
■ The Georgia Institute of Technology won the
Office Cleanup event at the 1994 AAAI Robot
Competition and Exhibition with a multirobot
cooperating team. This article describes the
design and implementation of these reactive
trash-collecting robots, including details of multi-
agent cooperation, color vision for the detection
of perceptual object classes, temporal sequencing
of behaviors for task completion, and a language
for specifying motor schema–based robot behav-
iors.

The team of robots from the Georgia
Institute of Technology, IO, GANYMEDE,
and CALLISTO (figure 1), placed first in

the Office Cleanup event at the 1994 Robot
Competition and Exhibition sponsored by
the American Association for Artificial Intelli-
gence (AAAI). The contest required competing
robot entries to clean up a messy office
strewn with trash. Wads of paper, Styrofoam
coffee cups, and soda cans were placed by
judges throughout the contest arena along
with wastebaskets, where they hoped the
robots would deposit the trash. The arena
included ordinary tables, chairs, and desks as
obstacles to provide realism. During competi-
tive trials, each robot was to gather and throw
away as much trash as possible in 10 minutes.
Points were awarded for each piece of trash
thrown away and penalties levied for colli-
sions with walls or obstacles. The task proved
difficult. Only one robot, CHIP, from the Uni-
versity of Chicago, was equipped to
autonomously locate, pick up, and deposit
trash in a wastebasket. Unfortunately, the
computational overhead was so great that
CHIP was only able to perform the task once in
10 minutes. The rules provided for robots
with less capable—or no—manipulators by
permitting virtual manipulation. If a robot was
near an item of trash or a wastebasket, it
could signal its intent to pick up or throw
away trash and be credited for the pick up or
drop off at a slight penalty.1 Another top

competitor in the Office Cleanup event,
RHINO, is also described in this issue (see the
article by Buhmann and his colleagues). Read-
ers interested in the overall competition are
referred to Reid Simmons’s article, also in this
issue.

Georgia Tech’s approach differed from oth-
er entries in the event by emphasizing multi-
ple, low-cost robots instead of a single (usual-
ly expensive) robot solution. This approach
was motivated by several factors, including
cost, but primarily by a desire to test theories
regarding multiagent reliability and coopera-
tion. Implementation of this multirobot sys-
tem is interesting from several standpoints:
(1) low-cost hardware permits construction of
several robots; (2) reactive behaviors are used
by the robots to collect trash; (3) cooperative
behaviors provide for cooperation between
robots; (4) temporal sequencing coordinates
transitions between distinct operating states
for each robot and achieves the desired goal
state; (5) fast vision locates soda cans, waste-
baskets, and robots; (6) behavior and hard-
ware definition language (BHDL) describes
robot hardware and specifies behavioral states
and transitions between them; and (6) a real-
time executive instantiates and executes pro-
cesses at run time according to a BHDL file.

The robots’ hardware design and vision
processing are outlined in the next section.
Later sections describe behavioral control,
temporal sequencing, software architecture,
and multiagent cooperation. The article closes
with strategies used and lessons learned at the
competition.

Hardware Design
The 10-pound robots were built using off-the-
shelf components at a cost of approximately
$1700 each. A 13- by 17-inch aluminum chas-
sis encloses a PC-clone motherboard and
floppy disk, a microcontroller, and the power
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the BCC over a serial link. Once the low-level
BCC software begins execution, the serial link
is used to exchange sensor and command
information between the BCC and the PC.
After boot up, the PC takes over vision and
high-level motor-processing responsibilities,
and the BCC serves as a low-level sensor and
actuator device. Dividing the sensing and
processing responsibilities between the PC
and the BCC enforced modularity, isolated
errors, and allowed parallel development.

Manipulator Design
It was immediately apparent to the design
team that most commercial, general-purpose
robot arms are too heavy, too slow, and too
power hungry for small mobile robots. Task
requirements were the starting point of the
manipulator design: (1) capture empty soda
cans, Styrofoam cups, and wadded sheets of
notebook paper that might be in several
orientations; (2) be lightweight; (3) use low
power; and (4) withstand repeated collisions
with immovable objects.

