
■ The University of Michigan’s CARMEL and SRI
International’s FLAKEY were the first- and second-
place finishers, respectively, at the 1992 Robot
Competition sponsored by the American Associa-
tion for Artificial Intelligence. The two teams
used vastly different approaches in the design of
their robots. Many of these differences were for
technical reasons, although time constraints,
financial resources, and long-term research objec-
tives also played a part. This article gives a techni-
cal comparison of CARMEL and FLAKEY, focusing on
design issues that were not directly reflected in
the scoring criteria.

The University of Michigan’s CARMEL and
SRI International’s FLAKEY were the first-
and second-place finishers, respectively,

at the 1992 Robot Competition sponsored by
the American Association for Artificial Intelli-
gence (AAAI) (see the Dean and Bonasso arti-
cle in this issue). Interestingly, the two teams
used vastly different approaches in the design
of their robots. Many of these differences
were for technical reasons, although time
constraints, financial resources, and long-
term research objectives also played a part.

The final scores for the robots, based solely
on competition-day performance, constitute
only a rough evaluation of the merits of the
various systems. This article provides a tech-
nical comparison of CARMEL and FLAKEY, focus-
ing on design issues that were not directly
reflected in the scoring criteria. Space limita-
tions preclude detailed descriptions of the
two approaches; further details can be found
in an upcoming AAAI Technical Report by the
authors.

The Two Robots
CARMEL (computer-aided robotics for mainte-
nance, emergency, and life support) is based
on a commercially available Cybermotion
K2A mobile robot platform. CARMEL is a cylin-
drical robot about a meter in diameter, stand-
ing a bit less than a meter high. It has a top
velocity of 780 millimeters/second and a top
turning rate of 120 degrees/second; it moves
using three synchronously driven wheels. For
sensing, CARMEL has a ring of 24 Polaroid sen-
sors and a single black-and-white charge cou-
pled device camera. The camera is mounted
on a rotating table that allows it to turn 360
degrees independently of robot motion. Three
computers work cooperatively while the robot
is running: First, an IBM PC clone runs a 33-
MHz, 80486-based processor that performs all
top-level functions and contains a frame grab-
ber for vision processing. Second, a motor-
control processor (Z80) controls the robot’s
wheel speed and direction. Third, an IBM PC

XT clone is dedicated to the sonar ring. All
processing and power are contained on board
CARMEL.

CARMEL’s software design is hierarchical in
structure. At the top level is a supervising
planning system that decides when to call
subordinate modules for movement, vision,
or the recalibration of the robot’s position.
Each of the subordinate modules is responsi-
ble for doing low-level error handling and
must return control to the planner in a set
period of time, perhaps reporting failure; the
planning module then determines whether to
recall the submodule with different parame-
ters or resort to another course of action.
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CARMEL avoids obstacles using a point-to-
point, goal-directed algorithm called VFH

(Borenstein and Koren 1991a, 1991b). Object
recognition is done using a single camera and
a one-pass algorithm to detect horizontally
striped, bar-code–like tags on each of the 10
objects. A distance and a heading for each
object are returned. Recalibrating the robot’s
position is done by triangulating from three
objects with known locations.

The software system of CARMEL was kept
modular to allow for a team design, whereby
small groups could work independently on
each module. Using this approach, the team
of 30 students was able to write its winning
system in six months. Only the low-level
object-avoidance modules existed before
work on the competition began. CARMEL’s soft-
ware system was also kept simple so that it
could be run completely on board, allowing
CARMEL to navigate at high speeds while it
smoothly avoided obstacles. (Many of the
other robots in the competition were sending
information to off-board processors and, as a
result, operated in a jerky, stop-and-go fash-
ion, moving a bit but then having to stop
and wait while sensor information was sent
off board and processed and the results trans-
mitted back to the robot.)

