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learning, neural networks, robotics,
AI, and engineering. In recognition
of the growing importance of rein-
forcement learning, it seemed an
opportune time to bring together
leading researchers from these areas
for a three-day meeting consisting of
general and wide-ranging discussions.
The National Science Foundation
(NSF) sponsored the workshop with a
generous grant to cover the travel
and lodging costs of all participants.
The participants sought to assess the
state of the art of reinforcement
learning today; outline promising
directions for further work; clarify
links between reinforcement learning
and existing work in dynamic pro-
gramming; and, finally, explore
potential industrial applications of
reinforcement learning.

What Is Reinforcement
Learning?

Reinforcement learning is a general
framework for describing learning
problems in which an agent learns
strategies for interacting with its
environment (figure 1). The agent
perceives something about the state
of its environment and chooses what
it thinks is an appropriate action. The
world’s state changes (not necessarily
deterministically), and the agent
receives a scalar reward, or reinforce-
ment, indicating the utility of the
new state for the agent. The agent’s
goal is to find, based on its experi-
ence with the environment, a strate-
gy or an optimal policy for choosing
actions that will yield as much
reward as possible.

■ Reinforcement learning has become
one of the most actively studied learn-
ing frameworks in the area of intelli-
gent autonomous agents. This article
describes the results of a three-day
meeting of leading researchers in this
area that was sponsored by the Nation-
al Science Foundation. Because rein-
forcement learning is an interdisci-
plinary topic, the workshop brought
together researchers from a variety of
fields, including machine learning, neu-
ral networks, AI, robotics, and opera-
tions research. Thirty leading re-
searchers from the United States,
Canada, Europe, and Japan, represent-
ing from many different universities,
government, and industrial research
laboratories participated in the work-
shop. The goals of the meeting were to
(1) understand limitations of current
reinforcement-learning systems and
define promising directions for further
research; (2) clarify the relationships
between reinforcement learning and
existing work in engineering fields,
such as operations research; and (3)
identify potential industrial applica-
tions of reinforcement learning.

In recent years, a unifying view-
point based on embedded
autonomous agents has shaped

much work in AI (Russell and Norvig
1994). Examples of such agents
include robots operating in unstruc-
tured environments, softbots navi-
gating the Internet, and even indus-
trial controllers operating some
complex machinery. Reinforcement
learning has become one of the most
actively studied learning frameworks
in the area of embedded autonomous
agents. Reinforcement learning has
attracted researchers from an eclectic
mix of fields, including machine

There are two major designs for a
reinforcement-learning agent. In the
model-based approach, the agent learns
a model of the dynamics of the world
and its rewards. Given the model, it
tries to solve for the optimal control
policy. In the model-free approach, the
agent tries to learn the optimal con-
trol policy directly, without first con-
structing a world model. In either
approach, the agent seeks to learn a
policy that maximizes some cumula-
tive measure of reinforcement re-
ceived from the environment. The
most well-known reinforcement-
learning algorithms are based on a
discounted framework where future
rewards are reduced by some geomet-
rically decreasing constant factor. The
most well-known discounted algo-
rithms include Q-learning, developed
by Watkins (1989), and TD(l), devel-
oped by Sutton (1988). These algo-
rithms have been used to solve some
large real-world sequential decision
problems, including grand-master
play in backgammon (Tesauro 1992),
job-shop schedules for the space shut-
tle (Zhang and Dietterich 1995), a
team of elevators in a multistory
building (Crites and Barto 1996), and
frequency assignments for cellular
telephones (Bertsekas and Tsitsiklas
1996). As we discuss next, many of
these problems can be formulated
using a control-theory framework
called dynamic programming.

Markov Decision 
Processes and Dynamic

Programming
A key assumption underlying much
research in reinforcement learning is
that the agent-environment interac-
tion can be viewed as a Markov deci-
sion process (MDP) (Puterman 1994).
The MDP model implies that the cur-
rent state of the environment per-
ceived by the agent and the action
selected by the agent together deter-
mine a fixed- (but unknown) proba-
bility distribution on the next state
and immediate reward. This model
is, thus, memoryless, in that the agent
does not need to consider the history
of previous states and actions in
determining an optimal policy. How-
ever, there is growing attention in
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that underlies much of the work in
dynamic programming as well as
reinforcement learning. He also
described the standard dynamic pro-
gramming algorithms, such as policy
iteration and value iteration for com-
puting optimal policies; variations on
these algorithms, for example, modi-
fied policy iteration; and, finally, the
relationship between discounted
optimality and other optimality mea-
sures, such as maximizing the expect-
ed average reward.