Other constraints affect the manipulator
design as well. Because vehicle maneuvering
is imprecise, the manipulator should maxi-
mize the capture area for the various types of
trash. Also, trash objects are below the view
of the camera when in manipulator range; so,
the gripper should allow the robot to grasp
objects it cannot see. Of the various types of
trash, soda cans are the largest; so, the
manipulator was designed for them and occa-
sionally checked against Styrofoam cups and
paper wads.

The final design (figure 3) is able to capture
and hold soda cans in three orientations:
upright, on side with the long axis perpendic-
ular to the gripper, and on side with the long
axis parallel to the gripper. Two short
“hands” are hinged directly to a bumper that
is designed to support and protect the hands.
The servoactuator is attached to the rear of
the bumper with control linkages connecting
it to the hands. Construction materials are
steel hinges, aluminum control horns, and
plastic boards and fiberboards held together
with pop rivets. An infrared beam in the grip-
per’s hands alerts the robot of an object in
range for grasping. The sensor helps the robot
opportunistically grab trash that it encoun-
ters. The sensor is tripped by any intervening
object, including obstacles; so, the robot
must somehow discriminate between obsta-
cles and trash. Whenever the infrared beam is
broken, the robot closes the manipulator,
then backs up. If the object encountered is
immovable (for example, a chair leg), it slips

system (figure 2). The chassis sits atop a
motorized base purchased as a radio-con-
trolled–model kit. Each robot is equipped
with bumper sensors, a miniature color cam-
era, and a specially designed mechanical grip-
per. Off-the-shelf components were chosen
for cost, flexibility, and reliability, enabling
the design team to concentrate on software
development and integration. Robot locomo-
tion is provided by an inexpensive direct-cur-
rent, motor-powered, treaded vehicle market-
ed for radio-controlled–model enthusiasts.
Each robot base is driven by two separate
motors and drive trains. Initially, off-the-shelf
radio-controlled–car controllers were used to
drive the motors, but these controllers were
abandoned because nonlinearities in their
output made accurate position control impos-
sible. Instead, custom bipolar H-bridges were
built, allowing smooth control at low speed.

Processing responsibilities are split between
a 68332 business card computer (BCC) for
low-level sensing and control and a 386 com-
puter for high-level control and vision. Each
robot’s pair of H-bridge motor drivers is con-
trolled by the BCC, which implements pro-
portional, integral, and derivative (PID) speed
control with trapezoidal velocity profiles. The
BCCs were chosen for ease of programming
(in C) and multiple digital input-output and
timer channels. The microcontroller is also
responsible for driving and detecting the grip-
per’s infrared beam, driving the gripper’s
open-close servo, and reading the robot’s
eight bumper switches. The requirement for
vision motivated the addition of a PC moth-
erboard. In addition to providing processing
speed and memory that is unavailable in the
microcontroller, the PC enables the use of
inexpensive, mass-market video cards. Each
robot has a 33-megahertz 80386 central pro-
cessing unit with 4 megabytes of random-
access memory and a floppy disk. Small, low-
power videocameras supply NTSC (National
Television System Committee) video directly
to video-capture cards. After booting from a
floppy disk, the PC downloads software to
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Figure 1. Ganymede, Io, and Callisto.



out of the gripper, reestablishing the infrared
beam. In this case, the robot infers that the
object is an obstacle; otherwise, it is assumed
to be trash. More details of the strategy are
explained in Software Architecture.

Vision
Color vision is utilized to take full advantage
of color cues for discriminating between vari-
ous object classes important to the robots:

trash, wastebaskets, and robots. The robots
use miniature color cameras with wide-angle
(73:5–degree field of view [FOV]) lenses and
standard NTSC analog output. A low-cost
frame grabber captures video images and
makes them available in memory to software
running on the PC.