FLAKEY is a custom-built mobile robot plat-
form approximately 1 meter high and .6
meter in diameter. There are two indepen-
dently driven wheels, 1 on each side, giving a
maximum linear velocity of 500
millimeters/second and a turning velocity of
100 degrees/second. Like CARMEL, FLAKEY has
ultrasonic sonar sensors good to about 2
meters, but instead of a uniform ring, FLAKEY

has 4 sensors facing front, 4 facing back, and
2 facing each side. Additionally, FLAKEY has 8
touch-sensitive bumpers around the bottom
perimeter of the robot and a structured-light
sensor that is a combination of a light stripe
and a video camera that is capable of provid-
ing a dense depth map over a small area in
front of FLAKEY. FLAKEY has 3 computers: (1) a
Z80 motor and sonar controller, (2) a SUN 3
dedicated to the structured-light sensor, and
(3) a SPARCSTATION responsible for high-level
routines. During the competition, all compu-
tation was performed on board.

FLAKEY’s basic software design is distributed:
The modules work in parallel and communi-
cate through a blackboardlike structure called
the local perceptual space (LPS). LPS is a geo-
metric egocentric map of the area within two
meters of the robot. Modules contribute
information to, and draw information from,
LPS. The loosely linked structure makes it
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possible to have tasks running in parallel that
have different reaction-time and information
requirements. On the perception side, mod-
ules add raw sonar and structured-light infor-
mation to LPS, treating it as an occupancy
grid. Other interpretive processes use this
information to construct and maintain
higher-order structures, parsing the data into
surface segments, recognizing objects, and so
on. All this information is coordinated geo-
metrically so that an action module can use
whatever form is appropriate, for example,
the occupancy grid for obstacle avoidance,
surface segments for path planning, and
object tags for task planning.

On the action side, there are three main
types of modules. At the lowest level, reac-
tive-action modules called behaviors guide the
robot’s movements. The input to these
modules is the occupancy grid for obstacle
avoidance plus artifacts (such as a path to
follow) that are put into LPS by higher-level
navigation routines. FLAKEY was unique in
using fuzzy rules as the building block for
behaviors (Saffiotti and Ruspini 1993), giving
it the ability to react gracefully to the envi-
ronment by grading the strength of the reac-
tion (for example, turn left) according to the
strength of the stimulus (for example, the dis-
tance of an obstacle on the right).

More complex behaviors, such as moving
to desired locations, use surface information
and artifacts to guide the reactive behaviors;
they can also add artifacts to LPS as control
points for motion. At this level, fuzzy rules
allow FLAKEY to blend possibly conflicting
aims into one smooth action sequence. At a
higher level, the navigation module
autonomously updates FLAKEY’s global posi-
tion by comparing it to a tolerant global map,
which contains prior, approximate spatial
knowledge of objects in the domain. Finally,
task-level modules continuously monitor the
progress of the complex behaviors, using
information from the navigation module to
plan sequences of behaviors to achieve a
given goal.

The distributed architecture and loosely
coupled control structure enable FLAKEY to
simultaneously interpret sensory data, react
to the local environment, and form long-
range plans. The modular and distributed
design of FLAKEY means that it is both flexible
and extensible. The SRI team incorporated
large portions of software previously written
for an office environment, including almost
all the perceptual routines and the low-level
behaviors. The team started working on the
competition one month before it began and
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The distributed architecture and loosely coupled
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interpret sensory data, react to the local environ-
ment, and form long-range plan.



did not do as well was because it was so goal
oriented; that is, it was always trying to get
somewhere in particular. CARMEL could not be
“shepherded” about by the judges because it
had a dogged persistence in trying to achieve
its goal location. Both teams noticed that
behavior could be improved markedly by
tuning the parameters of the avoidance rou-
tines.

Issues in Object Recognition
Stages 2 and 3 both required the ability to
detect and visit objects (specifically, poles of a
fixed diameter) scattered throughout the
arena. The rules permitted teams to modify
poles to facilitate the recognition process,
although a small bonus was awarded for full
autonomy, that is, no altering of the environ-
ment. Michigan took advantage of the object-
modification rule by attaching a distinct
omnidirectional bar-code tag to each pole.
CARMEL’s vision algorithm was designed to
extract the bar codes from an image.

SRI, however, was one of only two teams
(the other being Brown University) that did
not modify the arena or poles in any way.
Instead, FLAKEY used only the physical charac-
teristics of the poles themselves in the detec-
tion process. FLAKEY used a two-tiered
approach, whereby sonar input was moni-
tored during navigation to detect candidate
poles, and candidates were actively verified
by having FLAKEY navigate to a position where
the structured-light sensor could be applied.
This hybrid approach was necessary because
of the limitations of the two sensing modali-
ties: Structured-light verification is highly
accurate but applies only to a small perceptu-
al space (less than two meters) directly in
front of the robot; sonar input covers a much
larger space during navigation but is not
nearly as reliable for object recognition. Both
the structured-light and sonar routines were
built using low-level perceptual routines that
FLAKEY has used for some time.

