
Triadic differentia-
tion is used in the
ground-break ing
ETS and in the
follow-on Aquinas
(Boose, Bradshaw,
and Shema 1988;
Shaw 1988) and in
the two commercial
knowledge-acquisi-
tion tools, Nextra
(Gaines 1988) and
Auto-Intell igence
(Parsaye 1987).
Induction from
cases has been used
in at least two com-
mercial tools: VP

Expert and Auto-Intelligence. Creation of a
library of models is championed in Europe by
Breuker et al. (1987) and in the United States
by Chandrasekaran (1983) and McDermott
(1988).

Related to the knowledge-acquisition litera-
ture is the work on the verification and vali-
dation of expert systems, especially the Eva
testing software (Stochowitz et al. 1988).
Broadly speaking, this software aims to deter-

In the short history
of expert systems, a
variety of approach-
es have been used to
tackle the difficult
problem of knowl-
edge acquisition,
among which are
the following
common types: con-
sulting a library of
models; using auto-
matic induction
from cases; and
using triadic differen-
tiation , which is
repeated contrasting
of two of the expect-
ed output of an expert system with a third.
To be topical, all this knowledge-acquisition
research has been done in the name of con-
structing expert systems in an easier, faster,
and more maintainable manner because there
is a growing consensus that expert systems
are stuck on a productivity plateau in light of
first-generation tools still being used without
an effective knowledge-acquisition and
knowledge-structuring front end.

Articles

80 AI MAGAZINE

Copyright ©1990 AAAI. All rights reserved. 0738-4602/90/$4.00

Laps: Cases to Models to
Complete Expert Systems

Joseph S. di Piazza and Frederick A. Helsabeck

Contrary to many prevailing approaches to
knowledge acquisition, Laps, our expert-inter-
viewing software, begins by soliciting cases from
the expert, but it does not end there. Its unique-
ness lies in the fact that it interweaves knowl-
edge gathering, organizing, and testing. Laps
begins with a case in the form of a sample solu-
tion path elicited from the domain expert. This
sample solution path is refined by a process
called dechunking, which facilitates finding a
model of the expert’s reasoning process. The
model guides the determination of the structure
of alternatives tables at an effective level of
abstraction. Once these tables have been set up,
the expert is able to produce row after row on his
own until a complete rule base is built. A rule
generator currently produces rules in Clips or
M.1 syntax.

AI Expert Interviewer

Rule One
Rule Two
Rule Three
Rule Four

E
X
P
E
R
T

AI Magazine Volume 11 Number 3 (1990) (© AAAI)

mine that the right kind of knowledge is
expressed in the right form. However, unlike
Eva, Laps (logic aids for problem solving), our
software for knowledge acquisition, does not
separate knowledge acquisition from verifica-
tion and validation.

Laps was given its name because it contains
logic tools to aid the expert’s reasoning to be
complete, and so on, while he is decompiling
his problem-solving knowledge. Moreover, it
is the unique thesis on which the project that
produced Laps is based that the following
four operations should be carried out as parts
interwoven into one process: knowledge gath-
ering or acquisition, knowledge structuring or
modeling, knowledge testing or validation
and verification, and knowledge encoding (di
Piazza 1990).

Where do we start knowledge acquisition?
In our experience, the extraction of cases
seems to be the most effective way to begin
knowledge acquisition for any expert system
because case description is the easiest way for
the expert to express him(her)self. To our
knowledge, Becker (1988) is currently one of
the few other researchers who make case elici-
tation the origin of knowledge acquisition
and also make case analysis the follow-up
stage. Solving cases or problems is the experts’
daily fare, so they can pontificate on them
endlessly, although they are notorious for
being laconic in their case descriptions. With
the exception of the iterative inductive
approach to knowledge acquisition, the previ-
ously stated approaches do not begin with
cases, which is where Laps begins. Although
automatic induction also begins with cases,
this approach, besides being tedious, carries
other inadequacies with it.

As we note, Laps assists the expert in
sequentially expressing his case knowledge.
Also, it builds on this knowledge in address-
ing what to do with these cases. However,
unlike the pure inductive, or case-based,
approach, Laps aims to help the often too
terse expert and the knowledge engineer
extract a model from the cases and then flesh
out this model into a complete expert system.
Toward the end of this article, more of an
appraisal of the other approaches, including
the non–case-based, is offered.

A Brief Description of Laps:
Its Three Sessions

Laps takes a case-based, expertise-decompila-
tion approach, seeking to interleave knowl-
edge acquisition, organization, and validation
and verification. The description to follow is a

sketch of the current three sessions of Laps.
The first, or case, session extracts one or more
solved cases, or sample solution paths. This
sample solution path consists of starting facts
or statements usually followed by test results
and at least some reasoning steps or interme-
diate conclusions that the expert takes en
route to his final conclusion. Associated with
each statement is a list of reasons that, as we
see, is in the form of numbers for statements
already occurring on the list. The expert is
free to run as many paths as he desires,
although he usually describes only a few
cases—some are routine and others difficult.

The second session dechunks, or extracts
steps that the user-expert might have omitted
in the original solution path, thus helping to
unearth hidden knowledge. This knowledge
could be an explanation, heuristics, or a
recurring pattern of reasoning. This addition-
al knowledge could become the source of a
model, or abstract representation, of the essen-
tials of the domain.

The third session of Laps manages the
development of a set of tables, typically, one
table for each conclusion-row that is extract-
ed by either of the previous two sessions. A
familiar device to all users, tables are used in
Laps as a means to organize an expert’s
knowledge in a complete manner. When the
table is first displayed, it contains a single row
corresponding to one of the conclusions in
one of the sample solutions. By the end of the
session, Laps has helped the user to produce a
table that, as we see, has undergone a number
of completeness and consistency checks by
direct questioning and system-generated
guidance in a modified depth-first order of
completion.

After any session, it is possible to invoke
Laps’s rule maker and, thereby, make rules
coded into M.1 or Clips syntax. The expert or
end user can then run the rules using the cor-
responding inference engine. The user of Laps
has all the advantages of consultation ses-
sions to throw adventitiously dreamed up
cases at the rules in an attempt to find gaps in
its logic. However, it is the purpose of Laps to
provide aids for preventing gaps or errors and,
thereby, a heavy reliance on the chance-laden
use of repeated consultation sessions.

Laps: From Cases to a Model

This section deals with the transformation of
a carefully selected case into a model through
knowledge decompilation. A specific solved
problem is used as a running illustration
throughout this article.

. . . contains
logic tools
to aid the
expert’s rea-
soning to be
complete . . .
while he is
decompiling
his problem-
solving
knowledge.

Articles

FALL 1990 81

Articles

82 AI MAGAZINE

The problem to be solved was the diagno-
sis of a distillation system that converts sea-
water into fresh water on board a submarine;
hence, the expert system was dubbed Still.
Ralph Slater, the expert, is an engineering
graduate of the United States Coast Guard
Academy, with many years of experience
troubleshooting various submarine-related
devices during his tenure at the Electric Boat
Division, the submarine division of General
Dynamics.

The Sample Solution Session: Acquire
Easily Given Knowledge

This session was used as a case-elicitation ses-
sion. The expert had no difficulty listing a set
of hypothetical observations and then rec-
ommending a fix (figure 1). The menus at
the top allow the user to access and do oper-
ations on any one of the three Laps sessions,
a particular table therein, and a given row
within this table. In figure 1, the user has

accessed the case session, is on a new table,
and is in the process of adding rows. A mes-
sage box is present to guide the user in what
to do next, usually by presenting questions,
sometimes augmented by text. The valid-
answers box is a list of the acceptable
answers. If the the user enters unsure, he is
given illustrations at first, then textual tutori-
al information. Here, the user has finished
the sample solution path and has answered
no to the question of whether to add another
row to the table.

An examination of the list of statements in
this figure makes clear the sequential nature
of the reasoning process. In some cases, an
expert can draw a conclusion from a list of
initial facts, facts that are part of the problem
description. In this case, only one such fact
was given. The others, called follow-up facts,
emerged in the course of solving the problem.

At this earliest point, the rule generator in
Laps would only operate on the last state-
ment in the sample solution path—the only

ROW: ADD TEST BROWSE CHANGE DELETE INSERT NO MO

TABLE: NEW OLD BLANK SAVE ABANDON EXIT NEXT PREV TR

SESSION: CASE DECHUNK ALTERNATIVES EXIT-LAP

 STATEMENTS REASO

?

Is thereANOTHER statement
 -- fact or conclusion --
that you canADD?

MESSAGE

YES

NO

 VALID ANSWER

UNSURE

initial fact
follow-up fact
follow-up fact
follow-up fact
follow-up fact
1, 2, 3, 4, 5

1. compressor discharge pressure-low
2. compressor suction pressure gauge readings-low
3. boiler heater ammeter readings-steady zero
4. boiler heater selector switch position-on
5. compressor suction pressure switch continuity-not ok
6. fix-repair or replace compressor suction pressure switch

Figure 1. A Case, or Sample Solution, Composed by the Expert.
Observations are listed in the order considered in reaching the final conclusion or recommendation.

statement showing a dependency on previous
statements in the reasons column—producing
the following disturbingly long M.1 rule:

if compressor discharge pressure-low
and compressor suction pressure-low
and boiler heater ammeter-steady zero
and boiler heater selector switch position-

on
and compressor suction pressure switch

continuity-not ok
then repair or replace compressor suction

pressure switch.
Matters would be far worse if this expert

had given us a fully idiosyncratic solution;
then the first two lines would read

if compressor discharge pressure 55-units-
low

and compressor suction pressure 25-units-
low.

An expert system based on rules of this type
would be hopeless to build and would pro-
duce consultation sessions with questions
that would be endless and random. Addition-
al refinement of this sample solution path is
desperately needed.

This facts-to-fix sample solution is similar
to a path through a flowchart, having no
intermediate blocks. Indeed, in our current
expert system domain, which centers on
reviewing documents, the experts readily give
us solved cases in terms of flowcharts stripped
of intermediate conclusions. However, in our
initial test-bed domain, which we focused on
a few years ago, experienced submarine
diving officers gave sample solutions with at
least some intermediate conclusions.

Essentially, we take the given expert’s initial
dumps of the solved cases in whatever forms
are most convenient for his expression; it is
these solved cases, stripped down or not,
from which the knowledge engineer needs to
extract a model during the next session of
Laps. The simplest form of the first session is
the following: The expert fills out the state-
ments column first and later fills in the rea-
sons column, using the knowledge engineer’s
help when necessary. In this way, the expert
is not distracted by starting with entering
statement one, then switching to giving its
justification or reason, then back to statement
two, next a reason, and so on. Thus, the
expert is able to express himself freely from
the start.

The Dechunking Session in Laps: Find
Intermediate Conclusions and a Model

Chunking (Laird, Rosenbloom, and Newell
1987) appears to be the activity of economiz-

ing on a reasoning process by directly or indi-
rectly eliminating intermediate conclusions,
as in skipping theorems used to prove other
theorems. The sample solutions, chunked or
compressed as they are habitually by the
expert, cry out for some dechunking.
Dechunking is our name for the antithesis of
chunking.

This second, or knowledge decompilation,
session was a joint effort between the knowl-
edge engineer and the expert. This session
dechunks to reach steps that the user-expert
might have omitted in the original solution
path, thus unearthing hidden knowledge.
This knowledge could be an explanation,
heuristics, or a recurring pattern of reasoning.
This additional knowledge could become the
source of a high-level model.

Mechanically, a case is dechunked by
simply inserting lines into the original list.
The question is how to guide these insertions.
Let us take another look at the original
sample solution path.

