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here is a bounded look-ahead to
artificial terminal nodes.

Except in very rare cases such as the
game nim, there is no known way of
directly evaluating the exact status
(the true value) of such artificial ter-
minal nodes. Consequently the use of
heuristic estimates is usually the only
practical resort. Such heuristic values
are assigned by so-called static evalua-
tion functions. In practical applica-
tions these heuristic values are usually
not restricted to the game-theoretic
values, but range over an interval of
integer values. Theoretically, real
numbers can also be used. While there
is no satisfactory theory of the actual
semantics of these numbers, it is intu-
itively clear that they should induce a
partial order in the various positions
of a game according to their worth in
the sense of “goodness” or “strength”
for one side. Conceptually it is rather
problematic to map all considerations
about a position into a single number,
especially as there is no measure of its
reliability. Nevertheless, up to now
this simple scheme has been superior
to more complicated ones in game-
playing practice.

Under the assumption that the look-
ahead tree (graph) of moves for both
sides is searched deeper than one ply
(the technical term for a half-move, or
move by one side), the natural ques-
tion arises as to what to do with the
heuristic values of the terminal nodes.
More precisely, how can they be used
for making a reasonable move deci-
sion? When exactly one ply is
searched, it seems clear that the best
choice is the move resulting in the
successor position with the best value
(the maximal one, assuming that high-
er values are better for the side that is
moving). When there are several such
moves, one of them may be chosen

xisting models for analyzing
properties of minimaxing seem

to have been designed primarily to
support formal analysis, rather than
the proper modeling of the games for
which minimaxing has proved very
successful in practice. The discovery
and analysis of pathological game
trees, for which minimaxing does not
work, is important but seems to have
no correspondence to practical obser-
vations. Conjectures about practice
based on models with assumptions
that do not apply are rather dangerous.

This article takes the opposite
approach to understanding the
benefits of minimaxing. After summa-
rizing existing models according to
their practical relevance, we present a
new model that was developed primar-
ily from observations. This model
seems to capture the essential features
of the method, but introduces new
complications, despite efforts to sim-
plify it as much as possible. We con-
clude with a discussion of the conse-
quences of such investigations for the
proper use of minimaxing.

Background

First, let us briefly review the concept
of minimaxing. Most current comput-
er programs for two-person, perfect-
information games (including chess,
checkers, and kalah) use minimaxing
as their basic method for choosing a
move from a given position. While
such games could be completely
solved in principle using game theory,
the combinatorial explosion inherent
in “interesting” games makes this
totally infeasible within any practical
time and space limits. Hence, in con-
trast to the usual attempt in one-per-
son games (problems) to search for a
real goal-node, the usual paradigm

Empirical evidence suggests that searching
deeper in game trees using the minimax

propagation rule usually improves the
quality of decisions significantly. Howev-
er, despite many recent theoretical analy-
ses of the effects of minimax look-ahead,

however, this phenomenon has still not
been convincingly explained. Instead,
much attention has been given to so-

called pathological behavior, which occurs
under certain assumptions. This article

supports the view that pathology is a
direct result of these underlying theoreti-

cal assumptions. Pathology does not occur
in practice, because these assumptions do
not apply in realistic domains. The article

presents several arguments in favor of
minimaxing and focuses attention on the
gap between their analytical formulation

and their practical meaning. A new model
is presented based on the strict separation
of static and dynamic aspects in practical

programs. finally, certain methods of
improving minimax look-ahead are dis-
cussed, drawing on insights gained from

this research.
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arbitrarily. But how should the heuris-
tic estimates be backed-up (propagat-
ed) from deeper in the tree?

For a long time, there was universal
agreement to proceed as follows: If one
player (called MAX) is on move from a
position within the tree, take the max-
imum of the successor values; if the
other player (called MIN) is on move,
take the minimum. By use of this
back-up rule, a so-called minimax
value of the whole tree can be com-
puted recursively. figure 1 illustrates
the way values are propagated toward
the root. Usually, the primary interest
is not the minimax value of the tree
itself, but rather the move to be select-
ed. In accordance with the back-up
rule, the arc (move) leading to the best
(by convention the maximal) backed-
up value of the immediate successors
is chosen. More precisely, the choice
is one of what may be several moves
leading to the maximum.

