
■ This article describes JEEVES, one of the winning
entries in the 1996 Annual AAAI Mobile Robot
Competition and Exhibition, held as part of the
Thirteenth National Conference on Artificial In-
telligence. JEEVES tied for first place in the finals of
the competition after it won both preliminary tri-
als. A key aspect in JEEVES’s software design was
the ability to acquire a model of the environ-
ment. The model, a geometric map constructed
from sensory data gathered while the robot per-
formed its task, enabled JEEVES to sweep the arena
efficiently. It facilitated the retrieval of balls and
their delivery at the gate, and it helped to avoid
unintended collisions with obstacles. This article
argues that JEEVES’s success depended crucially on
the existence of the model. It also argues that
models are generally useful in mobile robotics—
even in tasks as simple as the one faced in this
competition.

JEEVES was the Carnegie Mellon University
entry in the Clean Up a Tennis Court
event at the 1996 Annual AAAI Mobile Ro-

bot Competition and Exhibition, held as part
of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-96). Robots compet-
ing in this event were given 15 minutes to
collect 10 randomly scattered tennis balls,
along with two self-propelled squiggle balls, in
an arena 9 by 5 meters (m) and deliver them
to a custom-built gate.

Figure 1 shows a picture of JEEVES. JEEVES was
originally built as a service robot with an eye
toward commercialization, independent of
the competition (c.f. figure 4). The light-
weight robot is equipped with a large rotating
brush, capable of capturing as many as eight
balls at a time. Apart from the brush mecha-
nisms, however, JEEVES’s hardware was not
much better than that of most of its competi-
tors. In fact, JEEVES’s visual range was extreme-
ly limited, and its on-board controller im-

posed severe limitations on the maximum
command rate.

What made JEEVES as successful as it was? A
key aspect of JEEVES’s success was that its soft-
ware integrated reactive and model-based
control. While JEEVES performed its task, it
gradually constructed a geometric map of its
environment, which modeled the following
aspects: (1) the location of the walls, (2) the
location of the gate, (3) the location of the
tennis balls, (4) the location and motion di-
rection of the squiggle balls, (5) its own loca-
tion with respect to the model, (6) its previ-
ous location, and (7) the parts of the arena
that were unexplored.

Armed with the model, it was simple to de-
termine a suitable search pattern. It was also
straightforward to determine appropriate
pickup strategies, the location of the gate, and
the appropriate time for moving there to un-
load the balls. The model was constructed on
the fly based on sensory data and did not re-
quire any additional time or maneuvers. Not
only did my team find the model-based ap-
proach to control to be extremely robust, it
also found it easy to program. Undoubtedly,
the existence of a model played the key role
in JEEVES’s success.

This article outlines the major ideas in the
JEEVES software. It also argues more generally
for the utility of models in mobile robotics.
Using JEEVES and the AAAI-96 mobile robot
competition as an example, it discusses the
role of models in scalable mobile robot archi-
tectures.

Hardware
JEEVES’s hardware was designed and built by
German design student Hans Nopper, in col-
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software received status updates from the
robot and its sensors at a frequency of 10 hertz
(Hz). Unfortunately, the maximum command
rate for changing the motion direction was on-
ly 2 Hz (or less) because of limitations of the
on-board controller. When designing the soft-
ware, special attention was also paid to the fact
that the radio link was unreliable. Often, the
remote computer did not receive status reports
for durations of several seconds, and motion
commands were frequently lost and had to be
issued multiple times. As a result, the team
avoided open-loop control wherever possible.

JEEVES’s most significant hardware advan-
tage was its brush, which proved surprisingly
capable and robust in picking up balls. JEEVES’s
most crucial handicaps were (1) the speed at
which its on-board motion controller was
willing to accept commands and (2) the ex-
tremely limited visual range. Because of these
limitations, chasing squiggle balls around was
not even an option.