The follow-up facts have an ambiguous role
because each follow-up fact is both depen-
dent on, and independent of, the previous
statement. For example, consider the first
follow-up fact, “low suction pressure.” The
fact that the suction pressure is low comes
from direct observation and not from any
prior statement. However, the fact that the
suction pressure was observed in the first
place does depend on the previous statement.
We made this dependency explicit by propos-
ing that the expert insert the phrase “check
suction pressure.” He agreed. This statement
follows unequivocally from statement 1; so, 1
can be entered into the reason column. Simi-
lar insertions down the list would produce
the following rule chain:

if compressor discharge pressure-low
then check compressor suction pressure.

if check compressor suction pressure
and compressor suction pressure-low
then check boiler heater ammeter.
Etc.

The insertion of still another statement fur-
ther clarifies the reasoning process, answering
the question, Why did the expert choose to
check the suction pressure? The answer is that
he suspected the cause to be upward in the
process stream in the boiler section and that
his suspicion could be confirmed by checking
the suction pressure. It was confirmed, and
this confirmation led him to look still further
upstream. Part of this reasoning can be cap-
tured by inserting the phrase “suspect
upstream boiler section,” producing the fol-
lowing chain:

Articles

FALL 1990 83

Articles

84 AI MAGAZINE

if compressor discharge pressure-low
then suspect upstream boiler section.

if suspect upstream boiler section
then check compressor suction pressure

gauge reading.

if check compressor suction pressure gauge
reading

and compressor suction pressure gauge
reading-low

then check boiler heater ammeter reading.
Etc.
These and similar insertions produced the

table in figure 2. The repeating pattern shown

in this table is pictured as the model in figure 3.
The most important pattern that can be

found is the model of the overall reasoning
process. The table shows an observation
(already entered as part of the original sample
solution), then, on the basis of this observa-
tion, a suspected cause. This suspected cause
is then tested, and the result of this test is the
next observation (already obtained in the
prior session). This process continues, or iter-
ates, until the bad component and its fix is
determined.

Let model refer to an abstract representation
or pattern pertaining to problem solving in a
domain. The pattern described here is what

ROW: ADD TEST BROWSE CHANGE DELETE INSERT NO MO

1. compressor discharge pressure-low initial fact
1.a. suspect upstream boiler section [subsystem] 1
1.b. check compressor suction pressure gauge readings 1.a
2. compressor suction pressure gauge readings-low																			follow-up fact
2.a. suspect upstream boiler heat control [subsubsystem] 1.b, 2
2.b. check boiler heater ammeter readings 2.a
3. boiler heater ammeter readings-steady zero follow-up fact
3.a. suspect boiler heater selector switches [component] 2.b, 3
3.b. check boiler heater selector switch position 3.a
4. boiler heater selector switch position-on follow-up fact
4.a. suspect compressor suction pressure switch [component] 3.b, 4
4.b. check compressor suction switch continuity 4.a
5. compressor suction pressure switch continuity-not ok follow-up fact
5.a. fault-compressor suction pressure switch failure 4.b, 5
6. fix-repair or replace compressor pressure switch 5.a

STATEMENTS REASO

TABLE: NEW OLD BLANK SAVE ABANDON EXIT NEXT PREV TR
SESSION: CASE DECHUNK ALTERNATIVES EXIT-LAP

Is thereANOTHER statement
 -- fact or conclusion --
that you canINSERT anywhere?

VALID ANSWER

YES

NO

UNSURE

MESSAGE

HINT : Consider one or more of the statements ABOVE a specific
insertion point -- as possible reasons for an intermediate
conclusion.

Figure 2. Dechunked Case Completed by Joint Effort of the Expert and the Knowledge Engineer.
Statement numbers with appended letters indicate inserted statements. The result is a recurring pattern proceeding from a suspected cause to a test,
the result of which leads to another suspect narrower in scope.

we call a domain-type model. It is distinguished
from a domain or domain-specific model in that
the latter is specific to a domain. In our exam-
ple, a domain model would consist of an
inference network of such terms as discharge
pressure or ammeter reading and would apply
only to a particular piece of equipment. How-
ever, the previous domain-type model would
apply to a wide variety of diagnostic prob-
lems. Still more general would be a metado-
main model or just metamodel. A metamodel
might contain such terms as node or branch
or object or attribute and apply to any
domain and, therefore, to more than one
domain type (diagnosis, design, and so on).

In statements 1.a., 2.a, 3.a, and 4.a of figure
2, we superimposed in brackets what was later
developed (in finding the domain-type head-
ers for the all-important alternatives tables,
which are the focal point of the next session
of Laps). The insertion shows the reader that
within the dechunked solution path are the
seeds for reaching a generic hierarchical
model (by way of guided induction, as we see
later). Thus, no magic act is occurring here
because the insertions are the fruits of knowl-
edge decompilation: They are intermediate
conclusions drawn from already entered facts
or some earlier inserted conclusions (see the
hint in the message box in figure 2).

Articles

FALL 1990 85

FIX

SUSPECT
COMPONENT

TEST

RESULTSUSPECT
SUBSUBSYSTEM

TEST

RESULT
SUSPECT

SUBSYSTEM

INITIAL SYMPTOM

Figure 3. A Domain-Type Model: An Inference Tree of Attributes.
This transdomain tree, extracted from the dechunked or amplified case, offers the expert and the knowledge engineer a bird’s-eye view of this
domain, along with related domains, providing a manageable basis for this skeleton to be completely fleshed out in the upcoming alternatives
tables. (This model is called domain type because it widely applies to diagnostic-type problems.)

to be maintained and (2) that it enables the
end user consulting the expert system to find
its reasoning or explanation trace to be
enlightening. In other words, the answer is
when a model has been built that is sufficient
for the purposes of constructing an expert
system that is maintainable, expandable, and
intelligible to the builders, maintainers, and
end users of the expert system. One extreme
to be avoided would be a largely undechun-
ked rule base, with few intermediate conclu-
sions (spaghetti logic); another would be
dechunking to the point of reaching the aus-
tere first principles of physics, in the case of
the distillation of seawater to fresh water.

Laps: From a Model to a
Complete Expert System

The model having been uncovered, the chal-
lenge now is to flesh out, or expand, the
model into a complete expert system. The
alternatives table, or third, session of Laps
helps the expert to produce a complete set of
alternatives to each inferential step in any
sample solution that he has already complet-
ed. The inferential, or conclusion, steps are
the statements that follow from previous
statements on the list, that is, statements for
which statement numbers occur in the rea-
sons column of the sample solution path.

Most significantly, it was in filling out
these tables that the expert was most produc-
tive, working on his own most of the time by
following an easy-to-use completion strategy.
Hence, these tables provide the biggest payoff
in using Laps and its knowledge extraction
techniques.

The overarching strategy is to abstract from
the model the generic headers of the alterna-
tives tables, then find some effective method
to aid the expert to fill out the rows of the
alternatives tables with all acceptable combi-
nations of values so that a complete expert
system is the end product. By the end of the
session, Laps has helped the user to produce
tables that have undergone a number of com-
pleteness and consistency checks so that veri-
fication and validation are concurrent and
preventative, not just an afterthought for
curing problems.

Of course, it almost goes without saying
that tables are perhaps the most familiar form
of representation whose structure is immedi-
ately recognizable by any user. As far as possi-
ble we, like Twine (1988), exploit the
recognition factor of tabular representation.
However, where trees, rules, frames, lists, and
so on, are useful, we employ or will employ

The Tree Representation: A Picture of
the Whole Domain

Figure 3 illustrates a domain-type model. The
tree should be read in this manner: An initial
symptom implies or suggests a suspect sub-
system, a subsystem where the faulty unit
might lie. This subsystem implies an appro-
priate test to perform (a meter reading, a
component to be inspected, and so on) to
refine one’s knowledge. Next, the test, con-
joined with its result, implies the suspect sub-
subsystem. The cycle continues down to the
component or fault level. It should be under-
stood that iteration over the suspect-test-result
cycle is necessary at the same level in the
hierarchy when a test result fails to confirm a
suspected cause, and another must be tried.

Additional Observations

There are three major follow-up observations.
The first is regarding hierarchy. As previously
observed, the expert, prodded by the knowl-
edge engineer, revealed that he reasoned hier-
archically, from a faulty subsystem to a faulty
sub-subsystem to a faulty component. The
hierarchy not only describes the expert’s pat-
tern of thought but also something of the
structure of the equipment to be diag-
nosed—the beginnings of a process model.
The use of a hierarchy suggests a convenient
way to partition a large domain, allowing sys-
tematic piece-by-piece development.

The second observation is regarding the
process. Also revealing of the expert’s reason-
ing is the use of the word upstream in state-
ments 1.a and 2.a of figure 2. After some
prodding from the knowledge engineer, the
expert revealed that he makes use of his
awareness or knowledge of the distillation
system as a process stream. He then looks in
one of three directions: upstream of the
immediate source of the symptom; down-
stream; or at the source itself, in this case, the
compressor. He looks upstream first because
this search only requires a glance at another
gauge. From a practical standpoint, recording
this information helped the expert to keep
his bearings; so, this level of reasoning was at
least implicitly encoded as part of the rule base.

The third observation is regarding dechunk-
ing. How much dechunking is enough? When
should the dechunking end? The answer is
when a sufficient degree of dechunking has
been done to effectively partition the domain.
The signs of effective partitioning efforts are
(1) that in the judgment of the knowledge
engineer, it enables the proposed expert
system to be built in a thorough and modular
manner and that it enables the expert system

The overarch-
ing strategy

is to abstract
from the

model the
generic
headers

of the
alternative
tables . . .

Articles

86 AI MAGAZINE

these forms of representation. As far as higher
forms of representation (Chandrasekaran
1983), we use cases and models (as was
already shown).

As we see, the alternatives tables form a
chain. In the following subsections, we dis-
cuss the alternatives tables within Still.

The First of the Chain of Alternatives
Tables: Initial Symptoms as Starters

The headers for the alternatives tables can be
plucked from the nodes of the inference tree
of attributes (figure 3). The first table is based
on the first step of this figure, the step going
from initial symptom to suspect subsystem.
These entries are found in the table in figure 4.

The screen consists of the alternatives table
containing a single row with data for a single

rule, a valid-values box, and a message box.
The valid-values box is shown in the lower
left part of the screen. Each time a new
header is created, a valid-values table or menu
is created. At first, the only entry is “enter a
new value.” The user selects this option and
types a phrase into the alternatives table. At
this point, the user has just typed “(upstream)
boiler section” in the second column. The
same phrase is automatically entered in the
list of valid values. In future work on this
table—better, on any table having this
column header—this item can be selected at
any time from the valid-values box for entry
in the table. This feature is important not
only for convenience but also to preserve the
consistency of the entries and ensure chain-
ing in the rules to be produced.

The message box prompts the user with

Articles

FALL 1990 87

Figure 4. Initial Alternatives Table: Initial Symptom-to-Suspect Subsystem.
This table shows all the possible ways in which reasoning about the distillation system could start. Only one entry is made at this time. Possibly,
the next row is not entered until all reasoning from the current row has been mapped out.

Compressor discharge Suspect upstream
pressure-low boiler section.
As a suggestion for constructing the head-

ers, the Laps user is presented with the
instruction, “Think of many very different
values that will appear in a given column. To
what common feature (attribute or category)
do they pertain? Then make this feature into
the header of the column. Try to enter a
header that will pertain to only other closely
related domains as well as the current
domain.”