While any reasonable method of
searching can be used, the usual
choice is an iteration of successively
deeper depth-first searches in the form
of backtracking, to minimize storage
requirements. In fact, it is possible to

ignore large parts of the look-ahead
tree without changing the result.
There are algorithms that guarantee
the same minimax value and move
choice while saving considerable
effort. The best-known of these is the
alpha-beta algorithm which, for
instance, in figure 1 must only search
the part of the tree shown in boldface.
Since these backward-pruning possi-
bilities are not of primary interest in
this article, the reader is referred to
Campbell and Marsland (1983) or vari-
ous textbooks on AI.

An important question, then, is how
deeply the different branches should
be searched within the given time lim-
its. In practice, there is a tendency to
search each branch to about the same
depth (of course, with the exception of
backward pruning), although there is
an important potential for improve-
ments through searching to variable
depth (Kaindl 1983b). However, from a
theoretical point of view the crucial
question is: Why search at all? As
heuristic values have to be used any-
way, those of the immediate successor
positions may be used directly for
selecting a move. Unfortunately, expe-

rience shows that decisions based on
this method are, with only very few
exceptions, much worse than those
based on deeper and deeper searches
using minimaxing.

While the basic concepts of mini-
maxing (with the exception of search
techniques and backward pruning)
were proposed very early by two
famous researchers, Shannon (1950)
and Turing (1953), the success of this
technique remains even today a theo-
retical mystery.

Is Minimaxing Pathological?

Nau (1979, 1980, 1983b) has proved
that for certain classes of game trees
the decision quality is degraded by
searching deeper and backing up ter-
minal values using the minimax prop-
agation rule. Nau called such behavior
pathological. The key assumptions for
these game trees follow.
1. The trees are uniform, in that each
nonterminal node has exactly m + n
children nodes.
2. Every “critical” node has m chil-
dren with the same true value, fol-
lowed by n children with the opposite
true value (for the remaining nodes,
the true values of the children are
identical according to the game-theo-
retic relationship).
3. There is an independent (identical)
distribution of error by the static eval-
uation function that estimates values
for terminal nodes.

Recently, Schrüfer (coauthor of a
competition chess program) modified
this model, distinguishing two differ-
ent error parameters for “overestimat-
ing” and “underestimating,” respec-
tively (Schrüfer 1986, Section 1).
While his finding that pathology can
be avoided—given low error rates—is
quite illustrative, the requirement for
a negligible probability of just one of
the two errors (underestimating) could
not be related satisfactorily to observa-
tions in computer chess practice.

In later work, Nau (1982, 1983a,
1983c) investigated a class of “real”
games, called Pearl’s games or P-
games, in which pathology actually
occurs. Similar classes of games, called
N-games and G-games, were shown
not to be pathological. What is the
essential difference between P-games
and N- or G-games?

MAX

MIN

MAX

+3

+3 -1

-1 +4+9+3

+3 -2 +4 +9 -2 -1 +4 -5

Figure 1. An Example of Minimaxing.
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Our description of such games can
be rather cursory, since they are amply
described in Nau (1982, 1983a, 1983c).
A P-game is played on a board measur-
ing bk/2 by bk/2, where b > 1 and k > 0
are integers. For the example shown in
figure 2, which is taken from Nau
(1982, 1983a) b = 2 and k = 4 were cho-
sen. The initial configuration of the
board for a P-game is constructed by
randomly assigning each square of its
board one of two possible values, inde-
pendently of the values of the other
squares. We have indicated these val-
ues as W and L to emphasize their cor-
respondence to the true values WIN
and LOSS on leaf nodes. The first play-
er moves by dividing the board verti-
cally into b sections of equal width,
and discarding all but one of the sec-
tions. The opponent’s move consists
of doing the same horizontally with
the remaining part of the board. The
play continues in this manner until
only one square is left. If the square
has value W, the last player (MAX)
wins. If it has the value L, MAX loses,
and the opponent (MIN) wins.

Figure 2 shows a complete game tree
for this example, with the true values
WIN and LOSS indicated for the
boards from MAX’s viewpoint. The
numbers denote the heuristic values
of these boards, computed by the stat-
ic evaluation function described in
Nau (1982) (by simply counting the
number of W squares). The interested
reader is encouraged to figure out
whether a 1- and a 2-ply search using
minimaxing will choose the correct
move for MAX in the position marked
by an asterisk. Note that for k[<=] 7,
even for P-games, no pathological
behavior has been found in Nau
(1982).