Models
JEEVES’s success cannot be attributed to hard-
ware alone. Various other teams used robots
that were capable of capturing multiple balls
at a time, and some of them had a much
more responsive hardware. Instead, an impor-
tant factor in JEEVES’s success was its software,
which strongly relied on the geometric model
(map) of the environment that was built on
the fly.

This section describes the software compo-
nents involved in controlling JEEVES. With data
recorded at the competition finals as an exam-
ple, figure 2 highlights the major components
of JEEVES.

Filtering Sonar Measurements
JEEVES’s sonars exhibited the typical character-
istics of sonar sensors: They seldomly mea-
sured the distance of the nearest object with-
in their main cone; instead, they often
returned values that were significantly small-
er or larger than the correct proximity.

Contrary to a popular myth, sonar sensors
are not particularly noisy. They just do not
measure proximity. Instead, they measure the
time elapsed between emitting and receiving
a focused sound impulse. For smooth objects,
the chances of receiving a sonar echo depend
on the angle between the main sonar cone
and the reflecting object. Sound waves that
hit a wall frontally are likely to be reflected
back in the direction of the sensor, whereas
sound that hits a wall in a steep angle is likely
to be reflected away, to a direction where it

laboration with Real World Interfaces, Inc., a
leading mobile robot manufacturer. The robot
moves at an approximate maximum speed of
60 centimeters/second (cm/sec). It is equipped
with seven ultrasonic proximity sensors (only
five were used in the competition), a wide-an-
gle color camera, and a high-speed color-
based vision system manufactured by Newton
Research Labs.

Prior to the competition, the vision system
was trained to recognize yellow tennis balls,
pink squiggle balls, and cyan markers that
marked the gate. The vision system proved
extremely reliable during the competition,
benefiting from clear color cues provided by
the objects. However, the visual range of the
camera was below 1.2 m, making JEEVES one of
the most myopic robots on the stage. To pick
up balls, JEEVES used a rotating brush capable
of lifting balls into the interior of the robot.
The gate to which balls had to be delivered
consisted of a small ramp (shielded by a cur-
tain) just high enough to keep the squiggle
balls inside. To unload balls, JEEVES reversed
the direction of its brush.

JEEVES’s control software was run off board
on a remote Sun SPARC 5, with which JEEVES

communicated through a 9600-baud radio
link. The major computational load was the re-
sult of the graphic control interface; the re-
maining load was well below 20 percent of the
available computational resources. The remote
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Figure 1. JEEVES, an Entry from Carnegie Mellon University.
A large rotating brush lifts tennis balls into a ramp inside the robot’s shell.
To unload balls, JEEVES can reverse the direction of the brush. JEEVES moves
approximately 60 centimeters/second. When equipped with a basket, JEEVES

can hold approximately 100 balls—sufficiently many for a real tennis court. 
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Figure 2. This Figure Summarizes JEEVES’s Performance in the Competition Finals.
A. The robot starts without a model. B. It approaches the first wall, as indicated by the projected sonars’ measurements. C. After turning
left, JEEVES detects the first wall. D. While extending the first wall, JEEVES finds a second one. E. JEEVES turns and falsely believes to observe
a gate marker. F. After successfully capturing a tennis ball (see path), JEEVES observes the correct gate marker. G. The software continuously
corrects errors in JEEVES’s odometry, here noticeable as the angular deviation between the wall and the sonar measurements. H. The third
wall is found. I. The fourth wall is found. J. JEEVES picks up a second ball next to a wall. K. The sweep is complete, and JEEVES returns to
the correct gate. L. All balls, including the squiggle balls, are shuffled into the gate.



imity, and detecting walls is a straightforward
exercise. On JEEVES, the sonar sensors are di-
vided into three sets: (1) the left sensor, (2)
the right sensor, and (3) the three frontmost
sensors (where each sensor angle differs from
its neighbors by 15°). Within each set of sen-
sor measurements, JEEVES checked whether
the last 4 to 20 measurements corresponded
to a straight line. If this was the case, the cor-
responding line segment was considered a
piece of a wall. As such, it was used for two
purposes: (1) augmenting the map and (2)
identifying errors in the robot’s odometry.

