
simulators and to
test design ideas for
rule-based and other
AI-type controllers.
The latter theme,
addressed by Glicks-
man (1986) in the
context of a planned
autonomous land
vehicle, was one
among some two
dozen contributions
to a recent confer-
ence on intelligent

simulation environments (Luker and Adels-
berger 1986) that was striking evidence of the
recent growth of interest in this area. The
specific topic of the real-time control of
unstable systems, however, has not been
investigated to a great degree. In particular,
little information is available on the effects of
substituting AI-type rule sets in industrial-
strength dynamic control tasks.

In spacecraft attitude control, inherent
complexity is aggravated by unpredictable
changes in the task environment. It was the
subject of an early study of the applicability
of machine learning techniques (Barron,
Davies, Schalkowsky, and Snyder 1964, 1965).
If the attitude of a satellite in low earth orbit
is to be kept stable by means of thrusters, the
control system must contend with many
unknown factors. For example, although thin,
the earth’s atmosphere can extend many
hundreds of kilometers into space. At different
times, the solar wind can cause the atmosphere’s
density to change, thus altering the drag and
aerodynamic torques on the spacecraft. Earth-
bound designers cannot predict these factors,
and even after three decades of spaceflight,
attitude control is still a major problem.

When building a
controller for a
physical process,
traditional control
theory requires a
mathematical model
to predict the behav-
ior of the process so
that appropriate
control decisions
can be made. Unfor-
tunately, either many
real-world processes
are too complicated
to accurately model, or insufficient informa-
tion is available about the process environ-
ment. In addition, optimal control strategies
can themselves exhibit undesirable complexi-
ty. However, a human controller can often
acquire relatively simple strategies to effect
near-optimal control from operational experi-
ence. There has been growing interest in
computer simulation used in conjunction
with AI methods to approach both difficulties,
that is, both to simplify the construction of
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Controlling a Black-Box
Simulation of a Spacecraft

Claude Sammut and Donald Michie

This article reports on experiments performed
using a black-box simulation of a spacecraft.
The goal of this research is to learn to control
the attitude of an orbiting satellite. The space-
craft must be able to operate with minimal
human supervision. To this end, we are investi-
gating the possibility of using adaptive con-
trollers for such tasks. Laboratory tests have
suggested that rule-based methods can be more
robust than systems developed using traditional
control theory. The BOXES learning system, which
has already met with success in simulated labo-
ratory tasks, is an effective design framework for
this new exercise.
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We were recently invited by a commercial
client to test adaptive rule-based control
using a computer simulation of an orbiting
spacecraft under black-box conditions. Thus,
knowledge of the simulation’s structure and
parameters was to be unavailable to the con-
troller. Constraints and assumptions built
into the client’s simulation included minimal
human supervision, and to this end, only one
ground station would be used to control the
vehicle. The ground crew only has a 16-
minute window in each 90-minute orbit
during which it can communicate with the
spacecraft. For the rest of the orbit, the vehi-
cle has no communication links with the
control center.

Because of the unpredictable nature of the
environment and the possibility of a failure
when out of communication with the ground
crew, there is some interest in using an adap-
tive attitude controller. The experiments
reported here show how a control strategy
was developed on a laboratory problem,
learning to balance a pole, and then trans-
planted into a simulation of the spacecraft. To
test the robustness of the method, the inter-
nal workings of the simulation were not dis-
closed to the experimenters; that is, a black-
box simulation, in the form of Fortran object
code, was used. The client withheld the
source code to safeguard the black-box condi-
tion. Even after receiving our experimental
results, nothing further was revealed beyond
the comment that our rule-based model
marginally outperformed the client’s own
control-theoretic solution. The description of
the black box in a later section contains the
sum total of our knowledge about it. The only
qualification we can make is that we saw an
artist’s drawing of the satellite; however, we
are unaware of any way that we could have
used this information about the vehicle’s
overall geometry.

In the following sections of this article, we
briefly describe the pole-balancing experiments
and their results, the black-box simulation,

and the control strategies used and report on
the results of the experiments.