One of the most influential models
for reinforcement learning is the
actor-critic system proposed by Barto,
Sutton, and Anderson (1983). Here,
the actor is responsible for executing
a policy, and the critic learns to solve
the credit-assignment problem of
evaluating policies. In the second talk
at the workshop, Dimitri Bertsekas
(Massachusetts Institute of Technolo-
gy [MIT]) discussed a class of actor-
critic methods for approximate
dynamic programming that has been
used with considerable success for
solving challenging large-scale prob-
lems. He showed that there is a fun-
damental structure, common to all
these methods, that causes oscilla-
tions. In particular, he described a
generically occurring phenomenon,
called chattering, in which oscillation
in policy space and convergence in
parameter space (for example, the
weights in a neural network stabilize)
simultaneously occur. Furthermore,
the limit to which the parameter
sequence converges need not corre-
spond to any of the policies of the
problem. This result underlines the
point that although reinforcement-
learning techniques have had some
good successes in practice, a great deal
of theoretical work remains to under-
stand what underlies their success.

Reinforcement Learning Andrew
Barto (University of Massachusetts at
Amherst) observed that the most dra-
matic reinforcement-learning success-
es to date have been achieved in com-
pletely offline applications in which
experience was generated entirely
using simulation models of the sys-
tems of interest. Examples include
Tesauro’s TD-GAMMON system (1992),
the elevator-dispatching system devel-
oped in his group by Robert Crites

(Crites and Barto 1996), and Zhang
and Dietterich’s (1995) National Aero-
nautics and Space Administration
(NASA) job-shop–scheduling system.
He pointed out that a great advantage
of these methods is that although
they require models, these models do
not need to be explicit probability
models of an MDP; simulation mod-
els, which are often much easier to
obtain, suffice.

Richard Sutton (University of Mas-
sachusetts at Amherst) discussed
some problems with Q-learning, one
of the most popular model-free rein-
forcement-learning algorithms origi-
nally developed by Watkins (1989).
Among the drawbacks noted in his
talk were that Q-learning can be
unstable even with linear-function
approximators. Also, it can learn a
policy that performs badly if the
agent continues to explore because it
is only optimal with no exploration.
Finally, he noted that it does not
work well with eligibility traces, such
as used in TD(l) (Sutton 1988). He
observed that because it requires
maximizing over actions to deter-
mine the utility of the next state, Q-
learning could introduce systematic
overestimation error (as noted by
Thrun and Schwartz [1993]). He
argued in favor of SARSA (Rummery
and Niranjan 1994), a modified Q-
learning algorithm that overcomes
these problems.

Analysis of TD(l) Satinder Singh
(University of Colorado at Boulder)
described his work with Peter Dayan
(MIT) on how the bias and variance
of the TD(l) family of algorithms
behaves with increasing experience.
He described the effect of algorithm
parameters such as l and step size,
and of problem parameters such as
initial bias and cyclicity, on the
behavior of learning curves. 

Benjamin Van Roy (MIT) presented
results on the TD algorithm as
applied to approximating the cost-to-
go function of a Markov chain using
linear-function approximators. He
described convergence results (with
probability 1), a characterization of
the limit of convergence, and a
bound on the resulting approxima-
tion error. He also discussed the
implications of two counterexamples

with regard to the significance of
online updating and linearly parame-
terized function approximators. 

Undiscounted Reinforcement
Learning Prasad Tadepalli (Oregon
State University) argued that in con-
trast to the standard practice in rein-
forcement learning of maximizing
the discounted total reward, in most
real-world domains, the average
reward received to a time step is a
more natural metric. He introduced
an average-reward reinforcement-
learning method called H-learning
(Tadepalli and Ok 1996a) and pre-
sented empirical results in several
simple automated-guided vehicle
scheduling domains. He also de-
scribed a local linear-regression algo-
rithm for approximating the value
function. He discussed a Bayesian
network approach to represent
action models, where the topology of
the network is part of the prior
knowledge.

Sridhar Mahadevan (University of
South Florida) presented a framework
called sensitive discount optimality, the
result of work by Blackwell (1962) and
Veinott (1969), that offers an elegant
way of linking the discounted and
average-reward optimality criteria
(Mahadevan 1996b). This framework
is based on studying the properties of
the expected cumulative discounted
reward, as discounting tends to 1. He
presented new model-free (Mahade-
van 1996c) and model-based algo-
rithms (Mahadevan 1996b), both
derived from this framework, that not
only optimize the expected average
reward (gain optimality) but also maxi-
mize total reward among all gain-
optimal policies (bias optimality). 

Generalizing Markov Decision
Processes Michael Littman (Brown
University) described a generalized
MDP model that unifies standard
MDP models with alternating Markov
games and information-state MDPs.
The generalized MDP model applies
to several different optimality criteria,
including finite horizon, expected dis-
counted sum, and risk-sensitive dis-
counted reward. A key result here is
that all the models subsumed by the
generalized MDP model have an opti-
mal-value function and policy and a
general policy-iteration algorithm.