The video boards support a chrominance-
luminance model of color rather than the
more familiar red-green-blue (RGB) standard.
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Software to convert these images to a normal-
ized RGB format in three image planes is
implemented in C++ on the PC. Additional
image-processing software uses the RGB
images to locate objects in the environment.
Minimal, predictable memory usage, robust-
ness, and low computational overhead were
primary factors in the design of the vision
software. These constraints led to the use of a
simple blob-detection approach for vision
processing. To simplify the problem, the team
elected to take minor point penalties, accord-
ing to the AAAI contest rules, for providing
their own trash and wastebaskets.

This strategy enabled the team to select
objects so that a separate primary color iden-
tified each important perceptual class of
object: red for soda cans,2 blue for wastebas-
kets, and green for other robots. These colors
are easy to detect and distinguish even in a
cluttered office environment. Rather than
simply use red, green, and blue components
directly, all of which are large for white
objects such as glare spots, the software
extracts supercomponents. Supercomponents
for each color are computed by subtracting
the values of the other two components at
each pixel. Superred, for example, is comput-
ed as red 2 (blue + green). By subtracting oth-
er components, a simple hue-sensitive metric
is formed. For example, a white blob has a
low superred component, but a red blob has a
bright superred component. Sample lumi-
nance and corresponding supercomponent
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Figure 5. Superred (top), Supergreen (middle),
and Superblue (bottom) Component Images of

the Same Scene.

Figure 4. A Robot’s-Eye View, 
Including Another Green Robot (left), Two Red Soda Cans (center), and a Blue Wastebasket (right).



images are shown in figure 4 and figure 5.
The locations of colored objects in the

environment are computed as follows: A
thresholding operation on a supercomponent
is followed by a blob-detecting pass. Azimuth
to the object is calculated directly from the
known visual field of view and relayed as a
vector output or heading. Range is deter-
mined using the lowest pixel of the corre-
sponding blob. Because all objects of interest
are resting on the floor and because the cam-
era is pointed horizontally, range can be esti-
mated using the simple trigonometric relation

r = h * arctan(theta)  ,

where r is range, h is the camera height, and
theta is the apparent angle from the center of
the image to the bottom of the blob (comput-
ed in the same way as azimuth, using the
known FOV). The range and heading data are
converted to an object location in the robot’s
global coordinate system. Vision processing is
completed in about one second. The accuracy
of computed object positions is better than
one inch when the objects are within three
feet of the robot. Objects further away are
usually within about a foot of the computed
location. The results of vision processing are
stored in global memory and are used by the
behavioral processes described in Behavioral
Control. The robot’s position and the objects
discovered visually are stored in a global
coordinate system. An object’s position rela-
tive to the robot can be computed even if the
object is no longer visible. A reliability index
associated with the location information for
each object decays over a period of a minute
if the object is lost from view, giving priority
to objects that are currently visible. It also
helps account for the approximate nature of
dead reckoning and the possibility of misin-
terpreted visual data.

Behavioral Control
This section describes reactive behaviors
developed for the competition at a conceptu-
al level. Software that implements the
approach is explained in the next section.
The Office Cleanup task called for several sep-
arate steps to be accomplished in sequence:
find trash, get trash, find trash can, move to
the trash can, deposit trash, and so on. The
approach used here is to develop separate
reactive behaviors that accomplish each step.
The individual behaviors are then triggered in
an appropriate sequence by a simple behav-
ioral manager (the technique is referred to as

