
understand it. However, if we doubt
whether the former is desirable or
even possible as some do and just con-
tinue to call the latter biology, philos-
ophy, or psychology, why bother with
AI at all? Despite this route of dis-
missal, the vitality of uncovering the
expressive facilities and limits of new
models of computation continues and
I contend that this is what AI research
is really about.1 New models of com-
putation are likely to emerge in the
future, and where these models lead,
questions about their relevance for
representing—or, more tendentiously,
hosting—mentality will follow. 

Intrigue with the possibilities of
representing or hosting mentality has
long motivated AI effort. Thus, com-
mentators on AI converge on two
goals they see defining the field: (1) to
better understand the (human) mind
by specifying computational models
and (2) to construct computer systems

AI is not about building artificial
intelligences, nor is it about under-
standing the human mind or any
other kind of mind. A more funda-
mental human urge is playing out,
that of seeking new expressive power
through new expressive means.

I’ve stated this thesis with a
strength that belies the case. Howev-
er, I state it this way to clarify a posi-
tion I find myself moving toward
rather than one I hold firmly and
defend easily. The thesis fits my tech-
nical experiences with AI, equips me
with a new ensemble of criteria for
assessing what’s significant and
insignificant about new computation-
al proposals, and serves as a common
analytic point of view for the many
AIs that now exist (Papert 1988).
Obviously, some researchers who
label their work as AI claim they are
constructing intelligences, and others
model the brain or mind in efforts to

Commentators on AI converge on two
goals they believe define the field: (1) to

better understand the mind by specifying
computational models and (2) to con-
struct computer systems that perform

actions traditionally regarded as mental.
We should recognize that AI has a third,

hidden, more basic aim; that the first two
goals are special cases of the third; and

that the actual technical substance of AI
concerns only this more basic aim. This
third aim is to establish new computa-

tion-based representational media, media
in which human intellect can come to
express itself with different clarity and

force. This article articulates this proposal
by showing how the intellectual activity

we label AI can be likened in revealing
ways to each of five familiar technologies.
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that perform actions traditionally
regarded as mental. However, the con-
sensus expressed by the recognition of
these two aims is not the only way to
regard AI and, perhaps in the long run,
not even the most significant. We
should recognize that AI has a third,
hidden, more basic aim; that the first
two goals are special cases of the
third; and that the actual technical
substance of AI concerns only this
more basic aim. This third goal is
establishing new computation-based
representational media, media in
which human intellect can come to
express itself with a different clarity
and force.

By representational media, I mean
physical means of recording with
their associated conventions, for
example, ochre on cave wall pic-
tographs, wet clay and stylus
cuneiform, vellum and pen calligra-
phy, paper and pencil writing, canvas
and paint likenesses and abstractions,
stone and chisel sculpture, printing
and spelling, photography and photo-
graphic composition, scoring and
musical composition, vinyl discs,
album organization and album notes,
blueprinting and architectural dia-
gramming, film and cinematic con-
vention, videotape and video style,
programming languages and program-
ming style, logical notations and their
calculi, and compact discs with their
new search and sequencing options.2
These examples share the common
role of enabling representational
tasks. As such, a common representa-
tional analysis applied to them would
demonstrate how the ways in which
they differ are tuned to the tasks for
which they are designed. This article
proceeds from the premise that AI
techniques fall within this category of
representational media and that such
an analysis of AI techniques as repre-
sentational media calls for and orga-
nizes many significant observations
concerning AI, computers, and the
mind.3

Why propose that AI is primarily
concerned with the establishment of
new representational means and con-
ventions? It is because these means
and conventions exactly comprise AI’s
research vehicles and eventual
impacts, although recognizing them
as such is not a particularly popular

vocation. On the whole, cognitive sci-
entists and AI researchers prefer to see
their contributions in terms of their
aspirations—to understand or create
intellect. Regardless of aspirations,
systematic acts of arranging computa-
tion to simulate or represent intellec-
tual processes or states cannot help
but effect new representational means
and conventions. In this regard, con-
sider GRAPES (Sauers 1982), GOMS
(Card, Moran, and Newell 1983),
SOAR (Laird 1986), PUPS (Anderson
and Thompson 1987), PPS (Bovair,
Kieras, and Polson 1988), genetic rule
populations (Holland 1975, 1986),
Hopfield nets (Hopfield and Tank
1985), and back propagation (Rumel-
hart, McClelland, and the PDP
Research Group 1986). Furthermore,
this perspective raises questions about
the representational powers of compu-
tations that tend to remain submerged
when considering AI solely in terms
of its prospects for mimicking or con-
structing intelligences.

This proposal originates in view of
humankind as a representing ani-
mal—that what it means to be
humanly intelligent is tightly bound
to the use of external representations
in language and other media. In a
phrase, homo sapien means homo
depictor (Hacking 1983). In the sense
that this view locates intelligence
both inside and outside the cranium,
this perspective shares ground with
Simon’s “ant on the beach” argument
as he applied it to humankind (Simon
1969, p. 23 ff.) (that is, apparent cogni-
tive complexity reflects environmen-
tal complexity), and Norman’s (1988)
“knowledge in the world” psychology
of everyday things. We now turn to
some of computation’s unique repre-
sentational properties to set the stage
for its analysis.

Representational Properties
of Computation Exploited

by AI Efforts

New representational media estab-
lished on the ground of computation
exhibit novel representational proper-
ties, in particular, new levels of
dynamics and depth and new forms of
facility and interactivity. What do
these properties entail? First, by indi-

cating dynamics as a representational
property, I mean how computation
realized as activity in electronic cir-
cuits corresponds along the dimension
of time with models of activity in the
world, thereby empowering their
straightforward, moment-for-moment
representation. With respect to this
dynamics property, consider painting
or, more generally, two-dimensional,
static images as contrasting examples.
Painting is not particularly adequate
for conveying dynamics but good for
still life. Of course, two-dimensional,
static images are often used to convey
dynamics by mapping time onto a
spatial or other quality, but the
moment-for-moment advantages are
lost. In contrast, by exploiting
moment-for-moment correspondence,
along with film, video, and audio,
computation records and conveys
dynamics well. 