Pole-Balancing Experiments
A number of researchers, including Michie
and Chambers (1968), Selfridge, Sutton, and
Barto (1985), Anderson (1987), and Connell
and Utgoff (1987), have investigated the
problem of learning rules to balance a pole by
trial and error. A rigid pole is hinged to a cart
that is free to move along a track of finite
length. The learning system attempts to keep
the pole balanced and the cart within the
limits of the track by applying a force of fixed
magnitude to the cart, either to the left or the
right at each successive moment.

It was decided to use the pole and cart as a
test bed for learning strategies that might be
used in satellite attitude control. As we see
later, the two problems are not as dissimilar as
they might, at first, appear. We only briefly
describe the experiments because they were
reported elsewhere (Sammut 1988).

Figure 1 illustrates the basic scheme used. A
reinforcement learning algorithm called BOXES

(Michie and Chambers 1968) creates a control
strategy for the pole-and-cart system. This
control strategy is used in an experiment that
attempts to keep the system from failing for
as long as possible. After each failure, the
learning algorithm alters the control strategy
and conducts a new experiment until it is
successful in keeping the pole balanced for an
indefinite period.

The pole-and-cart system is characterized
by four state variables that make up a four-
dimensional space. By dividing each dimen-
sion into intervals, the state space is filled by
four-dimensional boxes. In the BOXES algo-
rithm, each box contains a setting that indi-
cates that for any point within the given box,
the cart should be pushed either to the left or
the right in this state.

It is usually the case that after one success-
ful attempt to learn to balance the pole, the

…traditional
control theory
requires a
mathematical
model to 
predict the
behavior of
the process…
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Figure 1. Learning Scheme.
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controller becomes expert in balancing in
only a limited part of the state space. That is,
the system is maneuvered into a region of the
space about which the controller has acquired
considerable experience. However, if the pole-
and-cart system is placed in another part of
the space about which the controller knows
less, then an attempt to balance the pole could
rapidly fail. Therefore, it has proved necessary
to gather control strategies from many learn-
ing sequences and pool their knowledge to
construct a general control strategy.

We found that when a general strategy is
constructed, the box structure can be simpli-
fied to the point where human-readable rules
can be extracted. Below, we show a general
form of the control rules finally constructed
by this process:

if the angular velocity of the pole is less
than a given threshold then push left

else if the angular velocity is greater than a
given threshold then push right

else if the angle of the pole is less than a
given threshold then push left

else if the angle of the pole is greater than a
given threshold then push right

else if the velocity of the cart is less than a
given threshold then push right

else if the velocity is greater than a given
threshold then push left

else if the position of the cart is less than a
given threshold then push right

else if the position of the cart is greater
than a given threshold then push left
The logical structure of this rule is identical to
one derived from the equations of motion of
the pole and cart (Makarovic 1987). Note,
however, that the learning system did not
have any knowledge of the system it was con-
trolling other than its response to a limited
set of actions.

In the following section, we describe the
satellite control problem and then show how
the experience gained from the pole and cart
made it possible to quickly build a controller
for the satellite.

The Black Box

Here, we define the satellite’s black-box model.
The Problem Domain: The model has a

three-axis, rigid body with attitude control
and three nonlinear, coupled, second-order,
ordinary differential equations.

The Task: The task is to drive the system
from its initial state (which is near its final
state) to the specified final state and maintain
this state.

The Black-Box Model: The black-box
model includes vehicle parameters, distur-
bances, and differential equations. Included
in the black box is a fourth-order Runge-
Kutta numeric integration algorithm that
integrates the dynamics of the equations of
motion. The time step has a fixed value of 10
seconds. The black box tracks time. The
black-box module was supplied as Fortran
object code.

Time-Varying Vehicle Parameters: The
model has time-varying vehicle parameters,
including slow variations in vehicle inertia,
that are unknown to the control system, such
as might happen during propellant expendi-
ture, payload redistribution, solar array artic-
ulation, gravity-gradient boom extension-
retraction, or robot motion.

