, Y.; Levesque, H.; Lin, F.; Marcu, D.; Reit-
er, R.; and Scherl, R. 1994. A Logical Approach to
High-Level Robot Programming—A Progress Report.
Paper presented at the 1994 AAAI Fall Symposium
on Control of the Physical World by Intelligent Sys-
tems, November, New Orleans.

Levien, R., and Maron, M. 1965. Relational Data File:
A Tool for Mechanized Inference Execution and Data
Retrieval. The Rand Corporation, Santa Monica, Cal-
ifornia.

Articles

44 AI MAGAZINE

Minker, J. 1996. Logic and Databases: A 20-Year Ret-
rospective. In Logic in Databases, eds. D. Pedreschi
and C. Zaniolo, 3–57. New York: Springer-Verlag.

Minker, J. 1993. An Overview of Nonmonotonic
Reasoning and Logic Programming. Journal of Logic
Programming 17(2–4): 95–126.

Minker, J. 1989. Toward a Foundation of Disjunctive
Logic Programming. In Proceedings of the North Amer-
ican Conference on Logic Programming, 121–125. Cam-
bridge, Mass.: MIT Press.

Minker, J., ed. 1988a. Foundations of Deductive Data-
bases and Logic Programming. San Francisco, Calif.:
Morgan Kaufmann.

Minker, J. 1988b. Perspectives in Deductive Data-
bases. Journal of Logic Programming 5:33–60.

Minker, J. ed. 1986. Proceedings of the Workshop on
Foundations of Deductive Databases and Logic Pro-
gramming. College Park, Md.: University of Mary-
land Institute for Advanced Computer Studies.

Minker, J. 1982. On Indefinite Databases and the
Closed-World Assumption. In Lecture Notes in Com-
puter Science 138, 292–308. New York: Springer Ver-
lag.

Minker, J. 1978. Search Strategy and Selection Func-
tion for an Inferential Relational System. Transac-
tions on Data Base Systems 3(1): 1–31.

Minker, J., and Nicolas, J.-M. 1982. On Recursive
Axioms in Deductive Databases. Information Systems
7(4): 1–15.

Minker, J., and Rajasekar, A. 1990. A Fixpoint Seman-
tics for Disjunctive Logic Programs. Journal of Logic
Programming 9(1): 45–74.

Minker, J., and Ruiz, C. 1996. Mixing a Default Rule
with Stable Negation. In Proceedings of the Fourth
International Symposium on Artificial Intelligence
and Mathematics, 122–125. Available from Martin
Columbic, Bar-Ilan University, Department of Com-
puter Science, Tel Aviv, Israel.

Minker, J., and Ruiz, C. 1994. Semantics for Disjunc-
tive Logic Programs with Explicit and Default Nega-
tion. Fundamenta Informaticae 20(3–4): 145–192.

Minker, J., and Sable, J. 1970. Relational Data System
Study. Technical Report RADC-TR-70-180, Rome Air
Development Center, Air Force Systems Command,
Griffiss Air Force Base, New York.

Moore, R. 1985. Semantical Considerations on Non-
monotonic Logic. Artificial Intelligence 25:75–94.

Morishita, S.; Derr, M.; and Phipps, G. 1993. Design
and Implementation of the GLUE-NAIL Database Sys-
tem. In Proceedings of the ACM-SIGMOD’93 Con-
ference, 147–167. New York: Association of Comput-
ing Machinery.

Muggleton, S., and DeRaedt, L. 1994. Inductive Log-
ic Programming: Theory and Methods. Journal of
Logic Programming 19–20:629–679.

Mumick, I.; Finkelstein, S.; Pirahesh, H.; and
Ramakrishnan, R. 1990. Magic Is Relevant. In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 247–258. New York:
Association of Computing Machinery.

Naughton, J., and Sagiv, Y. 1987. A Decidable Class
of Bounded Recursions. In Proceedings of the Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 227–236. New York:
Association of Computing Machinery.

Ng, R., and Subrahmanian, V. 1993. Probabilistic
Logic Programming. Information and Computation
101(2): 150–201.

Nicolas, J.-M. 1979. Logic for Improving Integrity
Checking in Relational Databases. Acta Informatica
18(3): 227–253.

Nicolas, J.-M., and Syre, J. C. 1974. Natural Question-
Answering and Automatic Deduction in System Syn-
tex. In Proceedings of the IFIP Congress 1974, 595–599.
Berlin: Springer-Verlag.

Pearce, P., and Wagner, G. 1989. Logic Programming
with Strong Negation. In Proceedings of the Interna-
tional Workshop on Extensions of Logic Programming,
ed. P. Schroeder-Heister, 311–326. Lecture Notes in
Artificial Intelligence. New York: Springer-Verlag.