Second, by depth as a representa-
tional property, I mean how computa-
tion can be arranged to hide or make
vivid aspects of its processing, thus
conveying the impression of surface
and depth, outside and inside, behav-
ior and internal mechanism—surface
behavior for the aspects highlighted
and depth of internal mechanism for
the aspects hidden. Unlike previous
mechanical or electronic media, what
is new here is the ease with which
one can move aspects from the hidden
to highlighted category and back
again. Third, by facility as a represen-
tational property, I mean the per-
ceived match between thoughts about
some phenomenon a user intends to
represent and the repertoire of opera-
tions and displays afforded by a com-
putational regime. As an example of
this facility property, consider how
the operations and displays afforded
by an electronic spreadsheet program
facilitate financial planning. While
planning finances, one is thinking
about time periods, dollar figures, and
expenditure categories. A paper-and-
pencil ledger allows one to organize
these kinds of elements nicely. Yet, an
electronic version greatly eases the
calculation and recalculation over the
ledger according to the column and
row equations one specifies. It also
eases spatial reorganization of the
ledger. These operations and displays
afford a new level of representational
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facility to support financial planning.
Fourth, by interactivity as a represen-
tational property, I mean how compu-
tation can be arranged to allow its
context to influence its trajectory. For
example, users communicate with a
program using a keyboard and mouse.

Given these properties of dynamics,
depth, facility, and interactivity, com-
putation is particularly handy for rep-
resenting change through time, giving
the impression of an outside and an
inside, abstracting operations and
operands constructively to coincide
with thoughts about the way the
world is and affording continued
interaction with ongoing computa-
tion.4 However, we should remember
that these novelties, which AI efforts
build on, are only the recent technical
possibilities in a long, rich, variegated
representational tradition.5

Thus, the nature of computation
affords new representational possibili-
ties. However, what is really new in
the mentioned properties? The fact
that computation is capable of medi-
ating dynamics, depth, facility, and
interactivity does not alone distin-
guish it from previous mechanical and
electronic media, media in which
devices such as looms, organ works,
piano mechanisms, clockworks, jack
hammers, combustion engines,
phonographs, radios, and televisions
also mediate dynamics and interactiv-
ity with an impression of depth. What
is new is the greater extent of compu-
tation’s capability for representing
dynamics, depth, and interactivity
and, in particular, that the means by
which computation facilitates repre-
sentation are themselves extensible.
This last property makes computation
a medium like no other. For the first
time, it is easy not only to be deliber-
ate about representational facility but
easy to create and compare various
configurations of representational

facility.6 For example, one can create
various forms of representational lan-
guages, one on another; choose some
form of defeasibility as a desirable rep-
resentational property and do some-
thing about it; build up a new infer-
ence-control architecture; or simulate
models of agent societies, rule ecolo-
gies, neuron bundles, or whatever.
After all, aren’t AIers, as they huddle
around whiteboards and terminals,
actually being deliberate about repre-
sentational facility? This extensible
representational facility property of
computation acts as the essential
practical core fueling and refueling AI
imaginations and efforts.

The point deserves emphasis. In
technical terms, AI research exhibits a
profound gravity that continuously
attracts even the best planned efforts
back toward tweaking and playing
around with representational facility.
For this reason, AI dissertations begin
with grand themes about the mind,
brain, intelligence, or personhood and
then slowly, as the tougher questions
about the nature of intellect resist
answers, end up primarily contribut-
ing a new representational regime
with different facility for the particu-
lar portion of the fabric of intellect
under study. This tendency in AI
research explains why when a new
representational scheme catches on in
the AI community, bestowing renown
on its creators, it’s rarely because of
any adequacy as a theory of mind but
because one really can do something
new and nifty in the scheme, or
there’s a proof about its limits (that is,
news that one could never do some-
thing nifty, old, and hoped-for in the
scheme). For this reason, efforts to
axiomatize common sense never get
around to axiomatizing much com-
mon sense but evolve to concentrate
on tweaking representational facility
to handle this or that new case.

AI Is Ordinary

Considering AI techniques and pro-
grams as recent steps in a long repre-
sentational tradition emphasizes their
place in the world as results of human
intellectual activity—more in their
role as representational products of
the mind than as direct representa-
tions of mind, per se. In this light,
they are not significantly different
from mapmaking techniques and
maps, painting techniques and paint-
ings, or dancing techniques and
dances. Representation is an ordinary
human activity and so is AI. I make
this point because it remains fashion-
able to portray AI as somehow excep-
tional but essentially divorced from
its context as an ordinary human
activity.

The adoption of this emphasis on
AI techniques and programs as ordi-
nary intellectual products rather than
extraordinary machine realizations of
intellectual activity nudges some tra-
ditionally central issues about AI and
the mind to the periphery and bumps
others to the center. For example, the
acclaimed questions “What aspects of
human intellect are in principle com-
putable?” and “What aspects of
human intellect will as a matter of
practicality be computed?” remain
open—evocative but peripheral. Other
questions move toward the center; for
example, “How do representational
properties of particular AI techniques
serve and shape intellectual goals and
products?” “What is human cognition
individually and socially such that we
might know best how to facilitate its
expression in computation?” “What
exactly are people doing when they, as
researchers, engineers, and users,
show up at their workplaces to create,
modify, and use new representational
regimes mediated through computa-
tion?” I suggest that addressing these

What is new is the greater extent of computation's capability for
representing dynamics, depth and interactivity and, 

in particular, that the means by which computation facilitates
representation are themselves extensible.
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latter questions will start us down a
productive path precisely because
they presume the relevance of the
human dimension in AI.