Due to the board-splitting character
of these games, the values of the real
leaf nodes directly correspond to the
(randomly assigned) values of the ini-
tial board configuration. This causes
the values of sibling nodes to be com-
pletely independent of each other,
which results in the occurrence of
pathological behavior of minimaxing
in P-games.

N-games have rules identical to
those of P-games, with the one essen-
tial exception that the initial playing
board is set up differently, in an
“incremental” manner, so that the

strength or weakness of a board posi-
tion tends to be roughly the same for
sibling nodes. This dependence of val-
ues is sufficient to prevent the occur-
rence of pathology. Nau’s investigation
of G-games (Nau 1983c) also shows
nonpathological behavior. These
games are a modification of P-games,
such that sibling nodes have many
children in common, which results in
a different type of correlation between
them.

Essentially the same findings were
reported independently by Beal (1980,
1982) and Bratko and Gams (1982).
They began by assuming independent
distributions for the true as well as the
heuristic values, and then rejected one
of these assumptions in favor of
dependence as a “clustering” of true
values. A model in Schrüfer (1986,
Section 2) also relates the effects of
deeper minimaxing more generally to
the distribution of true values. Thus,
it seems clear that independence of
the true node values or independence
of the errors made by the static evalua-

tion function (when evaluating termi-
nal nodes) is a necessary condition for
pathology in minimaxing.

Michon (1983) found nonpathologi-
cal behavior for games with “inert”
structure, despite the assumption of
independent terminal values. Conse-
quently, pathological behavior of mini-
maxing seems to be restricted to
games with the properties of indepen-
dence of nodes as well as of noninert-
ness (games with constant branching
degree are noninert).

However, Pearl (1983, p. 452) still
left room for doubt by stating:

“Error amplification due to mini-
maxing is an established fact
which may significantly degrade
the quality of decisions in practi-
cal games. The absence of search-
depth pathology in common
games only means that the deteri-
oration in decision quality due to
minimaxing is masked by other
processes and so is not sufficient
to show up as a weakening ability
with increasing search-depth.”
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Figure 2. A Game Tree for a P-Game with b = 2 and k = 4.
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This conclusion seems to be based
on the following statement about
chess:

“The values of successor positions
appear tied down to the value of
the father position partly because
we only consider normally the
select set of successors which are
reasonable to play. It is hard to
conceive of a chess position so
strong that it cannot be spoiled
abruptly if one really tries to
make a stupid move” (Pearl 1983,
p. 444).
On the contrary, it is not even nec-

essary to conceive of such positions,
but only to look into those actually
investigated by the full-width search
of a real chess program. Since such a
search tries stupid moves most of the
time, most of the terminal positions
are so strong for one side that they
cannot be spoiled by a single stupid
move. See also Beal (1983, p. 167). Of
course this clustering of values in
games like chess is hard to prove for-
mally, but it should be noted that Beal
(1982) examined the king and pawn
versus king ending (as a complete
database on this ending is available)
and concluded that the clustering fac-
tor suffices to make minimax look-
ahead beneficial and not pathological.

Regardless of whether such cluster-
ing really occurs in practice, it should
be clear that neither the true values of
nodes nor the errors of static evalua-
tion are independent in game trees of
chess and related games. The relation-

ships among pieces on the board are
strong, and they always change incre-
mentally when the pieces are moved.
The values of positions as well as the
errors of evaluation depend on these
relationships. If one player in such a
game had twice as much material as
the other, it would be absurd to
believe that the values of descendant
nodes would be randomly distributed.
Furthermore, since all the nodes visit-
ed during a search are connected by a
graph, the search tree, it is unrealistic
to assume their independence. Conse-
quently, the notion of pathology in
such a domain is also unrealistic.

The argument given here is not
intended to belittle the theoretical
work on minimax pathology. Of
course, the discovery that minimaxing
can be detrimental under certain con-
ditions and the investigations of these
conditions are important. However,
these findings should not be interpret-
ed so that readers are tempted to
believe that minimaxing is in princi-
ple a bad method. Practical programs
for two-person games based on mini-
maxing give good results, and clearly
better ones than programs using the
other methods tried so far. Therefore,
isn’t it at least as important to investi-
gate more thoroughly those conditions
that lead to the beneficial behavior
observed in practice? As these condi-
tions are not understood well enough
for formal treatment, one should at
least try to approach such an under-
standing by intuitive reasoning.