Piatetsky-Shapiro, G., and Frawley, W. J., eds. 1991.
Knowledge Discovery in Databases. Menlo Park, Calif.:
AAAI Press.

Powell, P. 1977. Answer-Reason Extraction in a Par-
allel Relational Data Base System. Master’s thesis,
Department of Computer Science, University of
Maryland.

Pradhan, S., and Minker, J. 1995. Combining Data-
log Databases Using Priorities. Journal of Intelligent
Cooperative Information Systems 4(3): 231–260.

Przymusinski, T. 1995. Static Semantics for Normal
and Disjunctive Logic Programs. Annals of Mathe-
matics and Artificial Intelligence 14:323–357.

Przymusinski, T. 1990. Stationary Semantics for Dis-
junctive Logic Programs and Deductive Databases.
In Proceedings of the North American Conference on
Logic Programming, eds. S. Debray and M.
Hermenegildo, 40–62. Cambridge, Mass.: MIT Press.

Przymusinski, T. C. 1991. Stable Semantics for Dis-
junctive Programs. New Generation Computing
9:401–424.

Przymusinski, T. C. 1990. Extended Stable Semantics
for Normal and Disjunctive Programs. In Proceedings
of the Seventh International Logic Programming Confer-
ence, eds. D. Warren and P. Szeredi, 459–477. Cam-
bridge, Mass.: MIT Press.

Przymusinski, T. C. 1988. On the Declarative Seman-
tics of Deductive Databases and Logic Programming.
In Foundations of Deductive Databases and Logic Pro-
gramming, eds. J. Minker, 193–216. San Francisco,
Calif.: Morgan Kaufmann.

Ramamohanarao, K. 1993. An Implementation
Overview of the ADITI Deductive Database System. In
Third International Conference (DOOD’93), 184–203.
Lecture Notes in Computer Science 760. New York:
Springer-Verlag.

Ramakrishnan, R. 1995. Applications of Logic Data-
bases. New York: Kluwer Academic.

Ramakrishnan, R., and Ullman, J. 1995. A Survey of
Research on Deductive Database Systems. Journal of
Logic Programming 23(2): 125–149.

Articles

FALL 1997 45

Selman, B., and Kautz, H. 1996. Knowledge Compi-
lation and Theory Approximation. Journal of the
ACM 43(2): 193–224.

Shepherdson, J. 1988. Negation in Logic Program-
ming. In Foundations of Deductive Databases and Logic
Programming, ed. J. Minker, 19–88. San Francisco,
Calif.: Morgan Kaufmann.

Sickel, S. 1976. A Search Technique for Clause Inter-
connectivity Graphs. IEEE Transactions on Computers
C-25(8): 823–835.

Sistla, P., and Wolfson, O. 1995. Temporal Condi-
tions and Integrity Constraint Checking in Active
Database Systems. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management
of Data, 269–280. New York: Association of Comput-
ing Machinery.

Snodgrass, R. 1987. The Temporal Query Language
TQUEL. ACM Transactions on Database Systems 12(2):
247–298.

Subrahmanian, V., and Jajodia, S. 1995. Multimedia
Database Systems. New York: Springer Verlag.

Subrahmanian, V.; Adali, S.; Brink, A.; Emery, R.; Lu,
J.; Rajput, A.; Rogers, T.; and Ross, R. 1994. HERMES: A
Heterogeneous Reasoning and Mediator System.
Available from www.cs.umd.edu/projects/hermes/
overview/paper.

Tsur, S., and Zaniolo, C. 1986. LDL: A Logic-Based
Data Language. Paper presented at the VLDB Confer-
ence, 25–28 August, Kyoto, Japan.

Ullman, J. D. 1989. Principles of Database and Knowl-
edge-Base Systems, Volume II: The New Technologies.
Principles of Computer Science Series. Rockville,
Md.: Computer Science Press.

Ullman, J. D. 1988. Principles of Database and Knowl-
edge-Base Systems, Volume I. Principles of Computer
Science Series. Rockville, Md.: Computer Science.

Vaghani, J.; Ramamohanarao, K.; Kemp, D. B.; and
Stuckey, P. J. 1991. Design Overview of the ADITI

Deductive Database System. In Proceedings of the
Seventh International Conference on Data Engineer-
ing, 240–247. Washington, D.C.: IEEE Computer
Society.

van Emden, M., and Kowalski, R. 1976. The Seman-
tics of Predicate Logic as a Programming Language.
Journal of the ACM 23(4): 733–742.