temporal sequencing). The behavioral paradigm
used in this work and in other research at
Georgia Tech’s Mobile Robot Laboratory is
motor schema–based control (Arkin 1989).
Like other reactive systems (Brooks 1986),
motor schemas offer low computational over-
head; additionally, they provide for integra-
tion with temporal sequencing approaches
(Arkin and MacKenzie 1994) and deliberative
approaches (Arkin 1992b). Individual schemas
are primitive behaviors that are combined to
generate more complex emergent behaviors.
Schemas are independent computational pro-
cesses for sensing and acting that run in par-
allel. For example, consider the construction
of the behavior for a robot that enables it to
move to an item of trash while it avoids colli-
sions with obstacles (the move-to-trash
behavior). For this task, two perceptual
schemas and two motor schemas are instanti-
ated. The two perceptual schemas are (1)
detect-goal, which uses vision to compute the
location of the goal—a soda can, and (2)
detect-obstacles, which detects and tracks
obstacles in the environment using bumper
switches. The two motor schemas are (1)
move-to-goal, which generates a vector toward
the goal detected by detect-goal, and (2)
avoid-static-obstacles, which generates a vector
away from any detected obstacles (magnitude
varies inversely with range to the obstacles).

The vectors generated by each of the motor
schemas are combined (added), then clipped
to generate the overall movement vector,
which is sent to the robot’s actuators. Because
some components of the task might be more
important than others (for example, avoiding
collisions is very important), the motor-
schema vectors are multiplied by gain values
before they are combined. The gain value for
each schema allows the designer to custom
configure a behavior that appropriately
emphasizes the various components of the
task. Individual behaviors for each of the sev-
eral steps in the Office Cleanup task were
developed and tested on the robots, and
appropriate gain values were determined
empirically. Readers are referred to Arkin
(1989) for a more detailed description of the
gains and parameters of specific motor
schemas.

Sequenced coordination, or temporal
sequencing, is the process by which the robot
control system moves through a series of dis-
tinct behaviors (Arkin and MacKenzie 1994;
MacKenzie and Arkin 1993). For example,
when the robot is searching for trash, a differ-
ent behavior is active than when it is moving
toward a trash can to deliver the trash. Using
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signal to the robot that the contest has
begun). While in the wander-for-trash state,
the robot randomly explores the arena until
either it visually discerns a soda can (move-
to-trash) or the infrared beam in its gripper is
interrupted (grab-trash). The wander-for-trash
behavior used at the competition was primar-
ily a sit-and-spin behavior; the robot made a
series of small turns so that it could visually
take in the entire environment. In the move-
to-trash state (outlined earlier), the robot
moves toward the soda can using visual ser-
vos until the infrared gripper beam is broken
(grab-trash). The grab-trash state closes the
gripper, and the backup1 state moves the
robot backward to see if the object it has
grabbed is movable and, therefore, trash.
While in the wander-for-trashcan state, if the
gripper drops trash it was carrying, the robot
returns to the wander-for-trash state to reac-
quire the object. When a trash can is visually
discerned, the move-to-trashcan state directs

the temporal sequencing technique, the
designer specifies each operating state (behav-
ior) and the perceptual triggers that cause
transitions between them. The resultant
finite-state automaton (FSA) acts as a behav-
ior manager, instantiating relevant behaviors
based on the specified perceptual triggers.
Perceptual triggers are specialized perceptual
schemas that run in parallel with other
schemas and signal the behavior manager
when a state change is required. In Software
Architecture, we describe how temporal
sequencing is expressed in software.

Competition Strategy
Figure 6 shows the FSA constructed for the
AAAI-94 robot event. States are denoted by
circles and state transitions by directed edges
labeled with the perceptual triggers causing
the transitions.

The robot begins in the start state and
waits for one of the bumpers to be pushed (a
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the robot toward it. When the robot arrives at
the trash can, it drops the trash (drop-trash)
and backs away (backup2). It then executes a
right turn so that it will search a different
area and returns to the wander-for-trash state
to locate more trash.