Why Is Minimaxing
Beneficial in Practice?

Thompson (1982) conducted an experi-
ment on the influence of search depth
on the playing strength of full-width
searching chess programs. Table 1
(from Thompson 1982, p. 56) shows
the results from this “BELLE tourna-
ment.” Thompson found that an addi-
tional ply of search with an identical
static evaluation function is equiva-
lent to about 250 Elo rating points (Elo
1978). Although such a formula seems
to be a doubtful means for extrapolat-
ing the speed necessary for a machine
to defeat the human World Champion,
it is consistent with the experience
gained from computer chess tourna-
ments. A similarly dramatic benefit of
searching deeper using the minimax
propagation rule seems to be true for
checkers and kalah.

Although demonstrating this benefit
appears to have been the initial moti-
vation for the theoretical analysis of
minimaxing, the discovery of patho-
logical behavior in minimaxing on cer-
tain unrealistic game trees was the
first surprising result. In addition, the
succeeding investigations could not
provide theoretical support for the dra-
matic benefit observed in practice. For
instance, Table 5 in Nau (1982) shows
only modest improvements in deci-
sion quality with increasing search
depth for N-games.

The dependencies in real game trees

Rate P3 P4 P5 P6 P7 P8

P3
P4
P5
P6
P7
P8

1091
1332
1500
1714
2052
2320

16
4

14
5

15
4

2
17 3

16

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Table 1. Tournament of the Chess Program BELLE.
Version Pi searches to a depth of i plies and then enters its quiescence evaluation; for example, P8 scores 16 1/2 : 3 1/2 versus P7.
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reflect the structure of real games, and
consequently pathology does not
occur there; but clustering relation-
ships between the true values alone
cannot account for the large benefits
observed, mainly because they seem
to be an outer phenomenon. This rela-
tionship of the true values may be
induced at least partially by a more
fundamental relationship between
true and heuristic values within whole
subtrees.

Let us briefly look at some extreme-
ly simple examples from the very
domain for which Shannon (1950) and
Turing (1953) made their proposals
(and where minimaxing is truly use-
ful). figure 3 presents fragments of
chess positions showing simple tacti-
cal patterns. These examples will give
the reader a very crude idea of what
happens in a typical computer chess
program. To follow these examples, it
is only necessary to know how chess
pieces move, and that the relative
heuristic values of queen, rook, and
pawn are about 9, 5, and 1.

In the following, we assume a static
evaluation function that simply sums
up the relative heuristic values of the
pieces on the board for each side and
then subtracts these sums. (Although
the evaluation functions actually used
in chess programs may include various
positional and strategic subtleties, the
material term is by far the dominating
one.) In figure 3a a full-width, 1-ply
search will select Rh3xQh7 (rook
moves to square h7 to capture queen)
for White on move. Since this move
changes the static values drastically, a
position containing this pattern can-
not be considered quiescent. (The
importance of quiescence had already
been recognized by Shannon and Tur-
ing, and this concept will be treated
more theoretically in the next sec-
tion.) In fact, such simple issues are
successfully handled by most pro-
grams within their capture quiescence
search: selectively searching captures

even beyond the horizon of a full-
width search. However, when the side
on move has an en prise piece—a piece
in risk of capture—more subtle issues
become relevant (Kaindl 1982, 1983a).

Especially, multiple en prise pieces
raise more difficult problems. The

interested reader is encouraged to
figure out how a minimax search may
discover whether a rook can be gained
by the “forking” move of the White
pawn from g2 to g4, depending on the
remainder of the board partly shown
by figure 3b. (As a hint, possibilities
such as one of the rooks putting the
White king in check may be crucial.)
Nevertheless, such issues usually
occur in more complicated combina-
tions. For example, in figure 3c White
has to exchange queens before the
forking pawn move can be successful.

These examples have only shown
rather simple tactical issues. Certain
positional issues, such as how to
maneuver a piece to a central square,
are handled in a similar way. Actually,
there is a strong temptation to think
that the reason for the benefits of
searching deeper is trivial. But do any
of the previously published attempts
to prove the benefits of minimaxing
model convincingly what these issues
really signify in an abstract minimax
tree?