The recognition components of both teams
performed extremely well during the compe-
tition. CARMEL never saw a false object, and it
never missed seeing an actual object; similar-
ly, FLAKEY’s structured-light routine was
perfectly reliable. CARMEL’s performance was
surprising because its long-range vision creat-
ed the added difficulty of dealing with false
objects outside the arena, a problem that
FLAKEY’s short-range sensors did not have.
FLAKEY’s candidate generation techniques
based on sonar input also performed well,
picking out only two nonpoles (box corners)

produced and integrated modules for com-
plex behaviors, tasks, and navigation.

Issues in Moving
In stage 1, both robots had to roam the arena,
avoiding people and obstacles. Both robots
used sonar sensors as their primary obstacle-
avoidance sensors. CARMEL used a two-step
process in which the sonar readings were first
filtered to reduce noise and imprecision
(Borenstein and Koren 1992), and then an
occupancy grid–style map, similar to that
introduced by Moravec and Elfes (1985), was
updated. CARMEL used this sonar map to navi-
gate. Similarly, FLAKEY used LPS to integrate
sonar readings and fuzzy-control rules to con-
trol motion.

Both robots performed obstacle avoidance
remarkably well despite attempts by the
judges to surprise and contain them. FLAKEY’s
use of fuzzy rules resulted in extremely
smooth and reliable movement. FLAKEY uses
two-part obstacle-avoidance rules: Longer-
range rules deflect FLAKEY away from distant
obstacles, and collision-avoidance rules force
emergency maneuvers when an object is sud-
denly detected nearby. These rules are typical-
ly combined with rules for purposeful
motion, such as following a wall. This combi-
nation of rules ensures that strategic goals are
achieved as much as possible while a high
reactivity is maintained. In this phase of the
competition, speed was limited to 200 mil-
limeters/second, primarily because of the
blind spots on the diagonal: Objects in these
positions had to be relatively close before
they could be seen by the sonar. FLAKEY’s reli-
able behavior is best summarized by one
judge’s comment: “only robot I felt I could sit
or lie down in front of” (which he actually
did).

CARMEL was distinguished by its graceful
motion around obstacles in open terrain and
was pleasant to watch. It moved at a speed of
300 millimeters/second, noticeably faster
than FLAKEY. However, under prodding from
the judges, CARMEL touched two obstacles and
grazed a judge. CARMEL touched objects in part
because many variables in CARMEL’s obstacle-
avoidance code need to be tuned for the envi-
ronment in which it is running. The
Michigan team had assumed an environment
with dynamic but much more benign obsta-
cles.

FLAKEY placed ahead of CARMEL in this stage
of the competition and was only one point
behind the first-place (at this point) entry,
TJ2 from IBM. Part of the reason why CARMEL
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as candidates and only failing to detect one
pole in its perceptual space as a candidate
(because the robot passed too close to the
pole).

The SRI team demonstrated that reliable
object-type recognition was possible using
only physical characteristics of the objects
and simple domain constraints (such as non-
proximity to other objects) without having to
modify the environment. As such, FLAKEY, in
contrast to CARMEL, was able to perform recog-
nition for classes of objects rather than spe-
cially marked individuals in the class. One
consequence of doing class recognition was
that individual objects had to be identified
based solely on information about the
object’s location. In contrast, the individual-
ized bar codes used by the Michigan team
provided immediate identification informa-
tion to CARMEL.

CARMEL’s use of long-range sensing made it
possible to locate objects from as far away as
12 meters (over half the diameter of the
arena). In contrast, FLAKEY could only recog-
nize poles and candidates within its local per-
ceptual space. As discussed later, this
difference had a major impact on the meth-
ods used by the two teams for mapping and
navigation.