WINTER 1996    91

Workshop Report



learning algorithms (both for predic-
tion and control).

Hierarchical Models and Task
Decomposition    Singh (1994)
summarized the work in reinforce-
ment learning on hierarchical models
and task decomposition. The basic
idea is that faster learning can be
achieved by decomposing the overall
task into a collection of simpler sub-
tasks. He discussed a mixture-mod-
el–based architecture for automatical-
ly decomposing sequential tasks.

Function Approximation Justin
Boyan (CMU) described an algo-
rithm for approximating the value
function based on using efficient
shortest-path algorithms from graph
theory (Boyan and Moore 1996). He
focused on the important subclass of
acyclic tasks. His algorithm, called
ROUT, can be used in large stochastic
state spaces requiring function
approximation. He showed
significant improvements over TD(l)
in both efficiency and value-func-
tion approximation accuracy in sev-
eral medium-sized domains.

Hidden State in Reinforcement
Learning Although reinforcement
learning has achieved notable suc-
cesses in many application domains,
it faces significant hurdles in
domains where the state space is not
completely observable. Ronald Parr
(University of California at Berkeley)
described some of the work he did in
collaboration with Stuart Russell that
is based on a particular type of
Bayesian belief network called a
dynamic probabilistic network (DPN).
This network decomposes the repre-
sentation of the state-transition mod-
el and the sensor model according to
conditional independence relation-
ships among the state and sensor
variables. DPN models can be learned
from observations, even in the par-
tially observable case, using local gra-
dient-descent techniques. Their aim
is to demonstrate that the combina-
tion of these methods with tech-
niques for approximate solution of
partially observable MDPs should
allow reinforcement learning to scale
up to large, uncertain, partially
observable decision problems (Russell
and Parr 1995).

Integrating Reinforcement
Learning into AI
Several representational issues regard-
ing integrating reinforcement learn-
ing into a general AI system were dis-
cussed at the workshop, including
representing structured policies using
Bayesian nets and planning using
Bayesian nets.

Structured Policies Using
Bayesian Nets Bayesian networks
have been adopted widely in AI as a
powerful tool for dealing with uncer-
tainty. Craig Boutilier (1995) (Univer-
sity of British Columbia) illustrated
how Bayesian networks could alleviate
the problem of specifying and solving
MDPs. He showed how networks
reveal regularities and structure in the
system dynamics and reward function
that can be exploited computationally.
He examined three different abstrac-
tion methods and described some
ways of performing region-based
dynamic programming in large, finite-
state, and action problems.

Planning Using a Markov Deci-
sion Process Framework Steve
Hanks (University of Washington)
contrasted the view of work in deci-
sion-theoretic planning (Boutilier,
Dean, and Hanks 1995; Draper, Han-
ks, and Weld 1994a, 1994b), where
agents continually build suboptimal
plans for achieving dynamic goals,
with the work in reinforcement learn-
ing on computing optimal plans for a
fixed goal. He argued that we should
first try to understand the similarities
and differences between the paradig-
matic problems addressed by rein-

forcement-learning systems and those
addressed by classical planners. This
understanding would help integrate
reinforcement learning into a broader
problem-solving framework, where
the value function might be partially
provided as part of the task and, thus,
change from task to task. Two inter-
esting questions addressed in his talk
were whether the reinforcement-
learning approach could be applied
equally well to higher-level planning
and decision-making problems and, if
not, whether there is a natural archi-
tectural interface between taskable
problem-solving behavior and reac-
tive or tactical behavior.

Representational Issues Thomas
Dean (Brown University) pointed out
that there is a tendency within the
reinforcement-learning community
for problems to be defined in terms
of their solutions (algorithms) rather
than the other way around. For
example, he suggested that discount-
ing has become a property of prob-
lems rather than a heuristic tech-
nique for generating policies with a
particular sort of graded myopia. He
suggested that Bayesian decision the-
ory in general and graphic models in
particular provide the languages and
mathematics for framing decision
problems involving uncertainty. He
discussed in this talk how opportuni-
ties for exploiting structure are mani-
fest in problem descriptions in which
the state, value, and decision spaces
are factored using variables, and the
dependencies involving these vari-
ables were made explicit. 

WINTER 1996    93

Workshop Report

The most striking successes of 
reinforcement-learning techniques 
have been in their application to 

problems that are not 
traditionally viewed as 

learning problems.



mator is well suited to the form of
the value function, then powerful
generalization can occur between
similar states.