A common argument is that of
“improved visibility,” which was sim-
ply interpreted and modeled by Pearl
(1983) in the sense that the accuracy of
the static evaluation function
improves as the game proceeds. Math-
ematical analysis of this model shows

that a very strong improvement is nec-
essary to combat pathology, but this is
based on the artificial assumption of
the independence of values. Thus, a
similar analysis based on dependent
values might be of interest.

For the game of chess, no such
improvement in accuracy can be seen
when considering the static evaluation
functions used in actual programs.
However, to compute a minimax
value, the relation of the terminal val-
ues to the minimax value is impor-
tant. This is utilized by the TEST pro-
cedure of the SCOUT algorithm (Pearl
1980). As most of the terminal values
of a chess tree are very strong for one
side (as was argued before in favor of
clustering), these relations are general-
ly evaluated very accurately, and this
relative accuracy improves with
increased search depth. See also Bratko
and Gams (1982, p. 12-14).

Another argument investigated by
Pearl (1983) is that of “the avoidance
of traps.” Again the model is oversim-
plified, considering only actual termi-
nal nodes (that is, mates and stale-
mates) at all levels of the game tree as
“traps.” Pearl’s analysis shows that
the presence of such traps makes min-
imax look-ahead beneficial, mainly
because such real terminal nodes can
be evaluated without error. Again this
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Figure 3. Fragments of Chess Positions Showing Tactical Patterns.

FALL  1988    73



model is based on the assumption of
independence of all the other values,
which probably explains why the exis-
tence of real terminal nodes has such a
strong influence on the analysis.

In computer chess practice this type
of trap alone does not seem to make a
strong contribution to the benefits of
minimaxing. Statistics compiled at
the fourth World Computer Chess
Championship with the program
MERLIN suggest that the number of
actual terminal nodes in a search tree

is usually less than 0.1 percent and
seldom reaches 1 percent. Moreover,
even if not a single terminal node is
visited during the search, minimax
look-ahead is very useful.

The avoidance of traps in a more
general sense is actually one of the
major tasks of minimax look-ahead in
chess: to recognize forced material
gain or loss. Such a search discovers
“double attacks” (see figure 3b), “piece
overloading,” “decoying,” and all the
other tactical chess elements about
which the usual static evaluation
functions have no explicit knowledge.
Because tactics plays a major role in
games like chess, checkers, or kalah,
searching deeper is a very successful
method for improving the perfor-
mance of programs for such games. In
backgammon, however, forced varia-
tions are not very important. Thus
Berliner’s (1980) backgammon pro-
gram, based primarily on knowledge
and not on search, was very success-
ful.

The minimax propagation rule
backs up exactly one value for each
position, the one it assumes to be best.
Consequently, this rule is well suited
for games in which each player has
exactly one move from each position;
in fact, it is a generalization of the
game-theoretic relationship. Of course
it is important that this heuristic
value is sufficiently reliable. Fortu-

nately, the dominating factor for eval-
uation in chess, checkers (material
balance), and kalah (number of stones)
is sufficiently reliable most of the
time. It is also interesting to reconsid-
er the difference between P- and N-
games from this point of view. Accord-
ing to the tables in Nau (1982, 1983a),
the same static evaluation function is
clearly more accurate for N-games
than for P-games. (D’ (1, k) provides a
measure of the accuracy of the evalua-
tion function for nodes with distance

k from the end of the game.)
There is insufficient space to illus-

trate the role of tactics more thorough-
ly here, but the benefits of minimax
look-ahead can also be seen in a more
general way. The static evaluation
functions used in practice usually
incorporate only static knowledge
(that is, there is no attempt to evaluate
the outcome of immediate impending
combat), whereas the dynamic aspects
are evaluated conveniently by a full-
width minimax search. In terms of
planning, the static evaluation func-
tions can only measure the current
state of goal achievement (for exam-
ple, the material advantage of a posi-
tion), but cannot realize whether and
how such a goal can be reached (for
example, by forcing the opponent in
such a way that material gain cannot
be prevented).

It is interesting to note that it is
exactly this difference between static
and dynamic evaluation, together with
a fixed search horizon, that causes one
of the major defects of the minimax
method, the horizon effect; see also
Berliner (1973). Berliner (1981, p. 585)
showed that this effect does not
influence the played move very often
when searching is sufficiently deep.
Nevertheless it is worth trying to
avoid it by investigating important
variations more deeply than others
(Kaindl 1981, 1982, 1983a, 1983b).