To illustrate, the kind of different values
that might have been summoned to mind are
“compressor discharge pressure, high or low,”
inspiring the header, “compressor discharge
pressure.” With this header, the following
modification of the table results:

Headers: Compressor Discharge Pressure ?
Cell Values: low Suspect upstream boiler

section.
This header is too restrictive. Among other

problems, a plethora of short tables will result
that are difficult to track and do not yield the
same level of clarity as the more generic
headers. Moreover, the generic headers, espe-
cially when sketched in the form of the infer-
ence tree of attributes (figure 3), immediately
allow for dialog among the expert, the
knowledge engineer, managers, and those
controlling the purse strings. However,
domain-specific headers—the components of
a domain model—are appealing to specialists
whose customary language abounds in jargon
such as “boiler heater ammeter reading.”
Such domain-centered headers tend to deter
transdomain dialog. However, in the absence
of transdomain headers—the components of
a domain-type model—domain-centered ones
must be used and can be seen as stepping-
stones to the more generic headers.

However, because more widely ranging
values came to mind, say, “compressor dis-
charge pressure high,” “suction pressure low,”
and “low production of distillate (very differ-
ent),” the more encompassing header “initial
symptom” was, in fact, abstracted, resulting
in the table in figure 4.

Of course, if the user answers unsure to
these guided-induction questions, Laps pro-
vides a breakdown of the sometimes highly
compressed lead-off query into smaller, bite-
sized questions. These questions are ones
whose answers play the role of subgoals.
Illustrations are also available. Finally, all the
queries posed by Laps are, in essence, guided-
induction types; they do not just indicate
requirements to the knowledge engineer and
the expert (indicate an object and its
attributes) but offer steps to the user to fulfill

some logic or reasoning aids. Using non-AI
terminology as much as possible, Laps makes
an effort to prompt the expert to concentrate
on depth-first development. This develop-
ment strategy is in accord with his own habit
of pushing forward to a solution as soon as
possible. Accordingly, Laps urges the expert
to reach as many final recommendations as
soon as possible. The menu system facilitates
this procedure; the user next clicks on NEW
next to TABLE at the top of the screen.

The second hint does not apply in this
instance because there is only one reason
column in this table. Its purpose is to suggest
a systematic way to exhaust the combina-
tions when there are at least two reason
columns. The dechunking process is expected
to reduce the number of reason columns ide-
ally needed to no more than two. Of course,
another ounce of automation could be added,
such that this advice is smartly given only
when there is a minimum of two reason
columns.

Setting Up the Tables: An Alternative
Strategy to Obtain the Generic Headers

Dechunking efforts during session two could
have yielded the headers in the initial alter-
natives table: initial symptom leading to sus-
pect subsystem. If, however, the dechunking
efforts did not yield a model of sufficient
abstractive scope, Laps provides the user with
a second chance. For this purpose, Laps uses a
technique called guided induction, that is,
induction guided by prompts. As we see later,
Laps is pushing the user in the direction of
the right abstractions by confronting him
with the correct domain-independent
queries. According to this scenario, at the
outset of session three, the user has entered
no headers. However, in this event, row 1 is
automatically filled with the first inferred
statement of figure 2 together with its reason,
producing the following:

Articles

88 AI MAGAZINE

Laps is pushing the user in the direction
of the right abstractions by confronting
him with the correct domain-indepen-
dent queries.

these requirements, especially those of knowl-
edge decompilation and, as we see, knowl-
edge expansion.

The Second of the Chained Tables:
From Suspect Section to Test

Following the previous instructions to reach
as many (final) recommendations as soon as
possible, the expert left the first table; called
up a second, blank table; and entered its
headers and row 2 (figure 5). It is important
to note at this point that the row numbers in
column one of any alternatives table are
given in order of entry throughout the three
tables. Thus, the next rows entered are in
table 3, shown in figure 6 as rows 3a, 3b, and 3c.

The table in figure 6 contains the reasoning
from a suspect unit (be it a subsystem, sub-
subsystem, or component) to the test whose
performance will refine one’s knowledge of
where the fault lies. The headers for this table
can be found in the model in figure 3.

The Third in the Chain of Tables:
Tests to Lower-Level Suspects

After entering just row 2, the expert then
switched to the third or final table (see figure
6). Based on a refinement strategy, this table
describes the reasoning from the already per-
formed test and its result to the next lower-
level suspect unit of the distillation device. It
should be stressed that in this table, the

Articles

FALL 1990 89

Figure 5. The Second Alternatives Table after Its Completion: Suspect-to-Test Table.
A suspect unit section is brought over from the first or third table by selecting it from the appropriate valid-values box. For each suspect unit, the
confirming or follow-up test is cited. At the later point pictured above, the user has just entered the italicized value and is being instructed to carry
it over to the next table.

Thus, there is no question that Still falls
into McDermott’s (1988) expert system mode
of a cover-and-differentiate system because
the expert ultimately develops a complete list
of faults. However, Still, as we see from the
expert’s switching gears, is also a propose-
and-revise system, to cite McDermott’s other
top-level problem-solving mode because the
expert switches gears when his proposal of
the boiler section or subsystem fails at refine-
ment and then revises his proposal, seeking
to explore the vapor section or subsystem.
Moreover, it is as if the expert were on his
own using depth-first search, along with
backtracking, to do refinement-style thinking
during his problem-solving efforts.

expert entered all three of the possible results
of the test, completing a rule set of three rows
(3a, 3b, and 3c) before returning to the
second table to continue down the solution
path. The headers of this table can also be
found in the model in figure 3.

The exception to the expert’s refinement
strategy occurs when his effort to refine fails;
in this event, he backs up to the higher level
he is trying to refine, say, a subsystem, and
tries another option at this higher level. In
rows 3b, 3c, and 5c, he switches gears, turn-
ing from the boiler section or subsystem to
the vapor section or subsystem, once the
search for a sub-subsystem does not produce
positive test results.

Articles

90 AI MAGAZINE

Figure 6. The Third Alternatives Table: Tests to Suspects or Faults and Fixes.
A follow-up test is brought over from the second table. Each of the possible results of this test is entered with the corresponding suspect unit. If a
suspect is confirmed as the fault at the required level of refinement, the appropriate fix is entered.

Completion Strategies for a Domain
Sector and the Entire Domain

We begin by describing the modified depth-
first strategy used to develop the previous
domain, then discuss other completion strate-
gies that can be used with Laps.

Completing a Pie Slice: Using the Modi-
fied Depth-First Approach and Extending
Stubs. In discussing the completion strate-
gy used by the expert, it is helpful to graphi-
cally represent the sequential development
shown in the three alternatives tables (figure
7). The sequential development of the three
alternatives tables can be characterized as
modified depth first, leading to a single pie
slice, or sector, belonging to the whole pie, or
rule base. Refer to figure 7. A single pie slice is

one that begins with one initial datum—
here, the initial symptom, “compressor dis-
charge pressure low”—and fans out through
all the intermediate stops along the way (that
is, tests along with their results) to reach
every termination point (to a generic line of
reasoning) or fix that can occur in the wake
of this initial datum.

In figure 7, the first solution path to termi-
nate does so with fix 1, cited in row 7a.3 in
figure 6. Here, the dechunked sample solution
path (figure 2) is shown as the path leading to
fix 2. When the alternatives tables are filled
out, the basically depth-first order of entry
undergoes some modification. The entries in
table 3 include all branches at the decision
point, a breadth-wise move making the path
stubby or bushy. In addition, when one of the
stubs (7a.3) can be completed with only one

Articles

FALL 1990 91

S
lice 4

Slice 3

Slice 2 row 1.1
row 2.2 row 3a.3

row 3b.3

row
 3c.3

row 4.2 row 5a.3 row 6.2 row 7a.3
FIX 1

FIX 2

ro
w

 7
b

.3

row
 9a.3

row
 8.2

ro
w

 9
b.

3

Slice 1

row
 5b.3

ro
w

 5c.3

Figure 7. Completion Strategy: A Graphic Review.
The left side of each step or arc label indicates the step’s order of entry into the alternatives tables. The right side indicates which of the three tables
is used. For example, row 4.2 refers to the fourth row to be entered into any of the tables, but the entry happened to be into table 2. As a second
example, row 3a.3 refers to the third row to be entered in any table, being the a or first row in the successively input triple of 3a, 3b, 3c and entered
in table 3.

Completing the Pie: Make Pie Slice after
Pie Slice. A pie slice of a domain can be
said to have a tip or initializing datum—here,
“compressor discharge pressure-low “—just as
a tree can be said to have a root. A second pie
slice will, of course, be launched with another
tip or initializing datum—say, “compressor
discharge pressure-high.” After one slice from
one tip or root is made, other pie slices can be
made in the order indicated by the root num-
bers (figure 7). As one can readily see, the
accumulation of pie slices can eventually lead
to building the whole pie, no matter how
large. The expert is confident that this pie
slice strategy can exhaust the domain of Still.

It should be pointed out that this modified
depth-first strategy is not an absolute require-
ment of the Laps tool. Users are free to use
any method to complete the tables as long as
it works for them. However, what is so attrac-
tive about this method is that it enables the
expert to track his work and stay aware of all
the acceptable combinations and stubs. How
would our industrious expert assure himself
that he had covered all the initial symptoms
and, hence, all the subsequent pie slices? The
answer is by following the flow of causal con-
nections in his process model of how the dis-
tillation device works. Certainly, our expert
would never try to directly build the list of
initial symptoms; he would find them by cre-
ating more and more pie slices guided by his
understanding of the distillation system as a
process.

Using and Lifting Simplifying Assump-
tions. The second strategy for completing a
rule base, or the whole pie, is to have the
expert narrow the scope of the rule base by
making simplifying assumptions. After the
rule base is built using these assumptions, the
constraints can be lifted one at a time, produc-
ing an increasingly comprehensive rule base.

We did some exploratory investigation of
this approach while working with submarine
diving officers (di Piazza 1988). As the first
step in an early sample solution path, two
assumptions were frozen, or added, as givens:
The ship’s speed was constant, and the ship
was holding depth. Later, each of these con-
straints was lifted (speed might not be con-
stant, and the ship might not be holding
depth). As a result, the steps in the sample
solution path increased although much of
the pattern of reasoning used to solve simpler
problems, according to our design, was incor-
porated into the solutions to larger problems.

Furthermore, in 1989, this second develop-
ment strategy was successfully used in anoth-

more step, it is taken before continuing down
the path to fix 2. Again, this order of develop-
ment is called modified depth first.

After the bushy path is completed, the user
continues development by completing stub
9b.3. This expansion might involve addition-
al branching points, with associated stub-
bing, but ultimately, the possibilities are
exhausted, and the subtree at 9b is completed.
Then the user backs up to 5b and continues
in a similar manner. This process is continued
until 3b is developed, and a pie slice of the
whole decision tree is complete. What results
is a complete chain of rule sets, starting with
a single initial symptom and ending with all
possible faults and fixes that could flow from
this symptom. Another research group (the
AI group at Honeywell, Inc., in Minnesota)
has also found the depth-first development
strategy to be more in accord with the
expert’s habitual flow of reasoning (Cochran
1988). However, the group does not appear to
have modified this approach to include
breadth-wise thrusts, bringing, as they do, the
dividend of stubs to be fleshed out.

Other Uses of Stubbing. Stubbing, which
provides hooks for gradual extension of the
expert system, was used earlier while building
the pie slice, but it can also be used in other
ways. For example, mathematical computa-
tions, or checklists or print routines (pertain-
ing to painting a screen for the end user or
presenting the user with messages or warn-
ings during the consultation sessions), can be
transformed to fit the kind of inferencing
assumed by Laps by using backward chaining
from a stub or clause in some rule. However,
these non–decision-intensive forms of reason-
ing are just as well stubbed or left out of the
rule base early in the development process.
They can be added later after Laps has helped
to produce the decision-intensive part of the
knowledge base, which is the most important
part and the one most difficult to do.