Multiagent Cooperation
Recent multiagent robotics research at Geor-
gia Tech has investigated tasks for robots
similar to the Office Cleanup task (Balch and
Arkin 1994; Arkin, Balch, and Nitz 1993;
Arkin 1992a). In the work of Arkin (1992a)
and Arkin, Balch, and Nitz (1993), simulated
robots are tasked to collect “attractors” in the
environment and return them to a home
base. Attractors are items of interest scattered
randomly about the environment, analogous
to trash in the cleanup task. In later work by
Balch and Arkin (1994), additional tasks are
explored, communication between robots is
added, and the behaviors are validated on
Denning MRV-2 mobile robots. The previous
research has established the following for
multiagent foraging tasks:3

First, for a given number of attractors (for
example, trash), more robots complete a task
faster than fewer robots (Balch and Arkin
1994; Arkin 1992a).

Second, in many cases, performance is
superlinear; that is, N robots complete a task
more than N times as fast as a single robot
(Balch and Arkin 1994).

With the hope of transferring these results
to the multiagent cleanup task, we modeled
the cooperative behaviors of GANYMEDE, IO,
and CALLISTO on the robot behaviors used in
the earlier investigations. Even though com-
munication was shown to improve perfor-
mance, quantitative results demonstrated
efficient cooperation between robots without
explicit communication. A key to coopera-
tion without communication is the addition
of interrobot repulsion during the initial
search, or foraging step, analogous to the
look-for-trash step in office cleanup. The
repulsion causes robots to spread out and
scan the environment efficiently. Interrobot
repulsion is lowered in other phases of the
task but kept at a high enough setting to pre-
vent collisions between robots. Cooperation
is implemented on IO, GANYMEDE, and CALLISTO

using interrobot repulsion only; explicit com-
munication was not used. Interrobot repul-
sion is implemented in two steps: First, an
instantiation of blob-detector for green blobs
locates robots in the camera FOV. Second, a
motor schema, avoid-static-obstacle, gener-
ates a repulsive force away from the detected

robot. Because quantitative data have not yet
been gathered on these robots, the extent of
cooperation in IO, GANYMEDE, and CALLISTO has
not been established. Qualitative behavior of
the robots, however, seems to confirm our
earlier results.

Software Architecture
This section describes on-board software that
implements the robots’ behavioral control
(described in the previous section). The soft-
ware architecture must successfully support
two major activities: (1) behavior definition
and (2) schema development. Behavior defini-
tion consists of specifying the robot behavior
in terms of states and state transitions and
describing which perceptual and motor
schemas should be active during each state.
The software architecture allows program-
mers to specify the robot’s behavior in a text
file using the BHDL. In this way, programmers
can revise behaviors simply by editing the
text file. Schema development consists of
writing new code to create new schemas,
which then can be incorporated into a library
of available schemas that programmers can
use to specify more complex robotic tasks.
The software architecture is written in C++
and allows programmers to write new code
efficiently and reliably by strictly enforcing
information hiding and supporting reusabili-
ty by inheritance. Objectives of the software
architecture are the following:

Flexibility allows programmers to easily
specify, test, and change behavior descrip-
tions to adapt the robots to new tasks or envi-
ronments.

Expressivity allows programmers to repre-
sent a wide range of behaviors common to
robots operating in complex environments.

Reliability ensures basic schemas execute
appropriately and consistently, as prescribed
in the BHDL file.

Performance ensures efficient execution of
motor schemas and minimal resource con-
sumption.

Ease of debugging verifies the proper exe-
cution of individual schemas and robotic
tasks.

The architecture is diagrammed in figure 7.
Primary elements of the system are devices,
schemas, variables, and states. Devices inter-
face with the robot’s hardware to isolate
details of hardware and configuration (for
example, frame_grabber,   communication_
port). Schemas are the units of execution of
high-level software. Two types of schema are
implemented: (1) perceptual schemas, which
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this way, a programmer can specify a robotic
behavior on a given hardware platform quick-
ly and easily without recompiling the source
code.