A Model Based on Quiescence

The most commonly used technique
to counter the horizon effect is the
quiescence search. The importance of
quiescence has been known ever since
the early work on computer game-
playing; Turing (1953) called quiescent
positions “dead.” However, there is an
important point often missed in this
regard: Quiescence is not only related
to the properties of a certain game, but
even more so to the static evaluation
function used. A position is nonquies-
cent if its value can be changed drasti-
cally by moves or move sequences. For
example, in chess the usual capture
quiescence search has to be considered
in relation to the common use of
materially dominated static evaluation
functions (as in figure 3a). Beal defined
a node as “consistent” if its heuristic
value is the same as the backed-up
value from a 1-ply search over its
descendants (Beal 1980, p. 106). Most
interestingly, although this definition
was part of a model of quiescence
search and forward pruning, Beal did
not relate this model to a model show-
ing pathological behavior presented
earlier in the same article, in the sense
of using quiescence search and forward
pruning to overcome pathology.

Now let us generalize the notion of
consistency in order to get a model of
quiescence that reflects the empirical-
ly derived notion.

Definition: Given a static evaluation
function f returning heuristic values
(HV), a node k is n-ply-quiescent if and
only if the static heuristic value HV of
k assigned by f is equal to the mini-
max value of k resulting from a full-
width search of the subtree below k up
to depth n, where the terminal nodes
are assigned heuristic values by f.

In practice, the heuristic evaluators
usually return a wide range of values.
Therefore, strict equality would be
achieved very seldom, and a relax-
ation, for example, in the sense of
“small difference,” would be more
realistic. However, to make the model
as simple as possible, we will restrict
ourselves here to a two-valued func-
tion. In this context, the criterion of
equality seems appropriate.

The following model is an attempt
to concentrate on the strict separation

For the game of chess, no such improvement in
accuracy can be seen when considering the static

evaluation functions used in actual programs.
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of the dynamic and static aspects dis-
cussed above, using the definition of
n-ply-quiescence. While a relatively
complex relationship between the true
values and heuristic estimates is intro-
duced, the overall model has been
kept as simple as possible.
1. The tree structure has a uniform
branching factor b.
2. True values of nodes (TV) are either
WIN or LOSS.
3. True values have the game-theoret-
ic relationship.
4. Heuristic values (HV) are either +1
(estimating WIN) or -1 (estimating
LOSS).
5. Probabilities of error e+ and e- are
defined as follows (k being a node):

e+ (k) = P (HV(k) = +1 | TV(k) =
LOSS)

e- (k) = P (HV(k) = -1 | TV(k) = WIN)
6. For all nodes l (those n-ply-quies-
cent according to the definition) and
for all nodes m (those not n-ply-quies-
cent), the following  conditions hold:

e+ (l) < e+ (m)
e- (l) < e- (m)
e+ (l) < e- (m)
e- (l) < e+ (m)

7. The number of nodes that are n-ply-
quiescent is small compared to the
number of nodes that are not n-ply-
quiescent.

Assumptions 1 to 5 are fairly stan-
dard in many models and are given
here for completeness. However,
assumptions 6 and 7 are new and
model the properties that are very
likely the ones responsible for the dra-
matic benefits observed in practice.
Assumption 6 introduces the relation-
ship between the errors of evaluating
quiescent and nonquiescent nodes.
The number n of n-ply-quiescence can
be treated as a parameter of the model,
and it seems likely that there is a
strong relationship between n-ply-qui-
escence and the benefits of searching
the subtree n plies deep. The assump-
tion itself, that the heuristic values are
much more reliable for quiescent posi-
tions than for nonquiescent ones, is
undoubtedly justified by practical
observations. (Why else are resources
spent for quiescence searching?)
Assumption 7 models the dynamic
nature of tactical domains such as
chess, checkers, or kalah, where at
least up to now, no static evaluation
functions have been written that are

sufficient to capture their dynamic
aspects.

Unfortunately, this model has so far
resisted formal analysis, because of the
relatively complex relationships it
contains. Thus, the statement that it
models observed behavior remains a
conjecture. Nevertheless, as an illus-
tration it could help us to approach a
deeper understanding.