Building Maps
Admittedly, building a map in an unpopulat-
ed arena where all walls are either parallel or
orthogonal simplifies the matter. In our previ-
ous work on indoor robot navigation, the
team developed a more sophisticated proba-
bilistic approach for building integrated met-
ric-topological maps (Thrun et al. 1997), but
the restrictive nature of the competition ring
enabled us to use the following nonproba-
bilistic approach to map building:

When the robot found its first wall seg-
ment, it was considered to be part of a wall.
The first wall segment was special in that it
determined the principle wall orientation of
the environment; all walls could only be par-

cannot be detected. The latter effect is usually
referred to as total reflection. As a result, only
some of the sonar measurements reflect prox-
imity.

Fortunately, trustworthy sonar measure-
ments were easy to identify because of the
structured nature of the competition ring. As
part of its geometric model of the environ-
ment, the robot continuously estimated its
relative orientation to the surrounding walls.
By comparing its own orientation with the
pointing direction of each individual sensor
and the orientation of the walls, JEEVES iden-
tified which sensor was orthogonal to a wall
and, thus, was likely to be correct.

In addition, sonar measurements were also
corrupted whenever the motors drew too
much power, as noticed previously. Power
consumption could be deduced from the
robot’s status report by reconstructing its ac-
celeration-deceleration when a measurement
was taken. Only those sensor values that
passed both of these filters—angle to wall and
total power consumption—were used for the
attributes that are described in the following
subsections.

Finding Wall Segments
Once sensor values are filtered appropriately,
the vast majority of them correspond to prox-

Figure 3. To Build and Use a Geometric Model, It Is Important to Know Where the Robot Is Relative to the Model.
A. This figure shows the path followed by JEEVES during the competition finals with the error-correction mechanism. B. Compare this
path with that followed without the error-correction mechanism. Without it, the final dead-reckoning error is approximately 3.9 meters
and 34°—clearly too much for any practical application. 
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allel or orthogonal to the principal wall ori-
entation. When a new wall segment was ob-
served, the robot checked if this segment was
part of an existing wall; in which case, it ex-
tended the existing wall. New walls were only
added when they were parallel or perpendicu-
lar to the principal wall orientation. Thus,
wall segments incrementally increased the
environment model. The model finally could
contain an arbitrary number of walls, as long
as they were all parallel or orthogonal to each
other.

Position Control
To use a map, JEEVES had to know its relative
location therein. Unfortunately, drift and
slippage introduce noise into dead reckoning,
which, if not compensated for, can lead to a
dramatic mismatch between the robot’s inter-
nal belief and reality. Figure 3 illustrates the
mismatch, using data from the competition
finals as an example. After traversing the
competition ring twice (approximately 15
minutes of autonomous robot operation), the
cumulated dead-reckoning error amounted to
approximately 3.9 m and 34°—clearly too
much for the map to be of any practical use.
This result illustrates the importance of posi-
tion control in map-based mobile robotics.

JEEVES used wall segments to correct for
dead-reckoning errors. Whenever it observed
a wall segment, it checked if its orientation
(modulo 90°) was reasonably close to the
global wall orientation; in which case, the dif-
ference was used to correct its internal orien-
tation. It also checked if the wall segment was
close to a wall in the model; in which case,
the spatial deviation, if any, was used to cor-
rect the robot’s internal x-y location. Both up-
dates were in proportion to the observed devi-
ation. Experimentally, the team found that
JEEVES could repeatedly operate in our universi-
ty hallways for durations of several hours
without losing its location. The position-con-
trol mechanisms were crucial for using maps
in the competition.