A Five-Point 
Representational Analysis

To start down this path, one might
examine the ways to clarify the pow-
ers and limits of AI technology as a
representational medium. Such
clarification requires focusing atten-
tion on the representational qualities
of its techniques. Here, we make five
general observations about representa-
tional media and pursue their rele-
vance to AI. First, the powers and uses
of new representational media are ini-
tially misconceived in terms of older,
familiar media, leading to the use of
the new media to follow the forms
prevalent in earlier media. Second, all
representational media make some
representational tasks easy and others
difficult. Third, all representational
media establish two characters of
experience, one for onlookers and one
for workers in the medium. Fourth,
all representational media communi-
cate their users’ views and values,
albeit imperfectly, but with specific
and regular manners of imperfection.
Fifth, all representational media
influence their users’ thoughts, and
because representational media are
typically shared, these influences are
usually social.

Consider an example of how these
points play in a real AI research effort.
They are illustrated in reports of the
Imperial College Logic Programming
Group’s experimental work at the
University of London, representing
the British Nationality Act of 1981 in
Prolog (Sergot et al. 1986).7 Consider
the first point: Representing a law
text as a program realizes the essence
of the recapitulating form prevalent in
earlier media. Indeed, the group
worked to preserve the textual and
organizational qualities of the act in
the program, although perhaps a bet-
ter use of logic programming more in
tune with its powers would be a what
if workbench environment for draft-
ing legislation, an idea the team later
came on. 

Regarding the second point, through

long effort the group learned that
much of the act could be easily and
perspicuously rendered as Horn claus-
es, which make up the fragment of
first-order logic that permits at most
one hopeful conclusion and any num-
ber of hopeful conditions. However,
some of it could not—exactly those
parts which exhibit negative conclu-
sions, classically negated conditions,
counterfactual conditionals, non-
monotonic conclusions, and judg-
ment. To address some of these
difficulties, the team hacked the pro-
gram’s fundamental objects (read
“tweaked representational facility”)
to handle some representational
extensions required by the nature of
the act, specifically, negative conclu-
sions, some domain-specific negation
predicates, and some tedious expan-
sions of counterfactual conditionals.
These adjustments were not wholly
satisfactory, and the difficulties they
were intended to remedy remained.

On the third point, the resulting
Prolog program clearly established
two characters of experience, one for
members of the British Home Office
who wrote the legislation and inter-
acted with the program’s interface on
demonstration occasions and another
for the builders of the program. How
so? The program builders took care to
arrange for the rule code to resemble
the original English text and preserve
the act’s organization. In this attempt,
they succeeded. The Home Office
officials could also order texts com-
posed by the program to explain why
it requested the particular informa-
tion it did or how it reached its con-
clusions. Thus, the team’s efforts suc-
ceeded in establishing an intelligible
experience for the onlooking Home
Office officials. In contrast, the
builders themselves intimately knew
the program as a complex compro-
mise between their articulate
thoughts about the act and the expres-
sive power of the representational
means and conventions at hand (that
is, an experimental extension of Pro-
log). 

On the fourth point, the resulting
logic program computes and commu-
nicates official views and values con-
cerning British citizenship expressed
in the act. The computation gives a
rigid, mechanistic character to the

act, thus communicating values dif-
ferent from what might be experi-
enced with a person applying the act.
On the fifth point, the British Nation-
ality Act of 1981 itself was a product
of the drafters in the British Home
Office group intellect. Another group
of six at the university produced its
logic program representation with a
common tool, and the two groups
interacted. During the interaction,
members of the programming team
pointed out sets of conditions not
anticipated by the drafters, and the
drafters observed how such programs
would be helpful not only as delivery
systems for applying the rules but as
workbench tools for drafting and
redrafting legislation (Sergot et al.
1986). The representational medium
fostered these influences because
without it, they would not have
occurred. The remainder of this arti-
cle details the relevance of these five
representational points for the articu-
lation between AI techniques and
intellectual tasks. Within each point, I
use illustrations of one or more famil-
iar non-AI examples.

The First Point: 
The Horseless Carriage

Powers and uses of new representa-
tional media are initially miscon-
ceived in terms of older, familiar
media. The phrase artificial intelli-
gence aligns thinking in such a way as
to call attention to superficial resem-
blances to familiar notions and effec-
tively diverts attention from its tech-
nical substance. This diversion
remains effective because of the rela-
tive historical novelty of computa-
tion-based representational media and
our consequent lack of experience
with them. To date, we know only the
first chapter in the story of how peo-
ple got smarter about using more and
more computation for purposes of rep-
resentation beginning in the second
half of the twentieth century. Before
the 1970s, no one had rigorously stat-
ed the fundamental notion of NP-
completeness (Cook 1971, 1973;
Garey and Johnson 1979), which now
plays such a critical role in estimating
the computational resources required
by various representational schemes
(that is, determining what is com-
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putable in a reasonable amount of
time or within memory store limita-
tions) and which has played such a
salutary role in supressing naive over-
enthusiasm for AI’s prospects. Only in
the 1980s have hidden node learning
algorithms been acknowledged as
capable of producing computationally
complete networks, meaning the door
is open for net computations to find
more uses than previously envisioned
on the basis of the early perceptron
theorems (Minsky and Papert 1969).
Another way of saying what these
considerations illustrate is that we are
in AI’s infancy; which amounts to
taking seriously that we do not yet
have many inspiring models of com-
putation, that we have not yet piled
together much computational “stuff,”
and that we have not yet explored
even a small fraction of the space of
representational facility which com-
putation affords.

An interesting parallel can be drawn
here. During its own infancy, the
printing craft’s early authorities, the
early printers themselves, referred to
printing as artificialiter scribere, or
artificial writing (Buhler 1960, p. 16),
which it was not, except in naive,
superficial terms. This coincidence
illustrates how a new technology’s
founding authorities tend to view
their creation in terms later outmod-
ed and retrospectively naive.