This design allows great flexibility and
expressiveness because the components are
generic and useful across different tasks. For
example, a blob_detector schema can be
instantiated to process a green_image variable
(that is, a green_blob_detector). Similarly, a
move_to_goal schema can be instantiated to
go to the location where the green blob was
detected. The result is a robot that moves to
green objects! However, a robot that moves
away from red objects could be specified just
as easily by switching the green image with a
red one and using an avoid_static_obstacle
motor schema instead of move_to_goal. The
design is also reliable because different
instances of the same component execute the
same code. If a piece of code is buggy, it will
fail in all its instances. Such an anomaly is
easily detected so that corrective measures

process information from the robot’s sensors
(for example, detect_obstacle), and (2) motor
schemas, which command the robot’s actua-
tors (for example, close_gripper). Variables are
public high-level objects accessed by the
schemas to share information on robot status
and sensor data (for example, green_image,
bumper_switches_status). States encode con-
trol knowledge used to activate appropriate
schemas according to prespecified conditions
and current status (for example, wander_for_
trash).

BHDL allows programmers to specify and
configure instances of each class of compo-
nent to meet the requirements of the robotic
task according to the available hardware.
Each component class consists of a library
containing specific components that perform
a particular job. Programmers specify in BHDL

which of these specialized components to
instantiate. Programmers can also configure
each component instance individually,
according to the details of the robotic task. In
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can be taken. Because the software is imple-
mented in C++, programmers can develop
code that follows strict enforcement of infor-
mation hiding through encapsulation. This
approach allowed several programmers on
our team to develop code in parallel. Addi-
tionally, reliable code is reused by inheri-
tance, which allows programmers to develop
new schemas as specializations of existing
ones. The following subsections describe
devices, variables, perceptual schemas, and
motor schemas used at the AAAI-94 Robot
Competition and Exhibition. The reader is
referred to figures 8 through 10, which list
fragments of a BHDL file to help illustrate the
syntax and structure of BHDL.

Devices
Devices are used by schemas to communicate
with hardware components in the robot. Pro-
grammers can specify what hardware compo-
nents to use by specifying the appropriate
devices in a BHDL file. Each component has par-
ticular attributes to customize its operation
(figure 8). Devices include the following:
Frame_grabber is used to send commands to the
frame grabber card and to read digitized color
images. Communication_port is used to send
commands and receive status information
from the microcontroller through the serial
port. Motor_drive is used to send steering and
translation commands to the motor drivers.

Variables
Variables are objects that hold relevant infor-
mation shared by schemas. Each component
in this library has particular attributes that
depend on the type of information that it
holds, but two attributes are common to all
variables: status and certainty. The status
attribute is a bit that indicates if the content
of the variable is valid or not. The certainty
attribute measures the reliability of the con-
tent of the variable. The certainty factor is a
number between 0 (not reliable) and 1 (most
reliable) (figure 9). Variables include the fol-
lowing: Shaft stores the robot’s position and
orientation in global coordinates. The infor-
mation is estimated by dead reckoning on the
left and right motor shaft encoders. Image
stores 352 3 186 eight-bit images. Locate
keeps track of environmental object positions
in global coordinates. The environmental
objects considered by the system are trash,
baskets, obstacles, and other robots. Bits
keeps track of binary events such as gripper
closed and bumper switch active. Force stores
vectors output by motor schemas.

Perceptual Schemas
Perceptual schemas are specialized processes
that are responsible for reading information
from input devices and updating appropriate
variables accordingly (figure 10). Example
perceptual schemas follow: Bumper_scanner
updates the value of a bumper bit according
to the status of a bumper switch.
Obstacle_detector updates a locator variable
corresponding to an obstacle according to the
status of a bumper bit. Look reads the frame
buffer and updates the image variables for
blue, red, and green images. Blob_detector
scans an image variable for blobs of specific
size and intensity and uses the blob’s centroid
to update the information of locate variable.
Green, red, and black blobs provide the loca-
tion of other robots, trash, or wastebaskets,
respectively. Gripper_scanner reads the status
of the gripper and the infrared beam to detect
the presence of an object in the gripper. Time
detector keeps track of how much time has
elapsed since its activation and updates a bit
whenever a prespecified time has elapsed.
Forget variables keeps track of the last update
time of a variable and decreases the certainty
of the variable at a prespecified rate.
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; 
;  Input devices.
;

input_devices:
comm_port:

timeout: 10
end:

frame_grabber:
end:

;
;  Output devices.
;  output_devices:

motor_drive:
forward_velocity: 100 ; in ticks per sec.
stright_dead_zones: 200 200 –200 –200 ; in ticks
turning_velocity: 100 ; in ticks per sec.
turn_dead_zones: 330 330 –330 –330 ; in ticks
acceleration: 10 ; int ticks per sec^2.
turn_radius: 18.5 ; in cms.
cms_constant: 3.25 ; ticks to cms.
timeout: 30 ; in secs.
end:

end: 

Figure 8. Declaration of Devices in a BHDL File.



States
Temporal sequencing, described in Behavioral
Control, is implemented in BHDL using state
components. States are steps in an overall
behavioral sequence. For each state, the
behavior at that step in the sequence is speci-
fied as a list of motor and perceptual schemas
to be activated. Transitions are enumerated
for each state to specify conditions and corre-
sponding next states that the robot should
follow. The states and transitions between
them describe a high-level finite-state
automaton, which, when executed, leads to
task completion. Unlike the previous
libraries, this one does not contain any spe-
cialized components. All the states are
instances of state_template, which contains
empty lists for perceptual schemas, motor
schemas, and state transitions. Programmers
fill these lists in appropriately in the BHDL file
(figure 11).

Motor Schemas
Motor schemas are specialized processes that
are responsible for suggesting a direction of
motion according to the information of rele-
vant variables. Some motor schemas send
commands to output devices as well (figure
10). Motor schemas include the following:
Move_gripper opens or closes the gripper
according to the value in a bit variable.
Move_robot sends a move command to the
robot according to a force variable.
Combine_forces computes the weighted aver-
age of a list of force variables and stores the
result in another force variable. The remain-
ing motor schemas store their results in force
variables: Avoid_obstacle computes a repulsive
force away from an obstacle toward the robot.
Noise computes a force with a random direc-
tion after every prespecified time period.
Move_to_goal computes an attractive force
from a position represented by a locator vari-
able and the robot. 
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variables:

;
;  Variables that store sensor data.
;

shaft: 
name: “shaft” position: (0,0) heading: 0 status: “valid” certainty: 1

bits: 
name: “bumpers” value: 0 status: “invalid” certainty: 0

image:
name: “red” status: “invalid” certainty: 0.0

image:
name: “green” status: “invalid” certainty: 0.0

image:
name: “blue” status: “invalid” certainty: 0.0

;
;  Variables that store motor schema output.
;

force:
name: “avoid-obstacle” value: <0,0> status: “invalid”

force:
name: “noise” value: <0,0> status: “invalid”

force:
name: “back” value: <0,–1> status: “valid” 

Figure 9. Declaration of Variables in a BHDL File.



Results and Lessons Learned
The robots competed in three trials and the
final competition at AAAI-94. Each trial pro-
vided new information that the team used to
refine the robots’ software between runs. The
most significant problem concerned the use
of vision for wastebasket detection. The office
environment at the competition site consist-
ed of tables with floor-length fabric skirts
attached. These were not just any skirts; they
were blue skirts! Clearly, using blue table
skirts made it impractical for the robots to
distinguish wastebaskets by blue color. The
competition wastebaskets were distinctly
black; so, the blob detector was modified to
reach threshold on overall intensity less than

a given value. This approach worked reason-
ably well, except that some items in the envi-
ronment were incorrectly classified as waste-
baskets, including distant dark areas in the
arena ceiling, robot treads and other dark
areas under a robot chassis, and shadowy
areas in the folds of the skirts.