Target-Point Navigation
Knowing the walls and the current location
facilitates the navigation to arbitrary target
locations. Whenever possible, JEEVES ap-
proached a target point on a straight line.
JEEVES also obeyed a 30-cm safety distance to
the walls. When moving to a target point
that was within the 30-cm safety zone, it first
moved to the nearest point outside the safety
zone, then turned and moved toward the tar-
get point so that it directly faced the adjacent
wall. This two-step procedure ensured that

JEEVES did not come unnecessarily close to
walls, but if it had to, its brush would be
aligned totally with the wall—a necessary
prerequisite for picking up balls next to a wall
and dumping the balls into the gate.

Moving Parallel to Walls
JEEVES’s systematic sweeping pattern required
that the robot move parallel to a wall. It was
repeatedly required that the robot move with
as little as 5-cm side clearance parallel to a
wall at a velocity of 60 cm/sec. When moving
with that small a side clearance at full speed,
accurate localization becomes a critical issue,
particularly because the robot’s hardware pro-
hibits changes of the motion directions at a
ratio of more than 2 Hz.

JEEVES’s wall-following routines were based
on target-point navigation. To move parallel
to a wall, a target point was generated period-
ically 5 m ahead of the robot, whose distance
to the wall was approximately the desired
wall distance. This strategy was successful:
JEEVES never touched a wall unintendedly in
any single run during the entire competition.
It is difficult to imagine that a purely reactive
approach, that is, an approach that bases its
decision only on its most recent sensor input,
could have achieved the same result with the
same precision.

Systematic Exploration
A key advantage to maps is that they enable
robots to plan. For a task as simple as the one
in the competition, however, deliberative
planning was not even necessary because the
exploration pattern could be predetermined
entirely. As soon as JEEVES identified the first
wall segment, it began its systematic explo-
ration by moving parallel to it. The parallel
motion was usually terminated by a frontal
obstacle (part of a different wall), which
prompted the robot to turn around and re-
peat the same pattern at an increased dis-
tance. As soon as the robot reached a wall op-
posite to the one it discovered first, it knew
the arena had been swept systematically, and
exploration was finished.

Capturing Tennis Balls
JEEVES used two different strategies for captur-
ing a ball: (1) moving toward it and (2) not
moving toward it. JEEVES basically ignored any
tennis ball in the interior of the arena (be-
yond the 30-cm safety zone) because its
sweeping pattern systematically covered the
entire arena. It also ignored balls in a corner
because it lacked a reliable pickup strategy.
Other balls within the 30-cm safety zone
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Capturing Squiggle Balls
Squiggle balls were much harder to capture
because physical limitations prohibited JEEVES

from chasing them around. JEEVES visually
tracked the squiggle balls and made every at-
tempt to chase them. When a squiggle ball
was visible, JEEVES extrapolated the motion di-
rection from current and past observations
and moved toward the anticipated next loca-
tion of the squiggle ball. Because of the slow
command rate (2 Hz), however, squiggle balls
usually disappeared from the perceptual field
before even the second or third turning com-
mand could be issued. The reader might no-
tice that squiggle balls were the only aspect of
the environment that was not fully modeled.
JEEVES was able to detect them in a 1.2-m
range, but it forgot about them as soon as
they left its visual field.

The modeling and chasing limitations did
not impair the robot’s ability to successfully
catch both squiggle balls. For an arena as
small as the competition ring, my team
quickly learned that it was extremely likely
that both squiggle balls were captured just by
chance, within the allotted time (15 minutes
[min]). In fact, in every single run—testing,
preliminaries, and finals included—both
squiggle balls were captured within the first
10 min.

Returning to the Gate
After capturing all the balls, JEEVES was re-
quired to move to the gate and unload its
balls. The gate was marked by two cyan mark-
ers that were taped to the ground in front of
the gate. JEEVES was able to model multiple
hypotheses for the location of the gate.
Whenever it saw a cyan marker, it deter-
mined whether this marker had been seen be-
fore. If the marker had not been seen before,
it was entered into the map as a new hypoth-
esis for the location of the gate. Markers that
had been seen before were used to better esti-
mate the exact coordinates of the marker, us-
ing a weighted average algorithm.