What further light might the “new
media are misconceived” thesis shed?
It suggests that AI is not necessarily
about building intelligences but about
minds making sense of their worlds
for particular purposes, with new rep-
resentational media as tools, and
using these tools to externalize what’s
in or on the minds in question. It is
the mind at AI that matters. What
deserves emphasis here is that as a
culture, we are not yet conceiving of
these new representational techniques
in terms of their proper powers and
limits but rather in familiar terms
wholly inadequate, even misleading,
for the task of perceiving and then
leveraging their lasting significance.
In this sense, the phrase artificial
intelligence is a pristechnolocution,
that is, an earlier technology phrase
(such as horseless carriage, wireless
telegraph, iron horse, glass teletype, or

artificial writing), a phrase which
describes a new technology wrongly
in terms of an old familiar one, a
phrase that directs attention toward
unimportant resemblances and
decades later sounds anachronistically
naive.

The AI label offends doubly in this
regard. It invites thinking about new
technology in familiar terms inade-

quate to the task. Even worse, it casts
new technology not in terms of previ-
ous technological phenomena but in
terms of previous mental phenomena,
raising at no extra cost ferocious
issues from the philosophy of mind,
which although profound in their own
right can do little to clarify the proper
powers and limits of emerging, com-
putation-based, representational tech-
nology. Not surprisingly, arguments
and counterarguments that stroke
broadly, purely, and resoundingly over
the ground originally covered by Tur-
ing’s (1950) test or Searle’s (1980) Chi-
nese room offer meager technical
advice. These arguments address big
AI questions about smart AI fictions. 

However, the little AI questions
about dumb AI realities do more for
understanding how to get on with
finding new expressive power through
new expressive means. Ritchie and
Hanna’s (1984) analysis of AM, Lenat
and Brown’s (1984) response, David
Chapman’s (1987) analysis of planning
techniques, and chapter three of Mind
Over Machine (Dreyfus and Dreyfus
1986) are examples of informative
approaches to AI realities conducted
in this spirit. These analyses succeed
because the authors are careful to
level detailed criticism at specific
techniques. In this same spirit, we

turn to making the point that AI tech-
niques make some tasks easy and oth-
ers difficult.

The Second Point: 
Dust Abacus and Wet Clay

The second point is that
representational media make some
tasks easier and others difficult. As an
example, compare the dust abacus

with wet clay for doing simple calcu-
lations. A dust abacus is a planar sur-
face covered with wheat dust of a con-
trasting color. With a stylus, the user
strokes numerals into the dust to per-
form arithmetic in styles similar to
the paper and pencil arithmetic we
learned in school. One can also per-
form similar calculations with wet
clay and a stylus for stroking numer-
als into the clay. Now, what can be
done in each medium after one com-
mits an error by stroking in the wrong
numeral?

The representational medium of the
dust abacus makes it easy to correct
errors. The user scratches out the
stroke by covering it with dust. The
stylus might even have an edge for
smoothing over the dust. With clay,
error correction is not as easy.
Depending on the consistency and
stickiness of the clay, one can mash
and trowel over the offending strokes,
possibly smoothing over the result,
but the solution takes longer and the
effects are not clean. The dust abacus
is superior to wet clay for error correc-
tion.

Now, suppose we find we need to
do lots of quick calculations; let’s say
we’re busy merchants. Give the dust
abacus a few good shakes, and we’ve
got a blank dust abacus, ready to go.

AI research exhibits a profound gravity 
that continuously attracts even the best planned

efforts back toward tweaking and playing
around with representational facility.
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Blanking the wet clay is additional
work. Throughout the work day, the
clay is drying out and getting harder
to work with. Of course, we might
keep lots of blank clays around, but
then we need technology to keep
them from drying out before we use
them. We might also form clay tablets
as we need them from a big lump, but

this process is time consuming and
disruptive. The dust abacus is again
superior for lots of quick calculations.

Finally, suppose we find we need to
do calculations and later carry them
to our employer’s house to be checked
or to preserve them so that we can
check them next year; let’s say we’re
employees of some merchant or that
we carry on seasonal trade. The repre-
sentational medium of clay that holds
its form immediately and later under-
goes a transition from soft to hard in
the open air is well suited for carrying
around or consulting over extended
time. Carrying a dust abacus around
can disturb its pattern, depending on
the distance, terrain, and wind. Addi-
tional isolation technology would be
required to preserve dust abacus cal-
culations over time. Wind, insects,
birds, earthquakes, or accident-prone
librarians could all do irreparable
damage. The representational medi-
um of clay is superior for movement
and preservation.

In sum, the dust abacus and the
clay tablet make the various represen-
tational tasks they serve easy or
difficult. The dust abacus makes error
correction and quick repetition easy.
The clay tablet makes transportation
and preservation easy. This pattern of
trading off advantages is no less true
of advanced representational tech-
niques. With the dust abacus and wet
clay example in mind, consider Horn-

clause logic as an illustration of how
AI techniques in general make some
representational tasks easy and others
difficult. To consider this logic, we
more closely examine incidents from
the experience of the University of
London groups in their attempt to for-
malize the British Nationality Act of
1981 with Horn clauses. Although we

carry out the point with respect to
Horn clauses, it applies to AI tech-
niques in general. The examples here
come from their report. To understand
the examples, the reader must know a
little about Prolog, a programming
language that uses Horn clauses.

Horn-clause logic is the subsystem
of first-order logic that permits, at
most, one possibly acceptable conclu-
sion term and any number of possibly
acceptable condition terms, where
terms are atomic relations among
individuals. Three types of clauses
result: rules, queries, and facts. Rules
have both conditions and a conclu-
sion. Queries are degenerate rules that
have only conditions and no conclu-
sion. Facts are degenerate rules that
state supplied conclusions without
conditions. Thus, with the British
Nationality Act having rules of the
form:

Conclude x if conditions y and z and w
hold  ,

it is straightforward to express the
idea that a person is a British citizen if
this person was born in the United
Kingdom with at least one parent
holding British citizenship or that
being a parent means being a mother
or father to some child:

Conclude x is a British Citizen
if x was born in the U.K.
and x was born on date y

and y is after or on commencement
and z is a parent of x
and z is a  British Citizen on date y  .

z is a parent of x
if z is a mother of x  .

z is a parent of x
if z is a father of x  .