Time-Varying Disturbances: The model
also includes time-varying disturbances
resulting from external influences, such as
slow variations in atmospheric density affect-
ing aerodynamic torque, which are unknown
to the control system, in addition to aerody-
namic torques that change with attitude.

State Variables: The state variables in the
model are attitudes: yaw, roll, and pitch;
body rates: ωx, ωy, and ωz (body rates might
or might not equal the rate of change of atti-
tude); and the propellant consumed to date.

Initial Conditions: The initial values for
the state variables are 

Yaw = 10 degrees
Roll = 10 degrees
Pitch = 10 degrees

…to use the pole and act as a test bed for learning strategies
that might be used in satelite attitude control…



ωx = 0.025 degree/second
ωy = 0.025 degree/second
ωz = 0.025 degree/second
The Desired State: The desired values for

the state variables should be within the fol-
lowing bounds:

Yaw = 0 ± 3 degrees
Roll = 0 ± 3 degrees
Pitch = 0 ± 3 degrees
ωx = 0 ± 0.005 degree/second
ωy = 0 ± 0.005 degree/second
ωz = 0 ± 0.005 degree/second

In addition, the propellant consumed to achieve
these values should be minimized.

Failure Condition: If any of the state vari-
ables go beyond the following bounds, then
the system is said to have failed:

Yaw = ±30 degrees
Roll = ±30 degrees
Pitch = ±30 degrees
ωx = ±0.05 degree/second
ωy = ±0.05 degree/second
ωz = ±0.05 degree/second

A flag in the black box is turned on if these
bounds are exceeded.

Available Control Input: Torques are Tx,
Ty, and Tz. In this model, torque is applied by
firing thrusters that are aligned to the body
axes. The following bounds show the mini-
mum and maximum torques that can be
applied by the thrusters:

Tx(Min) = 0 foot-pound
Ty(Min) = 0 foot-pound
Tz(Min) = 0 foot-pound
Tx(Max) = ±0.5 foot-pound
Ty(Max) = ±1.5 foot-pound
Tz(Max) = ±1.5 foot-pound

A flag in the black box is turned on if the torque
command exceeds these bounds.

Developing the 
Black-Box Controller

Following the experience gained with the pole
and cart, we hypothesized that a rule similar
to the one in Pole-Balancing Experiments
might be able to control the satellite. That is,
first check that the velocity in one dimension
does not exceed certain bounds. If it does,
then take action to oppose this velocity. If it
does not, then check the position in the same
dimension. If it exceeds given bounds, then
apply a force that pushes the position within
the desired bounds. If it does not, then proceed
to the next dimension, and so on.

In the case of the pole and cart, there was a
necessary priority to the order in which the
dimensions were checked. It was critical that
the angular velocity and the angle of the pole

be considered before the velocity and posi-
tion of the cart because failing to control the
pole’s behavior leads to more rapid overall
failure than failing to keep the cart away from
the ends of the track.

If this were also true of the spacecraft, then
it would be necessary to determine in which
of these dimensions the state variables changed
most rapidly when no torques were applied.
This dimension was the pitch dimension, fol-
lowed by roll, yielding an initial rule:

if ωz < -0.002 then apply a torque
of 1.5

else if ωz > 0.002 then apply a torque
of -1.5

else if pitch < -2 then apply a torque
of 1.5

else if pitch > 2 then apply a torque
of -1.5

else if ωy < -0.002 then apply a torque
of 1.5

else if ωy > 0.002 then apply a torque
of -1.5

else if roll < -2 then apply a torque
of 1.5

else if roll > 2 then apply a torque
of -1.5

else if ωx < -0.002 then apply a torque
of 0.5

else if ωx > 0.002 then apply a torque
of -0.5

else if yaw < -2 then apply a torque
of 0.5

else if yaw > 2 then apply a torque
of -0.5

Note that we are using bang-bang control;

Articles

SPRING 1991    59

Figure 2. X Axis (yaw) Behavior of Satellite.