Van Gelder, A. 1988. Negation as Failure Using Tight
Derivations for General Logic Programs. In Founda-
tions of Deductive Databases and Logic Programming,
ed. J. Minker, 149–176. San Francisco, Calif.: Morgan
Kaufmann.

Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The
Well-Founded Semantics for General Logic Pro-
grams. Journal of the Association for Computing
Machinery 38(3): 620–650.

Van Gelder, A.; Ross, K.; and Schlipf, J. 1988.
Unfounded Sets and Well-Founded Semantics for
General Logic Programs. In Proceedings of the Sev-
enth Symposium on the Principles of Database Sys-
tems, 221–230. New York: Association of Computing
Machinery.

Ramakrishnan, R.; Srivastava, D.; and Sudarshan, S.
1992. CORAL—Control, Relations, and Logic. In Pro-
ceedings of the Eighteenth International Conference on
Very Large Databases, ed. L.-Y. Yuan, 238–250. San
Francisco, Calif.: Morgan Kaufmann.

Raphael, B. 1968. A Computer Program for Semantic
Information Retrieval. In Semantic Information Pro-
cessing, ed. M. Minsky, 33–134. Cambridge, Mass.:
MIT Press.

Reiter, R. 1990. On Asking What a Database Knows.
In Computational Logic, ed. J. W. Lloyd. Basic
Research Series. New York: Springer-Verlag.

Reiter, R. 1988. On Integrity Constraints. In Proceed-
ings of the Second Conference on the Theoretical Aspects
of Reasoning about Knowledge, ed. M. Y. Vardi, 97–111.
San Francisco, Calif.: Morgan Kaufmann.

Reiter, R. 1984. Towards a Logical Reconstruction of
Relational Database Theory. In On Conceptual Model-
ling, eds. M. Brodie, J. Mylopoulos, and J. Schmit,
163–189. New York: Springer-Verlag.

Reiter, R. 1980. A Logic for Default Reasoning. Arti-
ficial Intelligence 13:81–132.

Reiter, R. 1978a. Deductive Question-Answering on
Relational Data Bases. In Logic and Data Bases, eds. H.
Gallaire and J. Minker, 149–177. New York: Plenum.

Reiter, R. 1978b. On Closed-World Databases. In Log-
ic and Data Bases, eds. H. Gallaire and J. Minker,
55–76. New York: Plenum.

Robinson, J. H. 1965. A Machine-Oriented Logic
Based on the Resolution Principle. Journal of the
ACM 12(1): 23–41.

Rohmer, J.; Lescoeur, R.; and Kerisit, J.-M. 1986. The
Alexander Method: A Technique for the Processing
of Recursive Axioms in Deductive Databases. New
Generation Computing 4(3): 273–285.

Ross, K. 1990. Modular Stratification and Magic Sets
for DATALOG Programs with Negation. In Proceedings
of the ACM Symposium on Principles of Database
Systems, 161–171. New York: Association of Com-
puting Machinery.

Ross, K. 1989. Well-Founded Semantics for Disjunc-
tive Logic Programs. In Proceedings of the First Interna-
tional Conference on Deductive and Object-Oriented
Databases, 352–369. New York: North Holland.

Sacca, D., and Zaniolo, C. 1986. On the Implemen-
tation of a Simple Class of Logic Queries. In Proceed-
ings of the ACM Symposium on Principles of Data-
base Systems, 16–23. New York: Association of
Computing Machinery.

Sandewall, E. 1994. The Range of Applicability of
Some Non-Monotonic Logics for Strict Inertia. Jour-
nal of Logic and Computation 4(5): 581–616.

Savitt, D.; Love, H.; and Troop, R. 1967. ASP: A New
Concept in Language and Machine Organization. In
1967 Spring Joint Computer Conference, 87–102.

Schlipf, J. 1995. Complexity and Undecidability
Results for Logic Programming. Annals of Mathemat-
ics and Artificial Intelligence 15(3-4): 257–288.

Seipel, D. 1995. Efficient Reasoning in Disjunctive
Deductive Databases. Ph.D. thesis, Department of
Computer Science, University of Tubingen.

Articles

46 AI MAGAZINE

Vieille, L. 1986. Recursive Axioms in Deductive Data-
bases: The Query-Subquery Approach. Paper present-
ed at the First International Conference on Expert
Database Systems, 1–4 April, Charleston, South Car-
olina.

Vielle, L.; Bayer, P.; and Kuechenhoff, V. 1996.
Integrity Checking and Materialized View Handling
by Update Propagation in the EKS-V1 System. In
Materialized Views, eds. A. Gupta and I. Mumick.
Cambridge, Mass.: MIT Press.