Once JEEVES reached the other side of the
arena, it terminated its systematic sweeping
pattern and moved back to the gate, where it
reversed its brush direction to unload the
balls. If multiple hypotheses existed (as is the
case in figure 2, where the vision system acci-
dentally mistook a reflection on the ground
for a marker), it chose the one for which it
had the most sensor evidence (total number
of pixels). JEEVES maintained multiple hy-
potheses about the location of the gate be-
cause I could not train the vision system to
avoid false-positive measurements. However,

were treated differently: JEEVES moved toward
them with its brush carefully aligned with the
wall until it finally touched the wall. After
the ball was picked up, JEEVES returned to the
location where it first saw the wall to check if
the pickup was successful. If not, the same
pattern was repeated. This strategy proved ex-
tremely reliable in exhaustively picking up all
tennis balls in the arena (figure 4).

It is interesting to note that in one of the
preliminary competition runs, the team tem-
porarily modified the pickup strategy so that
the robot did not ignore balls in the interior
of the competition ring. Here, the robot
picked up interior balls directly, whenever a
ball was observed. Because actively picking
up a ball makes the robot deviate from its
preplanned sweeping path, it had to return to
the point where it first saw the ball and con-
tinue from there—quite a time-consuming
maneuver. As a result, the time required for
sweeping the arena was approximately dou-
bled, and it took the entire competition time
to sweep the arena only once.
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Figure 4. In the United States, Professional Tennis Trainers
Spend an Estimated Annual Average of $6500 of Their Cus-
tomers’ Money Letting Them Pick Up Balls—Certainly Not

the Most Beloved Aspect of the Sport.



over time, the gate usually provided orders of
magnitude more evidence than false-positive
readings.

Velocity Control
The faster a robot moves, the faster it com-
pletes the task. This simple rule led me to
make the robot almost always move with its
maximum velocity. However, sometimes it is
wise to move slower. JEEVES’s velocity was con-
trolled by the dynamic window approach de-
scribed in Fox, Burgard, and Thrun (1995). In
essence, the dynamic window approach sets
the velocity in accordance to the proximity
of obstacles, assuming the robot stays on its
current trajectory. As a result, JEEVES traveled
at its maximum speed until it approached an
obstacle; in which case, it gracefully deceler-
ated and finally halted.

The Case for Models: Scaling Up
JEEVES’s control strategy was based on a cen-
tralized geometric model. As described in a
previous subsection, JEEVES memorized the lo-
cation of walls, balls, and gates—basically ev-
erything there was to be known for the task
of picking up balls. JEEVES’s control strategies
benefited from the existence of this model.
For example, I quickly learned that to pick up
a ball next to a wall, the exact angle between
the robot’s brush and the wall mattered. The
model made it easy to accurately control this
angle. The model also facilitated various oth-
er things, such as following walls at a 5-cm
distance at full speed, determining a strategy
and time for picking up balls, moving back-
ward without bumping into obstacles, find-
ing the gate, and determining when to return
to the gate. Obviously, the internal model
was crucial for JEEVES’s success at the competi-
tion because many of these capabilities would
have been difficult to achieve without an in-
ternal model.

Recently, there has been a more general
discussion about the nature and the utility of
models in robotics. It has been argued that
the environment is its own best model
(Brooks 1991), an argument that has often
been interpreted in favor of reactive ap-
proaches that maintain a minimum of inter-
nal state. To investigate the validity of such a
claim, one has to be careful to specify what
purpose the model is supposed to serve.