The team focused on correcting these
misidentifications: Ceiling areas were not a
problem because they were rejected easily by
their height in the image. The areas under
the other robots were eliminated by noting
their relation to the green panels on the side
of each robot. The shadowy areas in the skirts
were handled in part by eliminating them on
the basis of their geometry, but they ultimate-
ly were the largest limitation of the vision
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; 
;  Perceptual schemas.
;

percp_schemas:
obstacle_detector:

name: “bumper0”
bits_variable: “bumpers” 
bit_index: 0
translation: <0.0,22.0> 
obstacle_variable: “obstacle0”
end;

;
;  Motor schemas and their parameters.
;

motor_schemas:
move_robot: 

name: “move”
input_force: “next_move”
shaft_variable: “shaft”
mask_variable: “bumpers”
max_distance_magnitude: 15.0 ; in cms.
safety_range: 30 ; in degrees
end:

avoid_obstacle:
name: “aso0”
shaft_variable: “shaft”
obstacle_variable: “obstacle0”
min_sphere: 30.0
max_sphere: 80.0
max_repulsion: 100.0
result: “aso0”
end: 

Figure 10. Specification of Input and Output to Perceptual and Motor Schemas in a BHDL File.



tion. The strategy worked well: Robots were
usually able to find a piece of trash or a
wastebasket after rotating in place for a short
time. In other respects, the system worked
surprisingly well.

During competitive runs, the robots aggres-
sively located the brightly colored soda cans
and consistently avoided collisions with oth-
er robots. The range estimation was quite suc-
cessful, with the robots almost always making
their final movement toward a can within an
inch of the optimal gripping location. Once
this final movement is made, the camera los-
es sight of the bottom of the blob; so, an
additional backup-and-acquire step is
required if the trash does not trip the infrared
gripper sensor. Once trash was acquired, it
was occasionally dropped by mistake at the
foot of another robot. To observers, this mis-
take looked like a clever hand-off maneuver
when another robot completed the delivery.
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Notes
1. Georgia Tech’s robots, IO, GANYMEDE, and CALLISTO

are able to grab and push trash but not lift it up to
drop it in a wastebasket. 
2. In an empirical robot “taste test,” we discovered
that orange Minute-Maid cans used in the competi-
tion have a much brighter red component than red
Coca-Cola cans.
3. The retrieval task examined in Balch and Arkin
(1994), Arkin, Balch, and Nitz (1993), and Arkin
(1992a) is slightly different from the competition
task. In these publications, several robots can coop-
eratively carry an object, and there is only one
deposit zone. This approach differs from the Office
Cleanup task because attractors (trash) are light
enough for individual robots to easily carry them,
and several deposit zones (wastebaskets) might be
available.

system. During the competition, the robots
often deposited cans under the tables instead
of next to the wastebaskets. If there had been
more time, it would certainly have been
worthwhile to fully investigate more alterna-
tive vision strategies. Moving beyond a basic
blob-detection approach to region segmenta-
tion would probably provide more effective
object detection and discrimination.

Another challenge at the competition con-
cerned a change in the strategy for robots to
find trash. Originally, robots were pro-
grammed to move in a random direction
while they looked for trash or wastebaskets
(refer to the wandering states in figure 6).
Because there was so much trash provided in
the arena, it seemed that a sit-and-spin
approach would be more efficient. The
robots’ behavior was modified by introducing
two additional states. The robot alternated
between a state where it rotated for a fixed
period of time and a state where it moved in
a random direction. The sit-and-spin behav-
ior continued until the robot detected the
desired target. The modification was made
easily because it only involved editing the
BHDL file and did not require any recompila-
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; 
;  The wander-for-trash state
;

state:
name: “wander_for_trash”
perceptual_schemas: ; active perceptual schemas.

“trash_detector”
“trash_finder”
“robot_detector”
“gripper_scanner”
“bumper_scanner”
end:

motor_schemas: ; active motor schemas.
“aso0”
“move”
end:

condition: ; conditions for state change.
bits_variable: “gripper”
bit_index: 0
bit_value: 1
bit_update: “same”
new_state: “backup1”
reset_variables: “trash”

end:
end: 

Figure 11. Definition of States.
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