In traditional terms, stubs are like function
calls whose body of code can be written later.
In closing, the thinking behind Laps is that
the decision-intensive core to any expert
system should be kept as syntactically simple
as possible, containing only propositions or
imperative statements readable by lay persons
to AI (see the sample M.1 rules previously
displayed—with no nested parentheses). How-
ever, from some of these statement
stubs—”determine such and such” or “print
this warning”—can later be hung procedures,
and so on.

Stubbing
. . . provides

hooks for
gradual

extension of
the expert

system . . .

Articles

92 AI MAGAZINE

er test-bed application of the Laps methodol-
ogy. This expert system application, which
was surnamed Strucon, was somewhat like
Sacon (Teknowledge 1986); Strucon was also
for selecting the cost-effective and fitting
code or utility for doing structural analysis
but was more detailed than Sacon and was for
submarine hulls. Unlike Sacon, it sought to
advise the less experienced code user on how
to appropriately use the correctly selected
code.

In this domain, the expert, Carl Dyka,
could pour out his knowledge only after he
froze several assumptions or initial facts, such
as the problem pertaining to a static situation
describable in nonlinear terms, at our urging.
In the wake of these assumptions, he readily
delivered a multitude of subtrees that were
then fed into Laps alternatives tables. He later
returned to lift one assumption at a time, first
changing the situation from static to dynamic.

Cell and Row Testing: Necessity and Suf-
ficiency Testing. In Laps, testing can
reach down to the level of the cell and the row.
Necessity testing determines the appropriate-
ness of the cell entries, and sufficiency testing
helps determine the appropriateness of the
number of columns (attribute-value pairs) for
the rows falling under them (di Piazza 1986).

Necessity Testing: Find the Not-Too-Specific
Cell Values. To do necessity testing, the
question posed in the message box is the fol-
lowing: “In this row, can you replace the cell
value under this reason header by another
specific value and still reach the same cell
value in the conclusion column? If so, then
replace the current value under the reason
header with one that covers all other specific
values that it should cover and no others.”

On his own, the diagnostic expert used cell
values that were generic in nature and not
replaceable by more specific values, such as
“compressor discharge pressure-high” (not
“compressor discharge pressure-9 lbs/square
inch”) and “compressor discharge pressure-
low” (not “compressor discharge pressure-5
lbs/square inch”). Hence, his cell entries
always passed the necessity test. In another
domain, however—that of the diving offi-
cers—the experts would regularly use values
specific to the problem, such as “2 degrees
up,” instead of “up,” which is a value generic
to their domain.

Hence, it can be noted that although the
diving officers’ sample solutions did not pass
the necessity test before their specific values
were generalized, they were not referring to
any explicit model. (Certainly, however, an

implicit model had to be made explicit by
using necessity and sufficiency testing as well
as dechunking.) However, the diagnostic
expert’s sample solutions did pass the necessi-
ty test (and, as we see, the sufficiency test),
and an explicit model was already underlying
his expressions. To offer a rather rigorous def-
inition, a model is an abstract representation
of the problem-solving process in a domain,
prescinding from any cases, that passes neces-
sity and sufficiency testing and is character-
ized by intermediate conclusions for the sake
of intelligibility, as with figure 3 showing the
fruits of dechunking. In one way, models can
be classified in terms of levels of abstraction,
with their attendant advantages and disad-
vantages, as in the case of domain (or
domain-specific) models, domain-type
models, and metadomain models (see the dis-
cussion of the object-oriented model and the
object-to-object tables in A Structured Table:
Its Advantages).

Sufficiency Testing: Find All the Reason Factors.
Eshelman and McDermott (1986) approxi-
mate sufficiency testing for massaging rules
but not in a tabular setting or as part of a
knowledge-gathering, knowledge-structuring,
and knowledge-testing triptych.

The prompt in the message box here,
which is another example of a Laps aid for
guided or dialectical induction, reads, “In this
row can the same reasons lead to a conclu-
sion that can replace the current one? If the
answer is yes, then add another column such
that regarding the updated row, the answer to
the above question is no.”

For a simple example of sufficiency testing,
we can examine the following assertion: “If
the engine’s spark is irregular, then replace
the points.”

Here, prodded by a question about trying
to replace the conclusion for the same
premises, the expert realizes that in the case
where the engine’s spark is irregular, the
points could need replacement or, alternately,
they could just need cleaning. What makes
the difference? He advises that if the points
are also burned, then they need replacement,
whereas if they are just dirty, they only need
cleaning.

Again, the diagnostic expert on the distilla-
tion device regularly entered materials that
passed the test for sufficiency of reasons. Per-
haps the reason for his higher degree of rigor
on the first try was the use of transdomain,
rather than domain-specific, headers. The
lesson seems to be that if a genuinely rigor-
ous model is developed before enough neces-
sity and sufficiency testing in the alternatives

Articles

FALL 1990 93

. . . the expert
was best at

supplying
data and the

knowledge
engineer at
abstracting
the model.

Articles

94 AI MAGAZINE

tables, then less need appears to exist for the
testing. However, the model, as previously
defined, must have already been explicitly or
implicitly tested for necessity and sufficiency.

Both a domain model and a domain-type
model, as kinds of models, do, of course, meet
one of the minimum standards for a model:
They pass necessity and sufficiency testing or
approach such success, with confidence fac-
tors used as a last resort.

The Laps Code Maker: Automatic
Encoding of Decision-Intensive Code

In session three, for example (figure 4, row 1),
the code generator in Laps would generate
the following rule in M.1 syntax:

if initial symptom = compressor dis-
charge pressure-low

then suspect subsystem = (upstream)
boiler section.

The following is an illustration of a chain of
rules that the rule maker would create if it is
directed to use Clips (figure 6, row 9.a) on the
previous tables:

(defrule rule-9.a.1
(follow-up test compressor suction

pressure switch continuity)
(result not-ok)

=>
(assert (suspect component

(upstream) compressor suction pressure
switch)))

(defrule rule-9.a.2
(suspect component (upstream) com-

pressor suction pressure switch)
=>

(assert (fix repair or replace compres-
sor suction pressure switch))) .
Certainly, messages or questions to the con-
sultation session user can be affixed to the
rules by adding germane columns to the
tables.

Of course, Laps code makers can be created
for Nexpert or potentially any expert system
shell language as far as any of the decision-
intensive code or part of the expert system is
concerned. Indeed, manual coding for this
purpose should largely become a thing of the
past. However, the coding for the input-
output, user interface, and graphics part of
the expert system is still done manually, aided
perhaps by object-oriented software utilities
such as HyperCard™.

It is important to stress in this context that,
as previously shown, rules can capture a
model; they need not be looked on as only
able to capture heuristics because rules, as a
generic syntactic form, can be wrapped

around any semantic material. However, in
terms of the much ballyhooed debate over
the representational forms of rules and
frames, rules seem better fitted as the frame-
work for decompiling cases of problem solv-
ing and, hence, as the way to launch an
expert system construction effort. Objects and
frames seem to be of more assistance as a
frame of reference for creating a new user
interface and similar items where a history of
solved cases is yet to be amassed.

The Roles of the Expert and
the Knowledge Engineer: Laps

Aids, Not Eliminates, the
Knowledge Engineer

The expert could easily generate cases. The
knowledge engineer, however, had to take the
lead during dechunking and in abstracting
column headers for the alternatives tables.
After this work was done, the expert became
increasingly autonomous in filling out the
rows or alternatives. Because the generation
of alternatives takes the largest proportion of
the time in constructing expert systems, the
existence of a tool allowing him to work
alone during this stage was helpful. In short,
the expert was best at supplying data and the
knowledge engineer at abstracting the model.
Indeed, to the degree that an expert supplies
the domain-type or metadomain model, he is
not acting then as a domain expert but as the
knowledge engineer. Thus, to express the rela-
tionship between the domain expert and the
knowledge engineer, the expert indicates the
what, and the knowledge engineer points out
where in the knowledge map it is to be put.
Finally, to the degree that the knowledge
engineer relies on the prompts or help messages
in Laps, this tool aids him, not replaces him.

The Expert’s Preferences: High-
Level Attributes, Fewer Tables

Working with the expert creating Still gave us
a chance to note certain of his reactions to
the various techniques developed on the Laps
project. First, the expert preferred the econo-
my of high-level or domain-type attributes
such as the subsystem or follow-up test over
domain-specific attributes such as compressor
suction pressure or ammeter readings. Thus,
he favored working with a domain-type
model applicable to several domains (figure 3)
as opposed to a domain-specific model.

To a degree, the expert must be trained to
proceed in this modified depth-first manner.

However, the training clearly went with his
problem-solving grain, not against it. After
being helped to complete a few rows, he went
on to finish a given pie slice on his own. It is
clear that this method gave him the impor-
tant feeling that he was in control and that
he was not omitting rows or branches.

Further, he preferred to take the additional
step needed to complete the branch to the
fix. He also preferred chained tables. Both
preferences were accommodated by append-
ing the fix column to the third table rather
than creating a separate fault-to-fix table. In
rows 7a and 9a in figure 6, the entries in the
component column serve a dual purpose:
They are conclusions to the statement to their
left, and they are reasons for the statements
on their right. The advantage of this com-
bined table is that in a glance, the expert
clearly senses that he is building a chain of
tables and that he can avoid the extra work of
moving to another screen to make an entry in
the fix table. Moreover, the expert preferred
the fusing of tables by combining all three
levels, from subsystem to sub-subsystem to
component, into a single table.

A Structured Table:
Its Advantages

Recently, in line with the expert’s penchant
for working on as few tables as possible,
thought has been given to producing a single
composite table, one containing all the
reason columns of the previous three tables
on the left side of the inference arrow and all
the chained conclusion columns on the right.
In this setup, he need not shift from table to
table to fill in a new row. In its distinctive,
continual efforts to provide user-friendly cog-
nitive, as well as logical, aids to reasoning,
Laps needs this single-table alternative; at
times, users have reported that they have for-
gotten their line of reasoning right in the
middle because it was spread over several
tables. This metadomain kind of structured
table—its headers can apply to any domain
yet can introduce structure or articulation
into a domain—has all the advantages of the
old or domain-type structured tables previous-
ly described as well as a set of new advantages.

Inherited Advantages
This new table inherits the advantages of the
previous three alternatives tables: the use of
modified depth-first development, hierarchi-
cal decomposition of the troubleshooting
search techniques, the domain-type model
(however, subsystem, sub-subsystem, and so

on, are referred to in the cells under the
object header), preventative testing (for
necessity and sufficiency and other matters,
both online or offline), row insertion and
other tabular editing techniques, and so on.
Again, it is noteworthy that this metadomain
table includes the domain-type table; nothing
is lost. Some users might still prefer to segre-
gate the tables into three, although occasion-
al blank rows in the one universal table might
serve the same purpose. See figure 8.

New Advantages

The new benefits seem to fall into two cate-
gories: representational advantages and
advantages for intellectual or knowledge base
bookkeeping.

Advantages for Representation. The
object-to-object table raises the level of
abstraction from the domain-type to the
metadomain level, making possible the
mechanical and cognitive conveniences of
one table. In line with its object-oriented
structure, this kind of table also possesses the
advantages of object-oriented construction:
message passing and a semantic network.