Undoubtedly, the environment is its most
accurate model. How can any other model be
more accurate than reality itself? Accuracy
alone, however, is not sufficient for robot
control. To be of practical use, a model must

also be accessible, and unfortunately, the en-
vironment is often not its own most accessi-
ble model. In mobile robotics, the accessibili-
ty of the environment depends, among other
things, on the perceptual ratio of the robot to
its environment, that is, the ratio of the per-
ceptual range of the robot relative to the size
of its environment. The perceptual ratio is of
practical importance because to gain knowl-
edge about the environment beyond the per-
ceptual range, a robot has to actually move
there. The accessibility of the environment
decreases—and, thus, the utility of internal
models increases—as the perceptual ratio de-
creases; therefore, it seems plausible that
robots that acquire and maintain internal
models scale better to more complex environ-
ments than those that do not.1

Let us investigate scalability more concrete-
ly using JEEVES and the AAAI-96 mobile robot
competition as an example. To contrast
JEEVES’s model-based approach, let us also con-
sider a purely reactive robot, that is, a robot
that makes decisions based on a short history
of perceptual input with a minimum of inter-
nal state. A typical reactive robot would move
around somewhat randomly while it possibly
followed a wall, until a ball appears in its vi-
sual field. A typical reactive approach might
then chase this ball and, after a successful
capture, continue its random walk until it
comes across another ball or the gate, at
which point it would either capture the ball
or deposit previously captured balls into the
gate. In fact, I suspect that variants of this re-
active, model-free approach were used by sev-
eral other teams at the competition—with re-
markable success, as the impressive entry by
Newton Research Labs illustrates (see article
by Sargent et al., also in this issue).

Although a purely reactive robot might
perform well in an environment as small as
the competition ring, it is difficult to imagine
that such a robot would scale up to more
complex environments. For example, consid-
er the following three situations:

First, consider an arena 10 times as large.
The larger the arena, the smaller the percep-
tual ratio, and the more the robot has to
search. Because a purely reactive robot would
run danger to search the same part of the are-
na over and over again, its chances of exhaus-
tively covering the arena within a given time
are smaller than that of a model-based robot.
The advantage of systematic search increases
with the size of the environment. Although
reactive (history-free) search might work rea-
sonably well for finding balls where the num-
ber of total balls is large, theoretical and em-
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Note
1. The obvious exception to this argument is robots
that perform tasks that require exclusively local
sensor information; however, such tasks are often
trivial and rarely of interest in robotics.
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pirical research on the complexity of search
has shown that history-free search strategies
tend to be inefficient for searching large envi-
ronments exhaustively (Koenig and Simmons
1993).

Second, consider an arena with 10 times as
many balls. More balls would force a robot to
return to the gate more frequently. A purely
reactive approach would require that the
robot search for the gate even if it has been
there before. If the gate is hidden in an unac-
cessible corner unlikely to be found by ran-
dom motion, a purely reactive robot could
easily waste a lot of time searching for the
gate over and over again, whereas a model-
based approach that remembered the loca-
tion of the gate could move there directly—
just like JEEVES.

Third, consider the same task with one-
tenth the time. Efficiency becomes even more
important as time becomes a limiting factor.
It is important to notice that models, if used
the right way, do not slow robots down. In
fact, the opposite is true. JEEVES’s performance
illustrates that models can enable a robot to
make more rational action choices in real
time, yielding more efficient control. Because
learned models integrate multiple sensor
measurements, model-based robots also tend
to be more robust to noise in perception than
purely reactive robots.

Although it should not be dismissed that
JEEVES’s control software—in its current ver-
sion—also faces some scaling limitations be-
cause of its inability to handle nonorthogo-
nal walls or huge open spaces, these scaling
limitations are not caused by the fact that
JEEVES used a model; instead, they carefully
exploit the restrictive nature of the task and
the environment. For example, a simple one-
line change in JEEVES’s software would have
enabled it to model arbitrary, nonorthogonal
walls. In previous research, the team success-
fully demonstrated robust localization even
in large-scale environments with huge open
spaces, using probabilistic approaches based
on models (Thrun et al. 1997; Burgard et al.
1996).

To summarize, I believe that model-based
approaches scale better to more complex en-
vironments and complex tasks that people
(outside the scientific community) really care
about. Although it might be tempting to pro-
gram robots by connecting sensors directly to
actuators, such approaches are unlikely to
scale up and provide the level of sophistica-
tion required in all but the most simple mo-
bile robotics applications.
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