Michon (1983) investigated the
influence of quiescence analysis for-
mally and found it to be beneficial.
Unfortunately, he considers quies-
cence mainly from a quantitative
point of view, focusing on the natural
termination of a quiescence search.
However, the criterion for quiescence
used in his model is not related to the
static evaluation used to model the
empirically derived notion of quies-
cence discussed above. Therefore it is
doubtful whether this analysis pro-
vides an explanation for the actually
observed benefits of minimaxing. In
fact, a theorem based on this model
indicates that the probability of error
converges toward zero, regardless of
how poor the static evaluation is
(Michon 1983, p. 93). Considering the
extreme case in which the static eval-
uation function systematically consid-
ers all LOSSes as WINs and vice versa,
we can note that such behavior has
not yet been observed in practice.

Consequences for the
Proper Use of Minimaxing

In practice, searching to a strictly fixed
depth is rather unusual, as simple cri-
teria for relaxing the depth restric-
tion—that is, quiescence (making
direct capture moves) or forcedness
(forced response when the king is in
check)—have given very good results.
In the future, extensively searching to
variable depth probably will further
improve results, since this effectively
utilizes the benefits of minimax
searching while simultaneously reduc-
ing its defects.

Michon (1983, p. 78) used the same
criterion for quiescence and to decide
whether a move should be counted as
a ply of depth. (When a move is not
counted, then the corresponding path
is searched deeper, and in effect, the
search horizon becomes variable.) For

the latter purpose Michon’s criterion
seems to fit much better, but there it
models the notion of forcedness rather
than quiescence. Although these con-
cepts are related in some sense, it
seems useful to distinguish between
them, especially for their application
in practice. It appears to be safe to use
the criteria for forcedness also for qui-
escence. For example, the criterion
“replies to check” is used successfully
for both concepts in most chess pro-
grams. Responses when the king is in
check are usually small in number,
and consequently the player on move

is usually forced. Hence, a reliable
static evaluation of such a position is
fairly difficult, and the result is non-
quiescence.

However, the inverse process is
rather dangerous and must be handled
very carefully. Ken Thompson per-
formed an experiment with the Com-
puter World Champion of 1980,
BELLE, which can serve as empirical
evidence here. Thompson changed
BELLE to count capture moves as only
half a ply: Whenever two (four ...) cap-
ture moves in a path occur, this path
is searched one (two ...) ply deeper.
This procedure does not seem unrea-
sonable, considering the enormous
utility of the capture quiescence
search. However, he changed it back
after having had bad experience with it
in several games. The reason for this is
rather simple: Capture moves are very
useful for refuting bad lines within the
tree (in the sense of alpha-beta cut-
offs), but these refutations became
much more expensive as a result of
this change. The subtrees below the
refuting capture moves usually had to
be searched deeper.

Even before these empirical data
were available, a model was created
(Kaindl 1983b) that also includes the
“interest” of a position in the decision

In the future, extensively
searching to variable
depth probably will 
further improve results
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whether to extend the horizon from it.
When comparing estimated values of
the interest with the aspiration win-
dow (represented by the current values
of 

 

a and ß), one can try to avoid wast-
ing effort on variations that are not
likely to become important for the
result of the search.

Conclusion

This discussion is an attempt to help
bridge the gap between theory and
practice for minimax look-ahead. The
arguments in favor of minimaxing and
the model presented should also sup-
port efforts to obtain the desired theo-
retical evidence of the benefits
observed in practice. Unfortunately,
the model resulting from the empirical
approach used here has resisted formal
analysis up to now because of the rela-
tively complex relationships between
the true values and heuristic estimates
of whole subtrees. However, it can
serve as an illustration of an approach
to deeper understanding. finally, the
insights gained from such investiga-
tions should help to improve practical
applications.

Postscript

Although this article is devoted to
minimaxing, we should note that a
different method of propagating values
has recently become popular in the
context of theoretical analysis of game
tree searching. This method considers
heuristic estimates as independent
probabilities of winning. It was first
used by Slagle and Bursky (1968) and
much later was again proposed by
Pearl (1983). There is some evidence
that it may be rather useful for games
where minimaxing is pathological
(Nau 1983a, 1983c). Unfortunately, no
suitable tree-pruning procedure (such
as alpha-beta for minimaxing) is avail-
able. Thus, it appears that for comput-
er chess practice, this method has
more conceptual defects than mini-
maxing (Horacek, Kaindl, and Wagner
1987).
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