In effect, the object-to-object table does the
equivalent of message passing using a table of
rows or rules because the object-attribute-
value triple on the right side of the row or
rule is the triple to be invoked when a fact
matches the triple on the left-hand side of the
same row. Row or rule four illustrates both
the message passing and the semantic net-
work structure; it essentially says, “If the
follow-up test on the boiler section is the
compressor suction pressure gauge readings,
then what is the result of this set of readings?”

Note that in semantic network fashion,
what was the left-hand-side value, “compres-
sor suction pressure gauge readings,” becomes
the object on the right-hand side. This trans-
formation is done to find out the value of a
feature of this new object, the feature being
the result of this test or set of readings.

A warning might be in order here. Looking
at the world of problem solving through the
glasses of object-attribute-value triple, an
expert does have a handy template for giving
explicit organization to his thinking. Howev-
er, to keep from being a foreign, too-high-
level construct, this triple, as with other
metadomain constructs such as “if . . . then,”
should not be used at the outset of the knowl-
edge-acquisition process. They should be used
only after obtaining sample solution paths
and dechunking them to a suitable point for
the end user of the expert system.

Articles

FALL 1990 95

tives or attributes tables. However, the result-
ing table would have 12 columns: 6 reason
columns and 6 conclusion, with only “initial
symptom” appearing as only a reason
column and ony “fix” appearing as only a
conclusion column. It sounds nightmarish
for a user to follow, and left-to-right scrolling
would help but would put many columns out
of sight. This option will probably be ruled
out a priori chiefly because the object-to-
object table is a composite with only 7
columns.

To illustrate how the completion box
works, the act of clicking on the
COMP(letion) box to the right of row 4 places
an x in the box, meaning that all its children,

Knowledge Base Bookkeeping Advan-
tages and the Procedure Column. Two
features fall into the category of intellectual
bookkeeping, or knowledge base bookkeeping,
which is a set of mechanical techniques that
help the knowledge base builders to be accu-
rate and complete. These features are single-
table accessibility and completion check-off
boxes. The multipurpose procedure column is
similar in intent.

As far as gaining all the advantages of using
just a single table, it is the object-oriented
structure of the table that makes this conve-
nience possible with so few columns. It is
possible—but probably not desirable—to
make a composite out of the three alterna-

Articles

96 AI MAGAZINE

Figure 8. The Object-to-Object Table, Using a Metadomain Model.
This one table, in particular, rows 2 through 6, covers rows 1 through 4 on the previous three alternatives tables. (The earlier tables were designed
for the M.1 code maker, and the current one has a Clips rule maker in mind.) It combines the advantages of the series of domain-type alternatives
tables with others: one-table accessibility; organization in terms of objects; knowledge base bookkeeping techniques, such as completion check-off
boxes; and the procedure column with its calls to many kinds of routines.

or chained-to rows (5A, 5B, and 5C), have at
least been started. A single click can be used
to copy this triple: “compressor suction gauge
readings,” “result,” and the blank contents of
the cell under the VALUE header. These three
cell values are then copied to the left-hand
side of row 5A. Two more clicks on the same
x-filled box inaugurates rows 5B and 5C with
the same triple. Unfilled completion boxes
cry out to be filled; so, the expert system is
less likely to have gaps. Gaps or incomplete-
ness of any kind can shake end user confi-
dence in the expert system as an embodiment
of expertise.

Again, in an effort to provide aids to achieve
reasoning and its completeness (even more
bookkeeping aids, unsavory as the word
bookkeeping might be to AI thinkers), we are
leaning toward the following strategy: having
the same triple printed in the next two rows
for each click on the completion box. At the
sight of the extra row having a completed left
side, the user might be prompted to think of
a value for the attribute that he had somehow
overlooked. Moreover, there is a need to con-
sciously delete the extra row if it holds no
value. This slightly irritating option, however,
is better than having the user overlook a row.

To turn to the new column, the procedure
column could give various commands to rou-
tines to print selection lists, questions, mes-
sages, or drawings. All these elements can be
expressed in some preprogrammed hierarchy
of stock screen types, which we have already
sketched. In addition, commands could thus
be sent to iteration or calculation routines,
and so on. The rationale here is that as far as
possible decision-intensive coding should be
done declaratively in frame-laden rules or
rows that are transparently clear and English-
like. Relegate the non–decision-intensive
thoughts to attached procedures, which
should nonetheless be as close to English as
possible, as in the scripts in HyperCard.™

Implementation: Three Versions
of Laps, Current Challenges,

and a New Table
In the following subsections, we discuss the
three versions of Laps, some current chal-
lenges, and the recent unstructured question-
to-question table.

The Three Versions of Laps: PC,
Mac, and Apollo

The first Laps appeared in the clothing of
M.1. The logic of Laps was thereby made clear

in this declarative rule-based language, but
the screen management was woefully slow. To
gain the speed advantages of C relative to
processing input-output and all else, Laps was
next implemented in Microsoft C on a per-
sonal computer (PC). As a parallel effort for
the sake of improvements in the C version, a
HyperCard implementation on the Macin-
tosh™ was begun that has proven to be excel-
lent. HyperCard impresses us as the most
rapidly programmable experimental tool
available to date.

The following is noteworthy: The PC ver-
sion is altogether system directed or prompt
laden, stepping the user through all the
hoops, as the prompt or message boxes in fig-
ures 4 through 8 indicate. The Mac and
Apollo versions, however, are more user
directed than system directed, letting the user
fend for himself, thus presupposing users who
are experienced enough to use the Laps tech-
niques without prompts.1

Some Current Challenges: Porting
and a New Domain

The next move on the migration path of
implementations is placing more of Laps on
the Apollo for the sake of another application
domain. In conjunction with this porting
effort, the Laps team is currently engaged in
an application project involving the smart
review of documents. This current challenge
is of the propose-and-revise type; the review-
er, like a teacher or editor correcting essays, is
determining if a whole battery of con-
straints—a smart checklist or, better, tree of
matters to check—has been met by the
authors of the document.

This project, with hundreds of document
types to be covered by the expert system, is
large and complex in its own scope, apart
from comparison with other domains. It is
also large relative to the earlier test-bed
domains that we dealt with as researchers,
including the diagnostic domain used as our
running illustration. This observation is true

Articles

FALL 1990 97

The object-to-object
table raises the level of
abstraction from the
domain-type to the
metadomain level . . .

system (using Domain C and the utility
Dialog) to capture sample solutions—in terms
of a series of questions, not statements—and
reflect a tree or network. For the sake of con-
tinuity, let us use the diagnostic domain to
illustrate the question-to-question decision
table, although it was designed to satisfy the
needs of the experts on the document-review
project. These experts have readily produced
flowcharts, which, reflecting the character of
their domain, happen to be decision intensive;
their flowcharts are more like decision trees.

This kind of table, which is metadomain in

despite the fact that there are dozens of ini-
tial symptoms, each of which can launch a
pie slice. Thus far, the ability to stub and
freeze assumptions is serving us well in this
document-review effort.

The Unstructured Question-to-Ques-
tion Table: Contains a Tree of Sample
Solutions as a Prototype but Cannot
Support a Large Expert System

This year, a new kind of Laps table was
designed and programmed on the Apollo

Articles

98 AI MAGAZINE

TOREASON CONCLUSION
QUESTION ANSWERROW

COMPRESSOR
DISCHARGE
PRESSURE?

COMPRESSOR
SUCTION PRESSURE
GAUGE READINGS?

COMPRESSOR
DISCHARGE
PRESSURE?

LOW

HIGH

LOW

"CHECK SUCTION
PRESSURE GAUGE

BECAUSE ..."

COMPRESSOR
SUCTION PRESSURE
GAUGE READINGS?

"CHECK BOILER
AMMETER READINGS

BECAUSE ..."

BOILER HEATER
AMMETER READINGS?

HIGH

OK

MESSAGE QUESTION COMP

x1.

2.

3.

4.

5.

COMPRESSOR
SUCTION PRESSURE
GAUGE READINGS?

COMPRESSOR
SUCTION PRESSURE
GAUGE READINGS?

COMPRESSOR
DISCHARGE
PRESSURE?

HIGH

?

2

COMPRESSOR
SUCTION

PRESSURE
GAUGE READINGS?

LOW
1

BOILER HEATER
AMMETER

READINGS?

LOW
3

HIGH
4

?

OK
5

?

Figure 9. A Decision Tree Converted into a Question-to-Question Table.
This tables illustrates a decision tree of questions that is developed in the modified depth-first manner: The numbers on the arcs indicate the order
of entry. Each row of the corresponding question-to-question table has an opening number matching the arc value reproduced in this row.

character, is purposely unstructured, designed
for the easy capture of knowledge. Indeed, we
have found this newest table to be the easiest
to use of all those we have created and tried
thus far. The expert is to transfer a decision
tree to a decision table, which can be com-
pleted in the modified depth-first manner
previously described. The value “compressor
suction gauge reading” is reproduced three
times by clicking on the completion box.
Rows 3, 4, and 5 correspond to arcs 3, 4, and
5. Next, the completion box to the right of
row 3 can be clicked on so that row 6 will
begin with “boiler heater ammeter reading?”
To make a connection, the answers to the
questions, if expressed as statements such as
“boiler heater ammeter readings-steady zero,”
are the statements in the fully chunked kind
of sample solution, nonbranching table, or
list displayed in figure 1. By having the Laps
user pick only one answer to each question
for chaining forward and leave the other
responses as stubs to be extended later, he is,
in effect, listing or making a sample solution
path of the kind displayed in figure 1.

The motivation here was to position the
expert to give us as big a dump of his knowl-
edge as possible at the outset. The hope is
that the expert gets so used to this simple
table that he bypasses scribbling down trees
or flowcharts on paper. On the issue of graph-
ics and trees versus tables, we have tentatively
found that screen-based trees, once they
reach any considerable size, can wrap around
themselves, acting like a spiral of pie slices
covering slices beneath. Zooming, flashy as it
is, does not help much if the text is too hard
to decipher. Breaking on-screen trees into sub-
trees, which is a necessity to stop the wrap-
ping, leaves one with the problem of
forgetting where the subtree came from or
goes to. Too little information—too much
white—is shown in trees, whereas one can
accuse tables of being just the opposite—too
crowded. However, in the long run, whatever
works is our choice.

Some amount of dechunking can be done
using the message or comment column,
thereby keeping the same alternatives table
format for all sessions of Laps. The first row
message might in full be “check the compres-
sor suction pump pressure because the sus-
pect subsystem is the upstream boiler section,
and” As with the formal dechunking ses-
sion (figure 2), the comments can allude to
underlying hierarchical or control reasoning
or to whatever can be concluded after each
question is assigned its specific answer on the
left-hand side.

Some warnings, however, are in order

because of the tempting simplicity of the
question-to-question table.

Caveat 1: The dechunking effort is severely
limited because no intermediate conclusions
are encodable into rules, and no effort is
made to find and insert intermediate conclu-
sions between facts and already inserted inter-
mediate conclusions (figure 2, row 1.b).

Caveat 2: Popular among the experts
because it is simple to use, this unstructured
table is only capable of rapid prototyping, as
with the sample solution table. This decision-
tree-into-a-table approach will collapse under
the weight of a wide-ranging domain of hun-
dreds of types (of documents or whatever) in
any domain largely without explicit organiza-
tion. Organization begets economy of focus.
Psychologists tell us that people are limited to
focusing on, or remembering about, six to
seven numbers at a time. Similarly, people
might be limited to focusing on just five to
seven divisions of some topic or class before
they need to be given two or more intermedi-
ate topics or classes—if they are to find relat-
ing a multitude of ideas manageable and not
too complex.