Reinforcement-learning methods
have successfully been applied to ele-
vator scheduling (Crites and Barto
1996), job-shop scheduling for NASA
missions (Zhang and Dietterich
1995), backgammon (Tesauro 1992),
and cellular telephone channel
assignment (Bertsekas and Tsitsiklis
1996). There are a number of other
ongoing applications, and case stud-
ies of systems of this kind will appear
in Bertsekas and Tsitsiklis’s new book
(1996). There is considerable enthusi-
asm among members of the opera-
tions research community about
these techniques, which enable the
approximate solution of problems
that were heretofore unaddressable.

One particularly interesting aspect
of this development is that the rein-
forcement-learning techniques were
developed as part of a basic research
program whose focus was strategies
that agents could use, online, to learn
how to behave well in their particular
environments. As it happens, these
methods have extreme promise for
solving large industrial problems,
which were unanticipated during
their development.

Impact of Reinforcement
Learning on AI
Work on reinforcement learning is
having a strong impact on other parts
of AI, especially through the use of
MDP models. Because most work in
reinforcement learning addresses the
problem of learning how to behave
in sequential environments, there is a
deep connection with work in AI
planning. Because AI planning has
begun to adopt models with a deci-
sion-theoretic orientation (Kushmer-
ick, Hanks, and Weld 1995) and to be
interested in partial policies rather
than straight-line plans, there has
been a convergence on MDPs as the
basic model underlying all our work. 

One of the biggest contributions
that mainstream AI can make to work
in reinforcement learning is in under-
standing how to use richer represen-
tations. Bayesian networks provide
an ideal representation for stochastic

state-transition and reward functions
in complex domains; this representa-
tion has been used by Tadepalli
(Tadepali and Ok 1996b), among oth-
ers, for reinforcement-learning prob-
lems. In addition, there are now a
number of good techniques for learn-
ing Bayesian networks from data,
making this strategy plausible for
acquiring world models. Although
compact models are elegant, they will
not really be useful until we can use
them to solve MDP or reinforcement-
learning problems more efficiently.
Recent work by Boutilier (1995) and
others seeks to exploit structure in
the representation of an MDP to
solve it more efficiently.

Although we know a good deal
about the applications of reinforce-
ment learning to control problems, it
has recently been used successfully in
a perception application. Bandera et
al. (1996) used Q-learning to acquire
an action-perception strategy to
decide what parts of an object to
foveate in an attempt to recognize
the object’s type. This result is
encouraging, demonstrating that
reinforcement-learning techniques
have broad application potential. 

Research Problems in 
Reinforcement Learning
Although there has been a great deal
of progress both in the foundations
and the application of reinforcement
learning, even more open problems
remain. We certainly cannot enumer-
ate all of them (not least because there
are surely many problems that have
not even been discovered), but the list
below highlights topics whose impor-
tance was noted at the workshop.

To solve problems with continuous
or large finite-state spaces, it is crucial
to approximate the value function
during reinforcement learning or
dynamic programming. A number of
techniques often work well in prac-
tice; however, the theoretical proper-
ties of these methods are not yet well
understood. In addition, there are
some situations for which the exist-
ing methods are not suited; new algo-
rithms must be developed.

Researchers have been surprised by
the failures and successes of reinforce-
ment learning. Problems that seem

easy often turn out to be hard to
solve, and vice versa. Although the
size of the state space is relevant, it is
by no means the determining factor.
Other problem attributes, such as the
shape of the value function and the
degree to which reward is delayed, are
thought to be important, but the rela-
tionship between these attributes and
the overall difficulty for the current
algorithms is not well understood.

The vast majority of reinforce-
ment-learning work concentrates on
the completely observable case, in
which there is noise in the agent’s
actions but none in its observation of
its environment. For many problems,
this model is inadequate. Richer
models, such as partially observable
MDPs, capture a wider variety of
problems but present an enormously
more difficult optimization task. It
has been shown that the exact solu-
tion of these problems is intractable,
but there is a great need for work on
approximate solution methods for
these problems.

There has been a great deal of
debate about the appropriate optimal-
ity measures to use in reinforcement
learning. The discounted measure is
often adopted for ease of computa-
tion rather than appropriateness to
the problem. We are now in the posi-
tion of having learning algorithms for
average-reward measures, which leads
us to the question of which measures
are really appropriate for which kinds
of problem. In addition, all this work
uses time-separable measures, in which
the objective is an additive function
of the individual rewards on each
time step. There might be some
domains in which measures that
depend on the whole trajectory are
much more appropriate; further work
is required in understanding how to
optimize for such measures.

Reinforcement learning was origi-
nally developed as a model of behav-
ior learning in animals and as a way
of engineering behavior learning in
artificial systems. We now have a fair-
ly good understanding of how a sin-
gle reinforcement-learning system
works, but we have not really thought
about the context in which it takes
place. In a complex agent, we will
have to deal with questions of com-
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