Articles

60 AI MAGAZINE

that is, the torquers are either fully on or
fully off, just as in the pole-balancing experi-
ments. The thresholds for the variables were
determined by choosing an arbitrary value
slightly within the bounds given for the
desired values of the variables.

This control strategy proved to be success-
ful but slow, requiring 8700 seconds to bring
the vehicle under control, that is, all the state
variables within the desired bounds. The
strategy also consumed 11.2 units of propellant.
The question arose about whether the control
of each dimension could be decoupled. The
previous rule only allows one thruster to be
fired at any one time. If each axis of the
spacecraft were separately considered, then
all three thrusters could be fired simultane-
ously. This consideration led to three rules:

if ωz < -0.002 then apply a torque of 
1.5

else if ωz > 0.002 then apply a torque of 
1.5

else if pitch < -2 then apply a torque of 
1.5

else if pitch > 2 then apply a torque of 
1.5

if ωy < -0.002 then apply a torque of 
1.5

else if ωy > 0.002 then apply a torque of -
1.5

else if roll < -2 then applytorque of 1.5
else if roll > 2 then apply a torque of 

1.5
if ωx < -0.002 then apply a torque of 

0.5
else if ωx > 0.002 then apply a torque of -

0.5

else if yaw < -2 then apply a torque of 
0.5

else if yaw > 2 then apply a torque of -
0.5

These rules not only bring the spacecraft
under control, they do so rapidly, requiring
only 4090 seconds.

Another important factor in controlling a
spacecraft’s attitude is the amount of propel-
lant used. Once the propellant is exhausted,
the craft is effectively dead because the solar
arrays cannot be aligned properly; communi-
cation becomes difficult because the anten-
nae cannot be pointed in the correct
direction; and if the spacecraft is tumbling,
the microgravity experiments can be
destroyed. The second control strategy rapid-
ly consumed propellant, using 7.68 units
before the spacecraft became stable. There-
fore, it became necessary to reexamine the
bang-bang strategy with a view to replacing it
with finer thruster control.

The control strategy that was devised is
best understood using a decision array. For
example, the yaw control rule can be visual-
ized as in table 1. Each of the 15 boxes corre-
sponds to one control rule. Thus, the box in
the top left-hand corner states that if the yaw
is positive (that is, above the bounds on the
desirable yaw) and if the yaw rate, ωx, is well
below the bounds of desirability, then apply a
quarter of the full torque in the positive
direction. In fact, the thresholds were set
slightly within the bounds of desirability: For
angles, they were ±2° and ±30°, and for angu-
lar velocities, they were ±0.002, ±0.003, and
±0.05 degree/second. Similar strategies were

Yaw Tx -Tx -Tx
positive 4 0 4 2 -Tx

Yaw Tx -Tx
ok 2 0 0 0 2

Yaw Tx Tx -Tx
negative Tx 2 4 0 4

Yaw rate Yaw rate Yaw rate Yaw rate Yaw rate
very negative ok positive very

negative positive

Table 1. Yaw Control Rule.



Pitch Tz -Tz -Tz
positive 4 0 4 2 -Tz

Pitch Tz -Tz
ok 2 0 0 0 2

Pitch Tz Tz -Tz
negative Tz 2 4 0 4

Pitch rate Pitch rate Pitch rate Pitch rate Pitch rate
very negative ok positive very

negative positive

used for roll (table 2) and pitch.
During the formulation of these rules, it

was found that the satellite had greater inertia
in the z axis than in the other two. Therefore,
it was decided to thrust somewhat harder
with the z torquer when the pitch requires
correction, but the pitch rate is ok, as in the
decision array shown in table 3. This control
strategy brought the spacecraft under control
in 5290 seconds, requiring only 1.66 units of
propellant, a substantial savings. The previous
sequence constitutes all the experiments that
were done. The next section describes the
results of the culminating experiment that
incorporated the final z torquer adjustment.