Issues in Mapping
To be competitive in stage 3, it was necessary
for the robots to generate maps of the envi-
ronment during stage 2. At a minimum, these
maps contain the location of discovered
poles, but they could also encode further
information, such as the positions of obsta-
cles or walls. A complementary problem to
map construction is self-localization, which
involves having the robot determine where it
is relative to the map. A critical issue faced by
both robots in solving these problems was the
inaccuracies inherent in dead reckoning, the
robot’s internal calculation of its location
based on wheel movements.

Automated map generation remains a topic
of current research for the field of robotics.
Michigan and SRI chose two different
approaches to the design of maps for their
robots. CARMEL used a global Cartesian system
that stores only pole locations and the cur-
rent position of the robot. To track its posi-
tion with reference to the map, CARMEL relied
exclusively on dead reckoning: When initial-
ized, it was given its position and orientation
on the map, and subsequent movements gave
an estimated position based on wheel rota-
tion. When discovered, the poles were placed

on the map using the current estimated posi-
tion together with the range and angle
returned by the vision system.

Of course, errors in estimated position
accumulate over time from wheel slippage
and the like; CARMEL incorporated an algo-
rithm to triangulate its position from known
object locations, thus reducing the error. The
vision-based triangulation system was not
actually used for the competition because of
last-minute changes to the system software.
However, not using triangulation did not
noticeably affect the performance of CARMEL

for three reasons: First, the time and the dis-
tance between tasks were small; second,
CARMEL’s dead reckoning and its vision system
were highly accurate; and, finally, the plan-
ning system was designed to deal with self-
localization errors. CARMEL could be several
meters away from the expected location of
the pole and still be able to locate it.

In contrast to CARMEL, FLAKEY used a tolerant
global map containing local Cartesian patches
related by approximate metric information.
Each patch contains some recognizable fea-
ture or landmark by which the robot can
orient itself; the approach is similar to the
work on landmark-based navigation (Kuipers
1978). The patches chosen for the competi-
tion were the walls of the arena because they
were the most stable features for navigation.
The approximate length and the relative ori-
entation of the walls were given to FLAKEY as
prior knowledge; FLAKEY could easily have
learned this information by circumnavigating
the arena.

The SRI team chose the tolerant global
maps because FLAKEY accumulated dead-reck-
oning errors more quickly than CARMEL.
Moving four or five meters, especially with
some turning, can cause significant errors in
estimated position, and FLAKEY must use
sensed landmarks to correct its localization
on the map. Compounding the problem is
FLAKEY’s short-range sensing, which makes it
impossible to locate landmarks more than a
few meters away. The tolerant global maps are
a solution to FLAKEY’s imprecision in large-
scale sensing and movement. Within each
patch, local landmarks can be sensed almost
continuously (in this case, the arena walls
and wall junctions) to keep localized. When
going between patches, approximate metric
information can be used to find the next
landmark for localization. Because sensing
and movement are accurate only over small
distances, there is no need to keep a highly
precise global geometry; further, FLAKEY would
find it impossible to use this information.

Fuzzy rules
allow FLAKEY

to blend 
possibly 
conflicting
aims into 
one 
smooth 
action
sequence
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perimeter of the arena, making forays into
the center of the arena at certain points along
the way. This strategy was designed to recon-
cile the conflicting objectives of providing
broad coverage of the arena and keeping
FLAKEY self-localized using information about
wall locations.

FLAKEY did encounter some localization
problems near the end of its stage 2 run, pri-
marily because of a tactical mistake (on the
part of the designers!) in the execution of
forays. FLAKEY initiated its final foray before
having registered the current wall. As a result,
dead-reckoning errors accumulated to such
an extent that FLAKEY’s beliefs about its posi-
tion were inaccurate. Given more time, FLAKEY

would eventually have returned to the wall
and reregistered itself, thus correcting the
problem. The entire issue could have been
avoided had forays been postponed until wall
registration had taken place.

The Michigan team’s use of long-range
sensing easily enabled CARMEL to find all 10
poles within the allotted 20-minute search
period. In contrast, the physical exploration
executed by FLAKEY was time consuming. In
the end, FLAKEY found and correctly registered
only 8 of the 10 poles before time expired.
Certainly, the Michigan approach was superi-
or given the conditions of the competition
environment. In particular, Michigan took
full advantage of the fact that objects would
be visible above all obstacles. Because FLAKEY’s
method was not based on any such assump-
tions, it was less efficient; however, FLAKEY’s
exploration method could be used in more
realistic environments, where objects can be
occluded.