It is also easy to ask questions such
as “According to some section of the
Nationality Act, is Peter a British citi-
zen as of January 16, 1986?” as in the
following:

?- citizen(peter, (date 16 Jan 1984),
SectionOfLaw)

You can also state facts relevant to the
case, such as “Peter was born in the
U.K.” and “William is father of
Peter”:

bornInUK(peter).
fatherOf(peter william).

With this simple regime, the Uni-
versity of London group formalized a
surprising amount of the British
Nationality Act of 1981 into an
axiomatic theory simple in structure,
thus demonstrating that Horn clauses
make formalizing some parts of the
act easy. However, Horn clauses did
not make it easy to formally express
other parts of the act; for example,
negative conclusions:

A person who . . . shall not become a
British citizen under subsection 11.1
unless . . . 

classically negated conditions:

A newborn infant, . . . found aban-
doned in the United Kingdom, shall,
unless the contrary is shown, be
deemed for purposes of subsection 1.2
. . .

counterfactual conditionals:

. . . became a British citizen by
descent or would have done so but for
his having died or ceased to be a citi-
zen . . . (by) renunciation.

nonmonotonic conclusions:

If an abandoned infant acquires citi-
zenship via subsection 1.2 and subse-
quently its parents are identified, nei-
ther parent being determined to be
citizens or settled . . .

judgment:

Powers and uses of new representational 
media are initially misconceived in 

terms of older, familiar media.
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If in the special circumstances of a
particular case the Secretary of State
thinks fit, he may treat (2) as if the
reference to twelve months were a ref-
erence to six years.

A quote from the report illustrates
the representational difficulties posed
by these examples, in particular, dou-
bly negated conditions.8 How did the
group cope with this thorny represen-
tational problem? The group finessed
special, domain-specific negation
predicates where the legislation
explicitly specifies all the cases for
which the predicate was presumed to
hold. Producing these was tedious. I
quote:

In principle, we could continue
with this kind of analysis, rea-
soning through the provisions of
the act to construct explicit
definitions for the predicates:
“x was not a British citizen at the
time of y’s birth,” and “x was not
settled in the U.K. at the time of
y’s birth”  .
In practice, however, we could
not construct such definitions;
the act is too large, and there are
too many separate possibilities
to consider for this solution to
be practical.

In summary, the representational
fixes to Horn-clause logic investigated
by the group were less than satisfacto-
ry. Some difficulties remained.

Other well-known examples of the
difficulty-ease trade-off exist. Connec-
tionist architectures make extension-
al programming easy—for example,
providing supervised training on
examples of an objective function
—and make intensional programming
difficult—for example, algorithm
writing. The reverse is true for most
symbolic approaches. Unlike tradi-
tional symbolic approaches, connec-
tionist architectures enable gracefully
degrading performance but lose the
full measure of semantic transparency
and the ability to debug that symbolic
approaches retain. However, symbolic
approaches ease the representation of
exceptional cases. In contrast, because
nets generalize, they offer the worst
performance for infrequent cases.
Genetic architectures offer an inter-
esting blend of facilities by taking
evolving populations of rules as an

inspiring vision of computation (Hol-
land 1975, 1986). Extensional pro-
gramming and some modest inten-
sional programming are trivial for
genetic algorithms. Evolving rule pop-
ulations exhibit graceful performance
degradation, and at any point, one can
stop the program and straightforward-
ly interpret them.

The Third Point: The Card Trick

The third point is that representation-
al media establish two characters of
experience, one for onlookers and one
for workers in the medium. Let’s
illustrate this point first with a non-
AI example.

Observing a clever and well-per-
formed card trick, one experiences
wonder and then perhaps curiosity
about the technique, then maybe
wonder again, and so on. The card
trick seems like magic. In contrast,
the performer of a card trick experi-
ences no wonder, no magic, only tech-
nique. In this card trick case, does one
experience magic or merely sleight of
hand? The answer is, “It depends.” Of
both experiences, it is not the case
that one is true and the other false.
The experiences differ with respect to
the emphasis they place on aspects of
the phenomena at hand and derive
from the previous experience and cur-
rent role of the observer.

The experience of AI branches simi-
larly, only more so. Observing the
results of computations that mimic
intellect and knowing the utterly syn-
tactic pebble-pushing mechanisms at
work engender both reactions of won-
der and dismissal together and incon-
sistently. Consider Hitech, a recent
state-of-the-art chess-playing program
that relies on extensive parallel search
(Berliner 1987). Reporting on Hitech’s
winning the Pennsylvania State Chess
Championship, Berliner remarks on
one of Hitech’s particularly good
moves in its first game winning
against a player rated over 2400, “To
me, it is amazing that Hitech is able
to manage the technique to win this
very difficult-to-win position.”
(Berliner 1987, p. 102). Berliner knows
the simple, fast processes at work in
Hitech, but this knowledge increases,
rather than diminishes, his wonder.
When observing Hitech’s play at the

tournament and experiencing it as
amazing, Berliner is playing the
onlooker role in a complex social set-
ting. In another role, back in his labo-
ratory with the proper computational
tools, he might well analyze the
amazing move into the relevant board
conditions and decision criteria at
work. In this case, the move would no
longer seem amazing, merely the
obvious consequence of an intricate
but lengthy search. In this other role
of worker in a medium, the character
of experience for the same move
would be highly technical. Both char-
acters of experience are important,
and it would be far too simple to say
that only the technical internal expe-
rience is proper and that Berliner
should be discouraged from future
spells of amazement at chess tourna-
ments.