To be sure, a model or structure of some
type is necessary for the sake of constructing
the expert system and educating users of the
expert system. In such a large domain with-
out the model, the builders will not be able to
see where they are going or know where they
came from or when they arrive. Consequent-
ly, they will be unable to build a plan for con-
structing the expert system along modified
depth-first and pie-slice-after-pie-slice or
other lines. Without a model, the consulta-
tion session traces appear to the advice seeker
as a case of touching or tagging black box
after black box: Not much enlightenment for
the advice seeker can occur. Moreover, the
trace is silent in answer to the question, What
is the connection between one domain ques-
tion and the next one? Further, mere trees
lack even the minimal overviewing advan-
tages of block diagrams, not to mention the
superior structuring benefits accruing from
object-attribute-value representations.

The Still domain often becomes involved in
network thinking; if you will, the pie slices
overlap. To show another inadequacy of the
question-to-question table, it is helpful to
compare it with the object-to-object table
regarding the handling of networks.

Caveat 3: The question-to-question table
can handle network thinking but in a manner
that does not build on meaning or knowl-
edge, whereas the object-to-object approach
can handle network thinking in a manner
conformable with a knowledge-based system.

Articles

FALL 1990 99

ever, as it turns out, by setting up the expert
to first use his facts and test results to reach
faults and fixes, we simplified the task for
him. Asking him about his control logic is
better done as an afterthought, for example,
after a sample solution. We could then ask,
Why did you seek this fact before that? If we
wait until the dechunked version is on the
table, with its explicit model, this sequence
query can be refined; why did you seek this
test result before that? If we wait until a pie
slice is completed, at least more transdomain
queries become possible; in a network, why
did you inquire about this subsystem (the
boiler section) before that (the vapor section)?

Second, for the same kind of compelling
reasons, there should have been a separate
fault-to-repair-or-replace table. The expert
himself recognized that he sometimes
replaces a component or piece-part but at
other times he repairs it—a perfect instance
of insufficient conditions, raising the need
for a differentiating factor. However, to save
time and prevent distraction while he was
learning to use the modified depth-first
expansion of his dechunked sample solution
path, he was not asked to try to concentrate
on this loose end as well. At times, it is
necessary to tolerate some chunking and put
off dechunking until conditions are ripe.

Third, it should be noted that at times, the
expert on Still pushed his search for a fault
beyond the component level (the molecule)
to the piece-part level (the atom, or indivisi-
ble unit for repair or replacement purposes).
Sometimes, he did not. When he went for the
piece-part, the added expense and time must
have been worth the effort. When he settled
for pointing the finger at a component as the
sufficient fault, further expense and time
were not worth the effort. However, again to
simplify his task and this presentation, we
omitted the task of building these admittedly
critical control matters and others (multiple
faults, causal or other axiom-based models,
and so on) into rule sets. Still, much of an
expert’s years of sweat-based wisdom is rolled
into his control knowledge and process
model, as was the case with the expert
behind Still.

An Evaluation of Other
Knowledge-Acquisition

Approaches: Pluses and Minuses

As was pointed out at the outset of this arti-
cle, a variety of approaches have been used to
tackle the difficult problem of knowledge

Let us turn to an overused but still useful
example, and consider the resulting four rules
to note the numeric or nonsymbolic way this
seductively simple approach traverses to a
node in a network from its two parents:

If the animal eats meat, then ask question
1: Does it have spots?

If the animal eats no meat, then ask ques-
tion 2: Does it have spots?

If the answer to question 1 is yes, then the
animal is a leopard.

If the answer to question 2 is yes, then the
animal is a giraffe.

If we omitted the numbers for designating
the questions, then a logic problem would
arise: The same condition leads to two mutu-
ally exclusive conclusions because the animal
is both a leopard and a giraffe.

Now consider object-laden rules and how
they avoid this logic problem—not by the
kludge of numbering but by the use of mean-
ingful symbols or knowledge. If the differen-
tiating feature of a carnivore (one value for
the current object) is spots, then the identity
of the carnivore is a leopard. However, if the
differentiating feature of a herbivore (another
value for the object) is spots, then the identi-
ty of the herbivore is a giraffe. This pair of
object-to-object rules shows that in an object-
laden table, the different paths to the same
node (or attribute)—here, differentiating fea-
ture having the same value, spots—can be
done without a logic problem and without a
kludge if different objects are introduced,
taking us beyond the intrinsic limitations of
an objectless decision tree or network.

Unavoidable Omissions: The
Scope Needed Narrowing

There are three or four omissions, as egre-
gious as they were unavoidable in our work.
In particular, they were necessary to narrow
the scope of the task to manageable propor-
tions for the expert.

First, a grave but unavoidable omission in
Still is that of experience-based control rules.
For instance, the reason for the expert’s con-
clusion or determination to focus on the
boiler section before the vapor section is not
made explicit. In this case, the expert, it was
later learned, based his decision on two fac-
tors: The boiler section was both more likely
and easier to confirm than the vapor section.
A quick glance at the suction pressure gauge
was all that was necessary.

Why did we not include a rule set on this
admittedly critical area of smart control?
Simply put, we did not have the time. How-

Articles

100 AI MAGAZINE

acquisition. Next is a brief look at three other
kinds of approaches and some of their advan-
tages and shortcomings along with indica-
tions of how Laps attempts to overcome these
shortcomings. Often, the basic shortcoming
of these approaches is that some fruitful tech-
nique is taken out of context. In other words,
the technique is not presented as only a part
of an appropriate beginning-to-end sequence
or ontogeny; for example, no background to
the use of the tool or no follow-up to its use is
provided.

Use of Preexisting Models

In this subsection, the term models in phrases
such as preexisting models refers to a domain-
type model because only a domain-type
model can serve as preparation for prying out
revelations about the domain-specific model
from the expert; if the domain model is at
hand at the outset, obviously not much prying
is left to be done.

Here, we consider how preexisting models
can be taken out of context, isolated from
what should come before the nominating of
the model. We also consider what should
follow the selection or construction of the
model: a system for filling out the model.

Preexisting Models: Isolated from the
Upstream and Downstream Require-
ments. If a model exists that precisely fits
the problem solution pattern, then direct use
of this model, as Marcus (1987) does, appears
to be the best answer. Marcus’s article is a
thorough illustration, relative to Salt, of what
John McDermott calls the propose-and-revise
mode of reasoning. After presenting the perti-
nent model to the expert, the knowledge
engineer can urge him expert to assign values
to the attributes of the model. Also significant
is Musen’s (1989) book, which is concerned
with automatically generating a series of
model-based knowledge-acquisition tools.
Musen contributed to the ontogeny of knowl-
edge expression with novel software for han-
dling two matters: assisting knowledge
engineers in building a model and then assist-
ing domain specialists in fleshing out the
model. Even here, however, there is still the
need for additional aids before and after the
assignment of the model.

Primarily, before a model can be used, it
must be correctly selected. The knowledge
engineer has to size up the domain in question
to determine which model to use. Asking the
expert for solved cases, as is done in the first
session of Laps, can aid in this process. Herein,
the expert can readily work on his own, as he

seldom can do with the model-based tools.
What’s more, after a model is selected, it must
be fleshed out systematically and completely.
The third session of Laps, filling out the alter-
natives tables, can aid in this process.

To our knowledge, the book by Breuker et
al. (1988) contains the most extensive library
of models for a wide range of problem-solving
tasks. McDermott’s (1988) project at Digital
Equipment Corporation of creating a taxono-
my of models, like Wielinga’s, is important.
Although there is nothing like a complete cat-
alog of models to choose from, the work of
model-oriented knowledge-acquisition
researchers can certainly make the process of
using Laps easier. What is specifically made
easier are the dechunking session and the set-
ting up of column headers at the beginning
of the alternatives table session, the stage
requiring the greatest involvement of the
knowledge engineer. The knowledge engineer
can consult any existing catalog of models. If
he specifically finds the one not needing any
tailoring, he is in luck. If he finds a somewhat
similar model, he can think analogically. In
short, preexisting models are a valuable sup-
plement to the use of Laps, where at least an
analogue exists. Where not even an analogue
exists, which is still too often the case, then
Laps or some other model-building aid is
obviously necessary. Moreover, at the same
time, the use of Laps can contribute new
members to the library of preexisting models.

Laps: A Domain-Independent Knowl-
edge-Acquisition Tool Throughout. In
this context, it is important to note that Laps
is consistently a domain-independent tool
but not at the overly abstract level of asking
the expert from the opening bell on to pro-
duce another rule or describe another object
(as in Kee). It clearly is such during the case
and dechunking sessions because no explicit
domain-relevant model exists, whether
domain specific or more abstract, prior to the
dechunking or model-unpacking session.
Even after the model is obtained and
enshrined in the headers of the alternatives
tables, the modified depth-first strategy or
other techniques is the supradomain tool. Of
course, once the headers are displayed for the
expert and the world to see, the expert is then
working in his own element or domain but
seeing through the domain-independent
glasses supplied by the Laps queries, urging
the modified depth-first and other strategies.

The model-based approach to knowledge
acquisition rightly criticizes the overly
abstract approach, which dominated the first
generation of expert system shells (Chan-

. . . after a
model is
selected, it
must be
fleshed out
systematically
and
completely.

Articles

FALL 1990 101

duces long, flat, unchained rules that result
in colossal maintenance difficulties with large
domains. Critically, no model means no
bird’s-eye view of the domain, as illustrated
by the inference tree of attributes (figure 3).
Such an overview is needed to enable the
builders of the rule base to readily and com-
pletely see the skeleton of the domain and,
then, to tame the complexity of the domain.
In contrast, Laps requires only a small
number of well-selected cases at the begin-
ning of the knowledge-acquisition process
and encourages the creation of a highly struc-
tured model-inspired rule base.

Another induction candidate is on the
horizon, in the sense that it starts with con-
crete cases or situations. In brief, case-based
reasoning, or analogical reasoning over cases, is
an induction approach that does metado-
main-inspired analogical reasoning over pos-
sibly only a few key cases; it does not look for
just mere similarities over an army of cases.
As its adaptation rules show (Kolodner and
Riesbeck 1989), its model is metadomain,
although at times a domain-type or domain-
specific model can also be used, as in reason-
ing involving legal precedents. However, the
case-based–reasoning approach is not prompt
driven like the system-directed version of
Laps. This approach might well be trying to
accomplish, through its adaptation rules,
some of what Laps is aiming to achieve
through its prompts for guided induction.

Ironically, although case-based reasoning
relies heavily on these metadomain rules, its
representatives are often critical of rule-based
systems, as if they cannot be frame laden and
model inspired and case based, as are Laps-
made rules. Still, prospects for various synthe-
ses exist. Why could not a rule-based expert
system be updated in part through the mas-
saging of cases by way of adaptation rules ?
Why could not case-based reasoning and
Laps techniques, such as dechunking and
other guided-induction prompts, be con-
joined? Why not interactively ask the human
expert to massage cases—the ones that sup-
port the rules and are exceptions thereto (di
Piazza 1990), and so on—as well as aim to
automate this case analysis work using adap-
tation rules ?

Triadic Differentiation: Good for the
Organization of Class Trees but Not
Knowledge Decompilation

Triadic differentiation has so little in
common with the knowledge disassembling,
model-enfleshing approach used by Laps that

drasekaran 1983) from Kee and Art to Nex-
pert. Urging neophyte knowledge engineers
and even domain experts to build rules,
frames, trees, and semantic networks from
the outset of the interviewing process is a
case-oblivious, model-unaware attitude
because alone, these representations are too
emaciated to offer much guidance and sus-
tain the weight of a growing domain. (Chan-
drasekaran’s article is one of the earliest on
the need for model-driven knowledge acquisi-
tion.) However, it seems that the modelers are
possibly not aware that another domain-
independent approach having Laps-like tools
(such as case elicitation, dechunking, the
modified depth-first method for fleshing out
a model) and , possibly, triadic differentiation
for finding hierarchies is necessary or helpful
to employ both before and after the model is
available for use.