Directed Navigation
In stage 3 of the competition, the robots were
given three poles to visit in order, and then,
they were to return to a home position. This
stage was timed, with the robots receiving
points based on their time with respect to the
other robots.

FLAKEY’s strategy of registering objects and
itself with respect to walls meant that the
robot had to navigate along the perimeter of
the arena when traveling between objects.
Visiting an object registered with respect to a
wall W involved determining the direction of
the shortest perimeter path to W (either
clockwise or counterclockwise), following the
perimeter in this direction until W was
encountered, and then using dead reckoning
within the coordinate system of W to move
to the pole. CARMEL, however, used dead reck-
oning with its global map to proceed directly

The use of precise dead reckoning and
long-range sensing gave CARMEL a marked
advantage over FLAKEY in the competition
because it made it easy to both register the
poles in a global coordinate system and deter-
mine trajectories for navigating from one to
another (as required for stage 3). FLAKEY’s abili-
ty to rerecognize poles that it discovered pre-
viously demonstrated that the tolerant global
map can successfully be used for self-localiza-
tion, although FLAKEY encountered some diffi-
culties in using this system (see the next
section).

It is interesting to speculate about how well
the different methods would work in other
domains. FLAKEY’s tolerant global maps were
designed for an office environment, where
navigation landmarks are plentiful (walls,
corridors, doors), and long-range triangula-
tion is difficult and of limited value. The tol-
erant global maps are robust in this situation,
whereas a precise global Cartesian map would
be hard to acquire and use. Its main advan-
tage—navigation over open space—would be
minimized because most navigation is by cor-
ridor paths.

However, FLAKEY’s approach is less useful in
more open areas such as outdoor navigation,
where paths and local landmarks might be
sparse. In this case, CARMEL benefits from the
inclusion of more global positioning informa-
tion.

Issues in Navigation
Task-oriented navigation played a critical role
in the competition. Stage 2 required explo-
rative navigation of the arena to detect and
visit poles. Because the robots had no prior
information about object locations, a general
and thorough exploration methodology was
required. Stage 3 involved directed naviga-
tion: Robots were to revisit three poles in a
prespecified sequence and then return home.

Explorative Navigation
CARMEL’s long-range object-recognition capa-
bilities enabled the Michigan team to use a
fairly simple exploration strategy. CARMEL’s
exploration consisted of moving to viewing
positions distributed throughout the arena,
executing a visual sweep for objects, and then
visiting each object.

FLAKEY’s reliance on local sensing necessitat-
ed an actual physical exploration of the envi-
ronment: To ensure full coverage, FLAKEY had
to cover the full extent of the competition
arena with its local perception. The strategy
adopted by the SRI team was to traverse the

The 
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to the recorded locations of objects. Not sur-
prisingly, CARMEL was able to perform the
stage-3 visiting task in a much shorter period
of time (3 minutes versus 11 minutes for
FLAKEY).

Like many other teams, the Michigan team
marked the home position by placing an 11th
pole there. This modification to the environ-
ment was made to provide a perceptual land-
mark for the home position, which
compensated for the accumulation of dead-
reckoning errors during the run. FLAKEY, in
contrast, did not require any such modifica-
tion to the environment. Instead, it was able
to treat the home location in the same
manner as other positions of interest (such as
pole locations or foray positions) because it
used the tolerant global maps to continuously
correct its position.

Conclusion
Both CARMEL and FLAKEY must be considered
unqualified successes, having bested 10 or so
other entries in a nationwide competition.
There were many reasons for this success.
Both teams did all their processing on board
the robot, avoiding problems with radio and
video links and enabling their robots to be
more reactive. Both teams inherited robots
that had well-developed software systems. In
addition, both teams used simulations to
speed the development process. However, the
approach to the competition was different for
each team. Michigan looked at the competi-
tion rules and engineered a system to opti-
mize its robot’s performance at the cost of
generality. SRI used the competition as a
demonstration of the application of its
research in a new domain, without engineer-
ing any hardware specific for this domain.