Although different in feel, the
onlooker and worker in the medium
characters of experience are similar in
the ways they arise. Each results from
a system image (Norman 1986) that
mediates character of experience. At a
chess tournament, an official types an
opponent’s move, let’s say, “Nc6,”
into a terminal. Some seconds or min-
utes later, Hitech displays its counter
move, “Bb5.” When all that appears to
happen in the production of senior
master level chess moves is this little
exchange, no wonder it seems amaz-
ing. Witnessing this little exchange
and understanding chess, one per-
ceives the glory but not the guts.
However, back in the laboratory,
other system images of Hitech exist,
including, I presume, tools for writing
code and logic diagrams for the design
of specialty chips. These system
images draw one’s thoughts in at the
level of technical minutia, providing a
useful medium for the tasks of assem-
bling hardware and software details.
Little wonder or amazement remains
at this level, only technique and
effort.
Types of Experiencing AI.   A declen-
sion exists that usefully categorizes
such AI experiences. The declension
consists of first-, second-, and third-
person experiences, analogous to the
use of the pronouns I, you, he, she,
and it.9 Builders of AI programs
arrange for their programs to exhibit
system images that cause interaction
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to be experienced in primarily one
person. First-person experiences of AI
programs are those where I, as a user,
feel like I am doing the intellectual
work—exploring hypotheses, making
inferences, drawing conclusions, and
selecting alternatives—rather than
instructing the machine to do it at my
behest. Examples of systems that fos-
ter this intellectual prosthetic experi-
ence (Hutchins 1988a) include Rabbit
(Williams 1984), graphic extensions to
advanced Prolog debuggers such as
Coda (Plummer 1987), Transparent
Prolog Machine (Eisenstadt and
Brayshaw 1986), and Decider (Farrell
1988).

Second-person experiences of AI
programs are those where I, as a user,
interact with the program as an other,
a you to converse with. I ask a ques-
tion of the computer, it asks me some
questions, and then it answers my
original question and the cycle
repeats. Examples of systems that fos-
ter this other agent experience include
question-answering systems such as
Unix Consultant (Wilensky 1982,
1983; Wilensky, Arens and Chin 1984)
or Knowledge and Modality Planner
(Appelt 1983).

Third-person experiences of AI pro-
grams are those where the system
image encourages me to experience it
as an artifact of someone’s creation.
For third-person experiences to occur,
the program’s system image must
mediate authorship. Here, Malone’s
intelligent electronic message system,
Lens, is an example (Malone et al.
1987) or Stefik’s (1986) vision of the
next knowledge medium.

AI images in general social currency
are second-person images, and second-
person experiences dominate among
the experiences of AI programs. In the
extreme, these second-person experi-
ences of programs misrepresent. The
program behind the monitor screen is
unlike a person in many significant
ways. However, if in the extreme they
misrepresent, in the norm they serve
efficiently. Talking about a program as
though it were an other that knew,
believed, wanted, and acted is
efficient and common. As Daniel
Dennett (1987) has been pointing out,
this habit, although often denigrated
as folk psychology (especially when
applied to the human psyche), can

also be promoted to theory, as Den-
nett does with the idea of intentional
stance (that is, ‘adopting a successful
and reliable predictive strategy that
accounts for behavior by references to
intentional concepts’).

Where are these experiences of AI
leading? What will experiences of
future AI programs be like? At this
point, I would like to speculate about
future experiences of AI artifacts and
tell the odd commingling of experi-
ence I suspect will emerge as the
norm. Second-person experiences of
AI artifacts will remain common
because they are common now and
efficient. Successful intentional
strategies will strongly flavor these
second-person experiences. However,
extended interaction with these arti-
facts will also reveal the artifacts’
mechanical regularities and stupidi-
ties, creating something of a logical
conflict between the two interpreta-
tions. On the one hand, the programs
will seem like yous, full of intentions.
On the other hand, they will not seem
this way at all. What will result from
this experiential dilemma? I suggest
that a peaceful and inconsistent
blending of the perspectives is a likely
result. At points during interaction
with a particular program when the
system image encourages an I-you
feel, and the attribution of intention
to the program predicts well, second-
person experiences will dominate. At
other times, when the program
reveals the limited nature of its mech-
anisms, treating it like a dumb
machine will dominate. Users will
easily move between perspectives.

I imagine here that competence to
experience AI artifacts will evolve to
accommodate inconsistencies in the
artifacts’ system images, without any
assumption that the resulting experi-
ence need be a consistent whole. I
have in mind something akin to the
ability to read or watch fiction. With
fiction, if I want to experience the
story, I suspend disbelief and enter in.
When I do, in some nonimmediate
way, I still know that it’s just fiction,
but I experience it as though it were
immediate and real. However, I have
no trouble jumping between the two
perspectives at will, noticing perhaps
how the author is clever about charac-
ter sketching, plot development, and

attention to detail or admiring the
film director’s attention to detail, con-
tinuity, and subtle use of lighting
before jumping back into the story. I
think users of AI artifacts will become
similarly practiced at turning on and
off an I-you intentional stance just as
they are now at suspending and
resuming disbelief in their stances
toward fictional literature and film.10

The Fourth Point: The Mouse Trap

I now pursue the point that all repre-
sentational media communicate the
views and values their users hold and
that they do this imperfectly, with
specific and regular manners of imper-
fection.

Artifacts communicate the views
and values their authors hold. For
example, a mouse trap expresses the
value that someone somewhere
prefers a crushed mouse to an
uncrushed mouse. However, as repre-
sentations of values, computations are
imperfect in specific and regular ways,
as are all media. A mouse trap will
snap a baby’s hand, showing that
although the mouse trap was intended
to express some homeowner’s values
involving mice, it actually executes
values about arbitrary objects which
disturb its pressure-sensing trigger.