Finally, as we have seen, Laps is a domain-
independent tool that helps expert and
knowledge engineer alike build domain-type
models, which are captured in the headers of
the alternatives tables, whether they are the
early domain-type headers or the later object-
attribute-value headers—all reached ontoge-
netically by massaging cases. Thus, it is then
as mistaken as it is commonplace to believe
there are domain-independent approaches
and domain-dependent approaches to
knowledge acquisition and never the twain
shall meet.

Automatic-Induction Approaches:
No Guided Induction and No Use of
Models

Automatic-induction approaches get off to a
good start through cases but then unfortu-
nately jump to the creation of the knowledge
base with no intervening attempt to create a
model. True, such induction from numerous
cases does not require a model and can in
some cases be a quick way to a knowledge
base with small domains. It also allows the
expert to work alone for long periods of time.
However, such an effort can be tedious (the
refrain is “give another case”). This approach,
moreover, is notorious for failing to automate
feature selection, the process, to use Laps ter-
minology, of locating the headers of the alter-
natives tables. The advocates of automatic
induction seem to deny even the need for
such features or attributes, not to mention
the effort to use some process such as guided
induction to develop such headers. As a con-
sequence, the approach almost certainly pro-

Articles

102 AI MAGAZINE

it almost defies comparison. Here, a list is
constructed of the expected output from the
expert system to be built. A subset of three
elements from this list is selected, and the
expert is asked to pick one and give a factor
that will differentiate it from the other two.
This process continues with other combinations
of items until a complete set of factors is uncov-
ered. Subsequent guided-induction aids for
finding features or attributes are happily used.

A rating or repertory grid (Shaw 1988) is
invoked to try to use quantitative methods,
perhaps in a somewhat artificial or even Pro-
crustean manner. (In this article, Shaw, the
originator of repertory grids, illustrates KSS0,
the forerunner of Nextra.) Logically, it is more
sound to carry sufficiency and necessity test-
ing, along with dechunking and model-build-
ing, as far as is needed before using any
quantifying in terms of grids, certainty, or
other statistical factors. In short, although
attractive, measurements cannot be reliable if
a less than sufficient qualitative analysis has
not already taken place. Rating grids can hide
truths that only qualitative analysis can reveal.

Triadic differentiation had its origins in
aiding students of the psychologist G. Kelly to
differentiate among personal values and then
build some generic values hierarchy. Thus, it
appears to be more of a tool for a non-expert
who does not have a mastery of a domain
and could not solve problems in the domain
for which he can cite the details; this tool aids
the novice in making some distinctions to
clarify his confused state of mind.

Not surprisingly, in our experience and that
of others, triadic differentiation is not a good
icebreaker for the expert’s initial expression of
his knowledge. We have found that experts
are comfortable giving descriptions of the
steps taken in solving sample problems of the
kind they do day in and day out. In contrast,
triadic differentiation does not appear to be a
decompilation tool for problem-solving
knowledge. Instead, triadic differentiation
requires experts to think in a manner that
goes against the grain of their problem-solv-
ing style of thinking. In trying to use this
method as an initial way to express them-
selves, they feel as if they are playing a
strange game.

Let us build on a distinction of McDer-
mott’s to show another limitation of the tri-
adic differentiation approach to knowledge
acquisition. All the triadic differentiation or
repertory-grid knowledge-acquisition tool
makers readily admit that their software can
handle only the cover-and-differentiate kind
of problem, or what Clancey (1985) called
heuristic classification. The reason is that these

tools require a goal category having a range of
values to be nominated at the outset, some-
thing like the L. L. Bean Catalog from which a
buyer can solve the problem of which winter
coat to buy.

As discussed earlier, the diagnostic domain
described in this article can be considered to
fit both the cover-and-differentiate and pro-
pose-and-revise modes; just reconsider the
sample solution session, where among the
earlier steps could be some proposals (“sus-
pect the boiler section”) and among the later
some results that violate some constraints or
tests. Then the fixes or revisions (“the new
suspect is the vapor section”) are proposed
and tested until a solution is found that
meets all the constraints. In addition, in the
large document-review expert system project
on which we are now working, the appraisal
process ends with the reviewer indicating his
judgment: approved or disapproved. Thus, in
lieu of a catalog of predetermined final items
driving the search, there is a tree of con-
straints. In conclusion, Laps and other case-
based tools, unlike triadic differentiation
tools, are not limited to catalog-selection
problems.

However, triadic differentiation could be a
powerful aid in selection and classification
domains that are less developed or system-
atized. We are currently working on a task in
which the experts for particular problem areas
have not set up a rigorous catalog of all the
problem types they face. In this situation,
where ironically even the experts are novices
to some degree, triadic differentiation could
be useful in exposing concepts that will aid in
classification and selection. In conclusion, it
would seem that this technique should be
considered as a specialized tool to be used in
addition to the techniques described in this
article.

Other Validation and Verification
Approaches: The Need to Ensure
Completeness in Expert Systems

Let us look at the need to find an effective
way to ensure completeness in expert systems
and at the differences between the cure-only
approach and a prevent-then-cure-if-neces-
sary approach. In addition to the question of
the best way to build on cases, there is the
critical question of how to produce a com-
plete expert system. This problem must be
faced when a model is created or even when
it exists from the beginning. Much of the
inefficiency in building expert systems might
be rooted in the unnecessary isolation or seri-
alization of the components of the knowledge

Articles

FALL 1990 103

Summary: Laps in General

Laps has been used to elicit cases from an
expert in equipment diagnosis (and in other
domains). The case-centered session was fol-
lowed by a second in which a case was
dechunked, producing a refined sequence of
steps leading to the final conclusion. A model
of the expert’s reasoning was abstracted from
the dechunked solution path. The model, in
turn, was used to guide the generation of
alternative paths until all paths issuing from
a single initial symptom had been completed.
This process resulted in a pie slice of the com-
plete decision tree and suggests a general
strategy for building large knowledge bases by
constructing them pie slice by pie slice. Other
procedures for taming a large domain are lift-
ing assumptions and stubbing to the user.

After any session, the Laps rule maker can
produce rules in M.1, Clips, and potentially
other languages as background for a consulta-
tion session. However, these sessions are far
less frequent because the knowledge entered
has already been structured and tested.

In 1990, two new tables were created—one
structured, the other unstructured. The
object-to-object kind of structured table
makes one-table accessibility and other book-
keeping benefits possible, and it retains the
advantages of the series of domain-type
tables. The question-to-question kind of
unstructured table assists the expert—more
than any other premodel format—in dump-
ing a complete pie slice on his own. However,
for the sake of the enlightenment of advice
seekers or the taming of a large, complex
domain, it is clearly necessary to use tools to
extract and enflesh a model of the domain in
a complete but trackable, hence, tractable,
manner.

Summary: Laps and Still

In the domain of diagnosing a submarine dis-
tillation system, cases were elicited using the
first session of Laps. The expert had no diffi-
culty listing a set of hypothetical observa-
tions and then recommending a fix. A typical
case was selected, and the second session was
used to abstract a model of the expert’s rea-
soning from this case. The challenge was to
build on this case by supplying intermediate
conclusions, citing the reasons, and supply-
ing certain linking statements, all necessary
steps in producing rule chaining. This task
required a joint effort between the knowledge
engineer and the expert.

The result was a dechunked solution path
showing a model, or pattern of reasoning,
that proceeded from an observation to a sus-

transfer process: the gathering, structuring,
encoding, and testing of knowledge.

The need to avoid unnecessary isolation,
which considers factors out of context, is
especially important with large systems such
as R1, Digital’s pioneering expert system for
configuring their computers. Hindsight is
always 20/20, but it is still true that the struc-
tural overhaul required in R1 (Soloway 1987)
might have been prevented by a systematic
development method in which testing for
various types of completeness was done
during the knowledge-acquisition process.
Indeed, the Soloway article is a latter-day
recognition that rapid rule-based prototyp-
ing, leading to a large and unmaintainable
expert system, needs to use techniques of
structured or hierarchical programming.
These techniques, we add, should not be used
after or in lieu of prototyping but should be
integrated with rigorous prototyping.

In a related vein, it can be observed that
Eva (Stochowitz 1988) is a thorough verifica-
tion and validation tool but, as implied at the
outset of this article, it unfortunately is
intended to be used to fix errors only after
the knowledge base has largely been gath-
ered. Eva would seem best used as a supple-
ment to a particular knowledge-acquisition
approach. This approach should use knowl-
edge decompilation methods and attempt to
prevent logic and structure errors in the first
place, leaving few errors for a verification tool
to catch. For example, Laps protects its expert
system builders from the logic error of circu-
lar reasoning by building on sample solution
paths, which by their nature cannot be circu-
lar. Because sample solutions are the basis for
later structuring efforts, it is clear that these
efforts profit from the same protection. As
another example, let us ask, Why not pose
simple queries to the expert system builders,
doing sufficient testing before each rule is
input, as Laps does? Why not follow this pat-
tern in addition to what Eva does—wait for
another rule to be input that has the same
conditions and a different conclusion?

Summary: Cases to Models to
Complete Expert Systems
Two kinds of summaries can be offered. One
pertains to Laps in general as it can be
applied to any application. The other pertains
to Laps as it is used in the Still expert system.
Finally, there are some specialized final obser-
vations, such as where the productivity gains
lie in using Laps and how to ascend beyond
the productivity plateau on which knowledge
engineering is stuck.

Articles

104 AI MAGAZINE

pected cause to a test of the cause to another
observation. The expert’s reasoning proceeded
down through a hierarchy from subsystem to
component. Guiding the expert’s selection of
suspected causes was the consideration of the
system as a process stream. Specifically, he
looked in one of three directions: upstream,
downstream, or at the source of an observa-
tion, with the order of consideration influ-
enced by factors such as likelihood of the
suspect or ease of testing.

As this article argued, after the model was
abstracted, the task was to systematically
extract all possible value assignments of this
model. In the third session, the model was
used to determine column headers for three
alternatives tables. The first table showed the
initial symptom leading to a suspected sub-
system. The second table showed suspected
subsystems, sub-subsystems, or components
leading to appropriate tests. The third table
showed tests and observations leading to
other suspects or determined faults along
with their fixes. This table listed rows for
other possible observations for a given test;
so, the contents of the three tables could be
said to contain a bushy slice through the
expert’s decision tree. The stubs of the bushy
slice were completed, and a pie slice of the
complete decision tree resulted.

Final Reflections: The Next Generation
of Tools for Building Expert Systems

With its modified depth-first approach to
developing the tables, its necessity and suffi-
ciency testing of the rows or rules, its guided
induction and dechunking techniques to
arrive at a model of attributes, and its aids to
logical thinking and knowledge base book-
keeping, Laps is much more than a knowl-
edge-acquisition spreadsheet. Moreover, at
every turn in Laps, questions help the user to
test the rule base for consistency and com-
pleteness, and there are other knowledge-
prodding guided-induction questions.
Accordingly, the presence of these queries
supports the thesis underlying Laps that the
following knowledge-massaging operations
should be interwoven into one fabric: the
gathering, structuring, testing, and encoding
of expert knowledge.

The research behind Laps has helped to
clarify the roles of the domain expert and
knowledge engineer. The domain expert
could easily generate cases, but the knowl-
edge engineer—on his own or after consult-
ing a library of models—took the lead in
abstracting the model and setting up the
alternatives tables for the expert to complete.

