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ley as a test bed for designing intelli-
gent agents. The system consists of
an overall agent architecture and five
components within the architecture.
The five components are (1) goal-
directed learning (GDL), a decision-
theoretic method for selecting
learning goals; (2) probabilistic bias
evaluation (PBE), a technique for
using probabilistic background
knowledge to select learning biases
for the learning goals; (3) uniquely
predictive theories (UPTs) and proba-
bility computation using indepen-
dence (PCI), a probabilistic
representation and Bayesian infer-
ence method for the agent’s theories;
(4) a probabilistic learning compo-
nent, consisting of a heuristic search
algorithm and a Bayesian method for
evaluating proposed theories; and (5)
a decision-theoretic probabilistic
planner, which searches through the
probability space defined by the
agent’s current theory to select the
best action. PAGODA is given as input
an initial planning goal (its overall
behavioral goal, for example, “maxi-
mize utility”) and probabilistic back-
ground knowledge about the
domain. The agent selects learning
goals (features in the world about
which predictive theories will be
formed) that will maximize the
agent’s ability to achieve its planning
goal. The learner uses the probabilis-
tic background knowledge to select
learning biases for each learning goal
and performs a heuristic search
through the space of UPTs, using
Bayesian techniques to evaluate the
theories. The planner uses the best
current theory to choose actions that
satisfy its planning goal and to gener-
ate new learning goals for the induc-
tive learning subsystem to focus on.

My Ph.D. dissertation (des-
Jardins 1992a)1 describes
PAGODA (probabilistic

autonomous goal-directed agent), a
model for an intelligent agent that
learns autonomously in domains
containing uncertainty. The ultimate
goal of this line of research is to
develop intelligent problem-solving
and planning systems that operate in
complex domains, largely function
autonomously, use whatever knowl-
edge is available to them, and learn
from their experience. PAGODA was
motivated by two specific require-
ments: The agent should be capable
of operating with minimal interven-
tion from humans, and it should be
able to cope with uncertainty (which
can be the result of inaccurate sen-
sors, a nondeterministic environ-
ment, complexity, or sensory
limitations). I argue that the princi-
ples of probability theory and deci-
sion theory can be used to build
rational agents that satisfy these
requirements.

PAGODA incorporates innovative
techniques for using the agent’s
existing knowledge to guide and con-
strain the learning process as well as
a powerful new mechanism for repre-
senting, reasoning with, and learning
probabilistic knowledge. Additional-
ly, PAGODA provides a conceptual
framework for addressing important
open problems such as incremental,
resource-bounded learning and
knowledge-based learning and plan-
ning.

PAGODA was implemented in the
RALPH (rational agent with limited
processing hardware) world, a simu-
lated two-dimensional world used at
the University of California at Berke-

Goal-Directed Learning
GDL is a decision-theoretic method
that PAGODA uses to decide which
learning goals will be most effective
at increasing its ability to achieve its
planning goal (desJardins 1992b).
PAGODA’s initial learning goal is just
its planning goal; that is, it initially
learns a theory that predicts the
value of its planning goal at each
time step. GDL then uses this theory
to determine the degree to which fea-
tures in the sensory input affect the
outcomes of its actions. The features
that have the greatest effect are
selected as learning goals. For exam-
ple, in the RALPH world, the :MUHCH

action (which RALPH uses to eat food)
has no effect unless RALPH is at the
same location as a food object. Learn-
ing to predict what actions move
RALPH to a location containing food
enables the agent to form better
long-term plans; therefore, “being at
food” is a useful learning goal.

Probabilistic Bias 
Evaluation

An autonomous agent must be able
to select biases (Mitchell 1980) for
new learning tasks as they arise. PBE
uses probabilistic background knowl-
edge and a model of the system’s
expected learning performance to
compute the expected value of learn-
ing biases for each learning goal.
PAGODA uses the bias with the highest
expected value for learning.

The probabilistic background
knowledge consists of a set of unifor-
mities, which are a probabilistic ver-
sion of determinations (Davies and
Russell 1987). A uniformity specifies
the degree of relevance of a set of fea-
tures F for predicting an outcome O.
The expected asymptotic accuracy
that can be achieved using a pro-
posed bias (the feature set F) to pre-
dict a learning goal (the outcome O)
is derived from the uniformities.
Accuracy as a function of time
(number of observations made) is
found by applying a prespecified
learning curve to this asymptotic
accuracy. Finally, the overall predic-
tive accuracy of the bias is found by
discounting the accuracy, that is, by
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multiplying the accuracy by a dis-
counting function and integrating
over time. The discounting function
models the effect of the passage of
time on the value of predictions. The
resulting expected discounted future
accuracy is used as the expected value
of the bias.

Representing 
Probabilistic Theories

PAGODA’s learned knowledge is repre-
sented as probabilistic theories about
its learning goals. Each theory con-
sists of a set of conditional probabili-
ties predicting the value of a learning
goal, or feature of the world. PAGODA’s
theories are called UPTs: Their form is
constrained in such a way that a
straightforward set of independence
assumptions can be applied to the
theory to make a unique probabilistic
prediction about the learning goal
whose value is predicted by the
theory given any input (that is, any
value for the agent’s sensory input
and any action taken by the agent).
The predictions are made by the PCI
inference method. PCI finds the set of
most-specific conditional probabilities
in a theory that apply to a given
input. These probabilities are com-
bined by iteratively finding a separa-
ble rule in the set,2 computing its
contribution to the overall probabilis-
tic prediction using independence
assumptions, and recursively process-
ing the remaining probabilities.

Probabilistic Learning
The learning component utilizes
splitting and merging operations
(similar to those used in COBWEB

[Fisher 1987]) to search the space of
theories. The learning process is
incremental in that it processes each
training example separately, yielding
a set of best theories after each one;
however, because all past training
instances are stored and potentially
reprocessed, the learning process is
not bounded in time or space. Pro-
posed theories are evaluated using a
Bayesian evaluation function, where
the prior probability of a theory
depends on its simplicity, and its like-
lihood depends on its predictive

accuracy on the set of training exam-
ples seen so far. The simplicity of a
theory is based on the minimum
description length principle (Rissa-
nen 1978) but can vary depending on
the encoding scheme used. In the dis-
sertation, four different encoding
schemes are discussed, corresponding
to four levels of abstraction for classi-
fying theories.

Probabilistic Planning
PAGODA’s planning method is based
on decision theory (von Neumann
and Morgenstern 1947). The planner
performs a random action a fixed per-
centage of the time (the default is 25
percent) to ensure that the environ-
ment is continuously explored and
that the agent does not get stuck on a
local maximum. The rest of the time,
the planner performs a heuristic
search through the space of possible
outcomes (as defined by the agent’s
current best theory) for each action;
this search extends to a fixed depth
(default 3). The maximum expected
utilities in each final state are propa-
gated backward, yielding an expected
utility for each initial action. At each
level, the utility of the action with
the highest expected (average) utility
is used as the value to propagate
back.

Results
PAGODA was tested in the RALPH world.
The results of these tests show that
PAGODA learns relatively accurate (that
is, significantly better than chance)
probabilistic models of the world and
that using these models allows the
system to improve its overall perfor-
mance. However, the tests also high-
light areas for future research,
particularly improving the heuristic
search for theories and the probabilis-
tic planning mechanism.
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Notes

1. This article is available as Technical
Report UCB/CSD 92/678 from the Depart-
ment of Computer Science, University of
California at Berkeley, Berkeley, CA 94720.

2. A rule is separable within a set if its
conditioning context can be split into a
set of features that are shared with no
other rule in the set and another set of
features that are shared with some single
other rule in the set.
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