Consider again the British National-
ity Act expressed as a logic program.
The program mediated values regard-
ing the privilege of citizenship
expressed in the act itself. However,
the way it mediated these values dif-
fers markedly from the ways an
informed official would likely per-
form. The program follows a pure
bureaucracy of relentless logic. The
human official would more likely
interpret the act; misremember its
details; blend it with personal bias;
and, in general, act as though aspects
of the situation at hand, such as cur-
rent case load or mood or closeness to
holiday, mattered. To his or her credit,
the official would be capable of bring-
ing clever interpretation or appeal to
higher authorities to bear on the case.

Furthermore, as mediators of val-
ues, computations demonstrate ill-
specified conditions. The British
Nationality Act program exemplifies
an interesting twist with respect to
this point. The program succeeds to a
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large degree because the act’s condi-
tions, as stated, are performative; that
is, the conditions stated are by law
the correct conditions. In general, it is
not so easy to specify conditions
under which a value-laden action
should be taken. This difficulty
results from either a lack of expressiv-
ity in the representational medium or
amorphous and open-ended values
—that is, their conditions are
unexpressible outside a concrete situ-
ation, and the boundless particularity
of the world consistently proves any
putatively final value expression inad-
equate—or both. This difficulty with
the representation of value-laden deci-
sion procedures is also why, in the
realm of law, case law is a necessary
adjunct to statutory law. One never
gets the statutes right, not even after
much reworking. They are only
approximations that require concrete
situations to elicit the inadequacies of
their conditions as stated. What is
true of the rule by statute is true, a
fortiori, of rulelike computation but
without the buffers of appeal and case
law.

One might be tempted to think it
possible to fix this imperfection by
turning to another model of computa-
tion better suited for representing
nuances—let’s say, for instance,
weight networks tuned over tens of
thousands of trials to recognize neces-
sary conditions. However, this move
only avoids one imperfection while it
gains another, which, I hunch,
remains the fate of all such moves.
Consider this example; it is fictional
but technically consistent with the
state of the art in net computations,
and it is sheer imagination with
respect to blood chemistry. However,
it makes a point.

Suppose that researchers at a large
midwestern university gained permis-

sion to use their regional supercom-
puting facilities to feed 14,000
exhaustive blood chemistry workups
from patients diagnosed with AIDS
related complex (ARC) into the largest
weighted network-recognition device
ever attempted. Using information
about which ARC patients progressed
to the AIDS condition, they trained
this network device to recognize with
91 percent accuracy the statistical
properties of ARC blood chemistry
that predict the onset of AIDS.
Beyond some obvious regularities
already known to medical science, the
higher-order nonlinearities computed
by this huge device defy interpreta-
tion, given the current state of blood
chemistry knowledge. This situation
would supply us with a trustworthy
prediction procedure for deciding
when ARC patients will likely
become AIDS patients. However, we
would not know why. With this type
of value-laden computation, we would
trade ill-specified, interpretable condi-
tions for effective but uninterpretable
ones, or one set of problems for anoth-
er. It seems likely that computational-
ly expressed values will continue to
exhibit regular imperfections dictated
by the model of computation used.

The Fifth Point: The Clock

“So long as we represent technology
as an instrument, we remain fast in
the will to master it. We press on past
the essence of technology” (Heidegger
1955, p. 5).

All representational media
influence their users’ thoughts, and
because representational media are
usually shared, these influences are
typically social. As community arti-
facts, AI programs recast what a co-
representing community can be and
do. By co-representing community, I
mean any social group that creates,

exchanges, and discusses the stature
and utility of a common set of ideas
mediated by a common set of repre-
sentations. Such co-representing com-
munities include, for example, physi-
cians, choreographers, petroleum geol-
ogists, religious sects, telephone com-
pany repair persons, bookies, and seri-
ous baseball card collectors—any
group in a process of agreeing how to
consider the world by refining and
exchanging shared representations.
What is of interest to us is how co-
representational technology at hand
influences what the process will be
like.

Clocks recast what a synchronized
community could be and do. Printing
recast what an interreading communi-
ty could be and do. AI recasts what a
co-representing community can be
and do. Clocks allow the explicit co-
measuring of time. This ability allows
physically separated persons to coor-
dinate activities in time with greater
precision. Printing engenders the fast
and wide spread of common texts
among many physically separated per-
sons, affording intellectual forums of
previously impossible magnitudes.
Knowledge representation technolo-
gies allow explicit co-representing of
partial world views, and thus afford
physically separated persons the abili-
ty to coordinate intellectual activity
with greater precision. For example,
since June of 1987, when the Ameri-
can Medical Association made
DXplain available by way of personal
computer and modem, a rural doctor
in Parrish, Alabama, or anywhere can
input any of 4700 medical terms and
see a list of possible diagnoses consis-
tent with the terms, based on recent
medical updates. The National Can-
cer Institute’s Physician Data Query,
the National Library of Medicine’s
AI/Rheum, the hospital systems Help

I imagine here that competence to experience AI artifacts 
will evolve to accommodate inconsistencies in the artifacts' 
system images, without any assumption that the resulting 

experience need be a consistent whole.
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and Care are other programs that use
techniques found 10 years ago only in
AI laboratories. These programs are
changing the way medical practition-
ers share representations of their arts
and sciences. However, more is going
on here than just coordination of
intellectual activity.