Then the expert could work alone for long
periods of time generating the alternatives.

Significantly, the great increase in produc-
tivity through using Laps comes in the
expert’s filling out the alternatives tables,
which make up the knowledge base and, of
course, can have rows or rules running into
the hundreds or more. However, without the
modified depth-first strategy, there would
have been no easy-to-track method for com-
pleting a pie slice of the domain. In addition,
without the model, there would have been no
skeleton to flesh out or, in terms of the alter-
natives tables, no headers to guide the entries
into the rows. Moreover, without the cases or
sample solutions, there would not have been
the bases for doing the subsequent knowledge
decompilation and the fleshing out of the
model.

In addition, this strategy has implications
for verification and validation in that Laps
attempts to prevent errors while the knowl-
edge base is being built rather than catch
formal or consistency errors, as Eva does, only
after they have occurred. The other approach-
es to validation and verification and knowl-
edge acquisition point to a piece of the
solution to the difficult knowledge-acquisi-
tion problem, say, the organizational value of
a model. However, they treat this piece in iso-
lation, not dealing with, say, the need for a
case-based background to find the appropri-
ate model or the need for a user-manageable
system for fleshing out the model using, for
example, the modified depth-first approach.
Thus, without exception, the techniques of
other approaches have substantial contribu-
tions to make, but unfortunately, they are
taken out of a fruitful ontogenetic context.

Let one of our last points be about software
engineering. Brooks (1987) considers the
essence of software engineering to be aids for

Articles

FALL 1990 105

Laps attempts to prevent
errors while the knowl-
edge base is being built
rather than catch . . .
errors . . . after they have
occured.

Acknowledgments

We are grateful to Richard Miller for his often
insightful observations on the Laps project
over the years and to Richard Abate for his
years of help with funding and encourage-
ment. Special thanks to Dr. Lundy Lewis for
being a voluntary reader and gadfly and to
Drs. Carol Davis and Tom Skrmetti for being
the friendly model-based opposition. Many
thanks to Dorothy Minior and Joseph Leone
for precision work and suggestions. Thanks,
too, to Stuart Brown and Lee Anderson for
their lively input. Finally, thanks to other col-
leagues at General Dynamics who have
directly or indirectly helped the Laps project
over the years.

Notes
1. Because the various programmed versions of
Laps have various functions for various purposes,
the figures in this article represent an amalgam of
these functions along with some readability and
resolution improvements, some offline prompts,
and additional features still in the design stage. For
instance, help messages, which a click on any rect-
angle on the screen can generate, are currently
only available on the Apollo version. These instruc-
tions assist the user who requests them, replacing
the continually on-screen message box in the per-
sonal computer (PC) version. Moreover, the Apollo
(the only version in color) and the Mac versions
have menu systems and completion boxes, unlike
the PC version. Only the PC version currently has
valid-values boxes. Only the latest Apollo version
has the question-to-question table, but the object-
to-object version is in the advanced design stage.
Finally, the oldest or PC version alone has the
sample solution session along with the dechunking
session.

REFERENCES
Becker, B. 1988. Towards a Case-Oriented Concept
of Knowledge Acquisition. In Proceedings of the
Second European Knowledge-Acquisition Work-
shop, 9:1–12. Bonn: German Institute for Mathe-
matics and Data Processing.

Boose, J.; Bradshaw, J. M.; and Shema, D. B. 1988.
Recent Progress in Aquinas: A Knowledge-Acquisi-
tion Tool. In Proceedings of the Second European
Knowledge-Acquisition Workshop, 2:1–15. Bonn:
German Institute for Mathematics and Data Pro-
cessing.

Breuker, J.; Wielinga, B.; et al. 1987. Model-Driven
Knowledge Acquisition: Interpretation Models,
Memorandum, 87, KADS Project, Dept. of Comput-
er Science, Univ. of Amsterdam..

Brooks, F. P. 1987. No Silver Bullet: Essence and
Accidents of Software Engineering. Computer 5(4):
10–18.

Chandrasekaran, B. 1983. Towards a Taxonomy of
Problem-Solving Types. AI Magazine 4(1): 9–17.

unraveling, in its fullness, the logic behind
large software programs as used in industry.
For him, graphic aids and all other nonrea-
soning aids are peripherals, or incidentals, for
the purposes of software engineering. He calls
for the creation of techniques for doing the
logical analysis needed for structured proto-
typing, these techniques, in his eyes, being
essential to the task of improving software
engineering. With its many logic aids, Laps is
a response to the need that Brooks perceives.

To offer a retrospective look at the history
of thought, at midcentury, philosophers
Ludwig Wittgenstein, J. L. Austin, and
Edmund Husserl were doing conceptual anal-
ysis, not of concepts such as diagnosis and
design but of background concepts such as
knowledge, belief, and science. To plunge fur-
ther into the philosophical past, Alfred North
Whitehead opined that all of philosophy is
but footnotes to Plato. To paraphrase him,
much of AI’s disputes over models, levels of
abstraction, and such are but footnotes to
Plato’s myth of the divided line in the Repub-
lic, where he discusses and relates observa-
tion, useful belief, and first principles of what
we would term domain-type and metado-
main models.

In conclusion, expert systems must climb
beyond their current productivity plateau,
where almost all commercial knowledge engi-
neering tools are still first generation: They
are bereft of a knowledge-acquisition front
end and automatic encoding of any kind.
Thus, in a real sense, these tools are empty
shells. We hope Laps and other knowledge-
acquisition software will be of help. Perhaps,
some grand synthesis, which Steels (1990)
inaugurates, will be the final, long-range
answer but a synthesis that also does justice
to the ontogeny of knowledge acquisition
and the integration of case elicitation, knowl-
edge structuring, and testing. Such a synthe-
sis should also put the expert in a position to
do a great deal of methodical inputting of his
knowledge for the sake of productivity gains.
However, improvement, if not a full solution,
must come soon, if scenario 1 pictured by
Weitz (1990), where expert systems do not
have a widespread impact during the next 10
years, is not to come to pass. Finally, we
believe that progress beyond the current
plateau, including attempts at synthesis, will
evolve from the frequent interaction between
tool making and industrial-commercial
expert system praxis or application. To para-
phrase Immanuel Kant, tools without contin-
ual praxis are empty; praxis without
improved tools is blind.

Articles

106 AI MAGAZINE

Clancey, W. 1985. Heuristic Classification. Artificial
Intelligence 27(3): 289–350.

Cochran, E. L. 1988. KLAMshell: A Domain-Specific
Knowledge-Acquisition Shell. Honeywell Corp.,
Golden Valley, Minn.

di Piazza, J. S. 1990. Interweaving Knowledge
Extracting, Organizing, and Evaluating: A Concrete
Design for Preventing Logic and Structure Bugs
While Interviewing Experts. Journal of Automated
Reasoning. Forthcoming.

di Piazza, J. S. 1988. Laps: An Assistant for Debrief-
ing Experts. In Proceedings of the Second European
Knowledge-Acquisition Workshop, 14:1–17. Bonn:
German Institute for Mathematics and Data Pro-
cessing.

di Piazza, J. S. 1986. An Interactive Knowledge-
Acquisition and Verification System: A Study in
Logic Requirements. Presented at the Workshop for
High-Level Tools for Knowledge-Based Systems,
Ohio State University.

Eshelman, L., and McDermott, J. 1986. MOLE: A
Knowledge-Acquisition Tool That Uses Its Head. In
Proceedings of the Fifth National Conference on
Artificial Intelligence, 440–445. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Gaines, B. 1988. Second-Generation Knowledge-
Acquisition Systems. In Proceedings of the Second
European Knowledge-Acquisition Workshop,
17:1–14. Bonn: German Institute for Mathematics
and Data Processing.

Kolodner, J., and Riesbeck, C. 1989. Case-Based Rea-
soning. Presented as a tutorial at the Eleventh Inter-
national Joint Conference on Artificial Intelligence.

Laird, J.; Rosenbloom, P.; and Newell, A. 1986.
Universal Subgoaling and Chunking. Boston: Kluwer
Academic.

McDermott, J. 1988. Preliminary Steps toward a
Taxonomy of Problem-Solving Methods. In
Automating Knowledge Acquisition for Expert Systems,
ed. S. Marcus, 225–256. Boston: Kluwer Academic.

Marcus, S., et al. 1987. VT: An Elevator Configurer
That Uses Knowledge-Based Backtracking. AI Maga-
zine (9)4 : 39–56.

Musen, M. 1989. Automatic Generation of Model-
Based Knowledge-Acquisition Tools. London: Pitman.

Parsaye, A. 1987. Auto-Intelligence User’s Manual. Los
Angeles: IntelligenceWare.

Shaw, M. 1988. Problems of Validation in Knowl-
edge Acquisition Using Multiple Experts. In Pro-
ceedings of the Second European Knowledge-
Acquisition Workshop, 5:1–15. Bonn: German Insti-
tute for Mathematics and Data Processing.

Soloway, E., et al. 1987. Assessing the Maintainabil-
ity of XCON-in-RIME: Coping with the Problems of
a VERY [sic] Large Rule Base. In Proceedings of the
Sixth National Conference on Artificial Intelli-
gence, 422–426. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Steels, L. 1990. Components of Expertise. AI Maga-
zine 11(2): 28–49.

Stochowitz, R., et al. 1988. The Verification and

Validation of Expert Systems. Presented as a tutorial
at the Eighth National Conference on Artificial
Intelligence.

Teknowledge. 1986. Mini-SACON. In M.1: Sample
Knowledge Systems. Tutorial.

Twine, S. 1988. From Information Analysis to
Knowledge Acquisition. In Proceedings of the
Second European Knowledge-Acquisition Work-
shop, 6:1–15. Bonn: German Institute for Mathe-
matics and Data Processing.

Weitz, R. 1990. Technology, Work, and the Organi-
zation: The Impact of Expert Systems. AI Magazine
11(2): 50–60.

Joseph S. di Piazza has
been a principal engineer
at the Electric Boat Divi-
sion of the General
Dynamics Corporation in
Groton, Connecticut,
since 1984. He has been
the principal investigator
on the Laps knowledge-
acquisition project since
its inception in 1986.

From 1969 to 1984, he was a professor at Southern
Connecticut State University in New Haven, where
he taught philosophy and computer science. He
has a Ph.D. in philosophy, specializing in episte-
mology and the philosophy of science, from the
University of Toronto. He also has an M.S. in com-
puter science from the Polytechnic Institute of New
York. His doctoral dissertation was on the Gestalt-
Kantian method used by Kurt Goldstein, M.D., to
diagnose brain-damaged persons. Reflecting his two
backgrounds, his interests and publications are in
the areas of applied epistemology and the develop-
ment of expert systems. He is a member of the
American Association for Artificial Intelligence and
the Computer Society of the Institute of Electrical
and Electronic Engineers.

Frederick A. Helsabeck has
been a computer systems
engineer in the Data Sys-
tems Division at General
Dynamics Corporation since
1982, where he has worked
with knowledge-acquisition
techniques, expert systems,
and intelligent tutoring sys-
tems. He was a teacher for
20 years prior to his employ-

ment at General Dynamics. He has a B.S. (1959) in
chemistry from Lynchburg College and a Ph.D. in
psychology from Michigan State University. His
Ph.D. dissertation was an analysis of difficulties in
syllogistic reasoning. He is a member of the Ameri-
can Association for Artificial Intelligence and the
Computer Society of the Institute of Electrical and
Electronic Engineers.

Articles

FALL 1990 107