Interestingly, neither team used any geo-
metric planning for navigation around obsta-
cles to a goal point, although this area is a
large part of robotics research (Latombe,
Lazanas, and Shekhar 1991). Instead, both
teams relied on the simple strategy of heading
toward the goal and using reactive behavior
to avoid obstacles, with simple methods for
getting out of cul-de-sac situations. Geometric
planning requires some sophistication in per-
ception and mapping of obstacles and can be
difficult to perform in real time. The large
openings around obstacles in the competition
made it easy to pursue simpler strategies, and
we speculate that in other domains, geomet-
ric planning will also play a minor role in
navigation.

It is interesting to try to compare the two

system architectures. At the level of reactive
movement, FLAKEY perhaps had the advantage,
because the fuzzy-control paradigm provides
a flexible and powerful representation for
specifying behavior. In less than a month, the
SRI team was able to write and debug half a
dozen complex movement routines that inte-
grated perception and action in the service of
multiple simultaneous goals.

In terms of overall design, it is difficult to
compare the relative merit of the two archi-
tectures because the approaches to solving
the problem were so different. FLAKEY’s dis-
tributed control scheme allows various mod-
ules to run in parallel, so that (for example)
self-localization with respect to landmarks
occurs continuously as FLAKEY moves toward a
goal location or searches for poles. However,
the distributed design leads to behavior that
is more difficult to predict and debug than
that of CARMEL’s top-down approach in which
all the perception and goal actions are under
sequential, hierarchical control.

Although Michigan was the winner of the
competition, it is not clear that its system can
easily be extended to other domains. Certain-
ly, the obstacle-avoidance routines are neces-
sary in any domain and are widely applicable.
CARMEL’s reliance on a global coordinate
system and tagged objects restricts it to engi-
neered environments that can accurately be
surveyed (a reasonable assumption when you
consider how much of the world in which
humans operate is highly engineered). Also,
CARMEL’s simple exploration strategies would
be naive in an environment where objects
can be occluded. CARMEL’s keys to victory were
fast, graceful obstacle avoidance and fast,
accurate vision algorithms, not cognitive
smarts.

FLAKEY, moving more slowly and possessing
less accurate and more local sensing, had to
rely on a smart exploration strategy and con-
stant position correction. One of the key
research ideas behind FLAKEY is that natural
(that is, non-engineered) landmarks are suffi-
cient if the right map representation is used,
and it was gratifying to see this approach
work in a new environment. Still, FLAKEY

could be more efficient in navigating open
spaces if it incorporated more global geomet-
ric information, such as CARMEL used.

The fact that CARMEL, which is sensor rich
and cognitively poor and FLAKEY, which is
sensor poor and cognitively rich, came in as
the top two robots in the competition clearly
shows that fundamental trade-offs can be
made in engineering mobile robots. Complex
sensing can allow for simple planning; simple
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sensing requires complex planning. In no
sense is either robot more complex than the
other; it is just that the complexity lies in dif-
ferent places. What was not clear from the
competition was whether complex sensing
and complex planning will make for a funda-
mentally better robot. This issue will have to
be resolved at future competitions.
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Following the highly successful robotics exhi-
bition at AAAI-92, AAAI is planning to hold a
robot competition at the national conference
in Washington D.C. in July of 1993

Last year’s competition was a three-stage event
in which mobile robots demonstrated skills of
reactivity, exploration, and directed search (a
detailed description is in the Summer 1992
issue of AI Magazine).

Mobile robotics is an area where much of the
research in diverse AI areas can be effectively
and creatively combined to give interesting
results. At AAAI-93, we would like to extend
the competition to highlight as wide a range
of robotic research as possible, and to stress
the “intelligent” aspects of their behavior. In

addition to mobile robots, we are also consid-
ering having a competition among robotic
manipulators, either stationary or attached to
mobile platforms.

If you are interested in more detailed informa-
tion about the competition, please contact:

Kurt Konolige, Artificial Intelligence Center
SRI International, 333 Ravenswood Avenue
Menlo Park, CA 94025, (konolige@ai.sri.com)

or

Reid Simmons, School of Computer Science
Carnegie Mellon University, 
5000 Forbes Avenue
Pittsburgh, PA 15213, 
(reids@cs.cmu.edu)

AAAI-93
Robot Exhibition

July 13–15, 1993
Washington, DC