Vieille, L.; Bayer, P.; Kuechenhoff, V.; Lefebvre, A.;
and Manthey, R. 1992. The EKS-V1 System. In Proceed-
ings of Logic Programming and Automated Reasoning,
504–506. New York: Springer-Verlag.

Xerox. 1989. HIPAC: A Research Project in Active,
Time-Constrained Databases. Technical Report 187,
Xerox Advanced Information Technologies, Palo
Alto, California.

Yuan, L., and You, J.-H. 1993. Autoepistemic Circum-
scription and Logic Programming. Journal of Auto-
mated Reasoning 10:143–160.

Zaniolo, C. 1995. Active Database Rules with Trans-
action-Conscious Stable Models Semantics. In Pro-
ceedings of Deductive Object-Oriented Databases 1995,
55–72. New York: Springer-Verlag.

Jack Minker is a professor of com-
puter science in the Department
of Computer Science and the
Institute for Advanced Computer
Studies at the University of Mary-
land. His research areas are deduc-
tive databases, logic program-
ming, AI, and nonmonotonic
reasoning. He was the first chair-

man of the Department of Computer Science at the
University of Maryland from 1974 to 1979 and
chairman of the Advisory Committee on Computing
at the National Science Foundation from 1979 to
1982. In 1985, Minker received the Association for
Computing Machinery (ACM) Outstanding Contri-
bution Award for his work in human rights. He is a
fellow of the American Association for the Advance-
ment of Science, a founding fellow of the American
Association for Artificial Intelligence, a fellow of the
Institute of Electrical and Electronics Engineers, and
a founding fellow of the ACM. He received the Uni-
versity of Maryland Presidential Medal for 1996 and
is a distinguished scholar-teacher for 1997 to 1998.
His e-mail address is minker@cs.umd.edu.Subject:
IEA/AIE-98 in Cooperation with AAAI

Call for Papers (IEA/AIE-98)

11th International Conference on
Industrial & Engineering

Applications of
Artificial Intelligence &

Expert Systems

Benicassim, Castellon, Spain
June 1-4, 1998

Sponsored by: International Society of Applied Intelli-
gence; Universitat Jaume-I de Castellon; Universidad
Nacional de Educacion a Distancia (UNED), Madrid
In Cooperation with: AAAI, ACM/SIGART, CSCSI,
ECCAI, IEE, INNS, JSAI, SWT

IEA/AIE-98 will focus on methodological as well as practical aspects in the
development of KBS’s, knowledge modeling, hybrid techniques that integrate
the symbolic and connectionistic perspectives in the industrial application of AI,
and application of intelligent systems’ technology to solve real life problems.
Accepted papers, either as oral presentations or as poster panels, will be pub-
lished at full length in the proceedings. Selected papers will be published in the
International Journal of Applied Intelligence.

Authors are invited to submit by November 7, 1997, five copies of papers,
double spaced, written in English, of up to 10 pages, including figures, tables,
and references. The format should be A4 or 8 1/2 X 12 paper, in a Roman font,
12 point in size, without page numbers, and a printing area of 15.3 X 24.2cm2
(6.0 X 9.5 sq. in.). If possible, please make use of the latex/plaintex style file
available in our WWW site. In addition, one sheet must be attached including:
title, authors’ names, a list of five keywords, the topic under which the paper best
fits, the preferred presentation (oral or poster), and the corresponding author
information (name, postal and e-mail address, phone and fax numbers). This
page must also be sent by e-mail to iea98@titan.inf.uji.es before November 7,
1997.

Contributions must be sent to the Program Co-chair Prof. Angel P. del Pobil
at the address below. Conference information can be obtained from the General
Chair Prof. Moonis Ali, the Program Co-Chair Prof. del Pobil, and through our
web site.

Moonis Ali Angel P. del Pobil
General Chair, IEA/AIE-98 Program Co-chair, IEA/AIE-98
Dept. of Computer Science IEA/AIE-98 Sec., Informatics Dept.
Southwest Texas State Jaume-I Univ.,
University Campus de Penyeta Roja
San Marcos, TX 78666-4616 USA E-12071 Castellon, Spain
Phone: +1 (512) 245-3409 Phone: +34 64-345.642
FAX: +1 (512) 245-8750 FAX: +34 64-345.848
E-mail: ma04@swt.edu E-mail: iea98@titan.inf.uji.es

http://titan.inf.uji.es/iea98/

Articles

FALL 1997 47

Articles

48 AI MAGAZINE