The experiments were conducted on a UNIX

workstation and allowed the simulator to
interact with a modifiable control procedure.
As previously mentioned, the simulator was
provided as Fortran object code. This simula-
tor was linked to a C module that implement-
ed the decision arrays. The two modules

communicated through a single procedure
call from the C code to the Fortran code. All
data passed from one module to the other
through parameters to the procedure call.

Results
The graph in figure 2 shows the x axis behav-
ior of the final control strategy when applied
to the black-box model. The dashed horizon-
tal line indicates the bounds of desirability for
the yaw, and the dotted line indicates the
bounds for ωx. Note that in the early stages of
the simulation, propellant is rapidly being
consumed because the spacecraft is well out
of bounds. As both the position and velocity
decrease, so, too, does propellant consump-
tion. In fact, the amount of propellant used
to bring the system under control compared
favorably with the propellant use of a con-
troller developed using traditional means and
having full knowledge of the differential
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Roll Ty -Ty -Ty
positive 4 0 4 2 -Ty

Roll Ty -Ty
ok 2 0 0 0 2

Roll Ty Ty -Ty
negative Ty 2 4 0 4

Roll rate Roll rate Roll rate Roll rate Roll rate
very negative ok positive very

negative positive

Table 2. Roll Control Rule.

Table 3. Pitch Control Rule.



amounts of atmospheric effects in different
parts of the orbit. Also note that there are
irregularities in the period of oscillation.
These irregularities are caused by simulated
disturbances in the model from both changes
in the inertia of the spacecraft and external
influences, as described in The Black Box.
Despite these disturbances, the control strate-
gy keeps the spacecraft stable.

The behaviors in the y and z axes were sim-
ilar and are shown in figures 3 and 4. Note
that the pitch decreases slower than either
yaw or roll. An earlier and more extreme
form of this feature led us to use more thrust
in the z axis than in the other two axes.

Conclusion
These experiments show that rule-based
methods can be used effectively to control
complex physical systems. The form of the
rule previously reported appears general and
robust. However, further experimentation is
required to determine the extent of the gen-
erality and robustness.

One of the most notable features of the work
is that the form of the rules was generated by
learning to control a different and somewhat
easier task. As algorithm designers, we felt
inclined to map the new and unfamiliar task
onto a familiar one and, thus, make possible
the reuse of existing representational tools.
Analogic problem solving of this kind is rec-
ognized as a common feature in cognition.
Eliot (1986) discusses it in the context of
expert systems and notes both benefits and
risks. In our particular case, analogy proved
to be a powerful aid, starting us along the
right general track. However, it also imported
a false preconception, namely, that the inter-
rogation of state variables should proceed in
strict sequence. However, we already knew
that the problem was one of motion in three
dimensions of space, and the client treated
these dimensions separately to the extent
that it installed a separate sensor-effector
system for each dimension (see The Black
Box). This consideration, together with the
rapid cut-and-try experimentation facilitated
by the simulator, enabled us almost immedi-
ately to throw off the sequential bias that an
otherwise helpful analogy had imposed. The
rest followed naturally. Introducing the null
action and softening the severity of pure
bang-bang control then seemed simple, even
obvious steps. The experimental runs (all of
which are reported here) required less than
two days of cooperative work to carry out the

equations used in the model that we did not
have access to.

It might be expected that a good controller
could damp out all oscillations in the system.
This idea is clearly not supported in the
graph in figure 2. However, in a realistic situ-
ation, it is never possible to do so. For exam-
ple, the period of the oscillations is
approximately equal to one orbit time, indi-
cating that the satellite suffers from varying
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Figure 3. Y Axis (roll) Behavior of Satellite.

Figure 4. Z Axis (pitch) Behavior of Satellite.



successive cycles of execution, analysis, dis-
cussion, modification, and reexecution.

Directly learning on the spacecraft model
would have been more time consuming than
on the pole-and-cart simulation because there
are more control variables and more actions.
However, there has been considerable improve-
ment (Bain 1990) in the reinforcement learn-
ing system of BOXES, so that for a more
complex satellite control task than reported
here, it could well be worth making use not
only of the BOXES representational structure
but also its adaptive learning facilities.
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