Clocks brought more than the abili-
ty to measure time precisely. They
made time into something divisible
(Mumford 1934). Is human knowledge

divisible into simple assertions or
weight networks the way time is
divisible into minutes and seconds?
Even though AI has learned that in
general knowledge can’t be neatly and
uniformly represented and that
knowledge representation poses many
wicked problems, the answer is yes.
Time is divisible precisely because we
divide it with clocks. In similar fash-
ion, although human knowledge
resists neat and uniform divisions
into representable chunks, knowledge
is divisible if we divide it, even if
methodological inadequacies render
the results less than hoped for. I find
this prospect shocking, ironic, and
realistic. Over the next decades, just
as under the influence of clocks we
changed our experience of time, so
also under the influence of new repre-
sentational media, our views of
knowledge will evolve to accommo-
date these media.
New Socioergonomic Forces.
Through the seconds and minutes
they define, clocks exert new types of
force in our social worlds; for exam-
ple, workers punch in and out at time
clocks, and competitors win or lose
big in races timed to hundredths of
seconds. Interreading communities
enabled by printing technologies
exhibit historically novel forces of
editorial control. So, too, the com-

putable forms of co-represented
knowledge introduce new socioer-
gonomic forms of force. By socioer-
gonomic force, I refer to the means by
which representational tools guide
their users into particular patterns of
use determined consciously or uncon-
sciously by the tool designers, that is,
how the new tools afford particular
usage. Thus, AI techniques coalesce
in new ways the power to officially
categorize for the purposes of repre-

sentation, to “carve the world at its
joints,” so to speak. Power to cast the
world in which particular values
thrive or die is, in and of itself, noth-
ing new. For example, should we cate-
gorize homosexuality as an illness?
Through its diagnostic standards man-
ual (DSM), the American Psychiatric
Association did for the majority of its
tenure as an association. However, AI
representational techniques introduce
new twists, especially in the case of
large, shared, persistent knowledge
bases. Here are five new forms of force
unleashed by AI co-representational
techniques.

The first force is stare decisis, the
legal term for “standing in the deci-
sion,” the principle that lends weight
to precedents in legal decisions. With
respect to AI techniques, I mean the
inescapable requirement of making a
decision about primitive categories
and sticking with the decision. In con-
nectionist architectures, this stare
decisis means deciding on the scheme
for encoding training examples on
input and output nodes, tying in the
net to its world. In symbolic architec-
tures, stare decisis means establishing
categories, usually hierarchically, to
develop an object world over which
inferences can be made.

The stare decisis force appears in
earnest when a categorization estab-

lished for one purpose conflicts with a
categorization established for another.
My own most memorable example
involved the difference between
axiomatizing the act of creating (or
moving) an icon as creation or move-
ment given a palette of icons. Creat-
ing implies what is created didn’t
exist before. In this case, the palette
icons refer to creatable iconic types.
However, movement implies what’s
moved existed at the time of moving.
In this case, the palette icons could be
picked up and moved to another area
of the display. The difference seems
trivial, but if two programmers write
two sets of inference procedures con-
sulting the same model of the world,
and one regards icon creation as cre-
ation and another regards it as move-
ment, the stare decisis form of force
becomes evident. You make a decision
and stick with it. However, the merit
of a representation is always relative
to its use, and use evolves over time;
so, unique co-representing difficulties
continue to emerge.

I call the second force the “rock in
the lawn” because it describes the
way that shared knowledge bases
acquire inertia. Here’s the analogy: I
find a rock in my lawn and decide to
dig it up. The next morning, I start
digging around it only to find the rock
I originally observed is the tip of a
larger rock. I keep digging. By early
afternoon, I realize the rock is so big
that I can’t remove it even if I can
uncover it; so, I give up and fill the
lawn back in. Modifying a shared
knowledge base can be a similar situa-
tion. It is difficult to estimate the
work a proposed change entails. Not
surprisingly, what seems to be a small
reconceptualization can cascade into a
myriad of changes necessary for carry-
ing through the original vision. Often,
some of the cascaded changes are
undesirable. Rather than make all the
necessary changes, especially when
other people are relying on the current
structure, it is easier to live with the
status quo. In this way, large struc-
tures develop an inertia of their
own.11

Third, implementing policies of
privileged control and enforced coher-
ence by locking out particular classes
of modifications and performing con-
sistency checks on proposed transac-

Even while drawing away effort 
from theory, the new [representational] 

techniques will inspire new thoughts about 
what kind of event mentality might be.
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tions are simple matters—you give
power to those with privilege. Howev-
er, power and privilege are not new.
What is new here is the clarity and
finality with which co-representation-
al privileges can be extended and
withheld with respect to considering
the world in concert with others. Here
lies an opportunity to give the con-
cept of imprimatur a whole new
meaning, rich with force.

Fourth, the phrase terminological
shift refers to the process of buying
into an established categorization of
some part of the world. This process
amounts to coming to believe an
existing knowledge base. For example,
if high in a hierarchically structured
knowledge base an intangible object
category exists, when I use this cate-
gory term, it begins to take on the
meaning of these objects represented
as intangible objects. Over time, the
process completes. Daily use of the
categorization breeds familiarity,
which shapes thinking. Once, for me,
intangibility was, well, sort of intangi-
ble. Now I know exactly what intan-
gible means—referents of those struc-
tures marked in the knowledge base
as intangible. My use of terms and,
therefore, my ground for thought have
shifted to accommodate frequent
interaction with the categorization.

The fifth force modifies what co-
representation is and how it works.
Most knowledge representation
regimes shift satisfaction criteria for
successful co-representing toward
greater explicitness. You and I can
have a meaningful professional con-
versation without being exceptionally
explicit about the meanings of the
terms we use. Our shared professional
background permits us to use suitably
vague but putatively commensurate
terms. Vagueness is, thus, an asset in
conversation; we don’t have to spend
time making everything explicit. We
need not achieve consensus on terms
because commensurate interpreta-
tions suffice. However, sharing
knowledge bases does not afford the
luxury of efficient vagueness. Repre-
sentation regimes enforce a “tyranny
of the explicit” as the regimes foster
agreement and disagreement at levels
of detail not previously attempted.
Such greater explicitness often

requires more representational deci-
sions than one would care to make
and means that additional ways exist
in which conceptions can be seen as
incompatible. This “tyranny” evolves
into a force toward greater standard-
ization as different parties adjust to a
greater level of explicit agreement or
rivalry while they continue their dis-
agreements, which are fueled with
details forced into joint visibility by
the nature of the representational
medium.

Conclusion: AI Literacy

If computer literacy exists, then there
is probably such a thing as AI literacy.
On the prospect of being literate
about AI, the representational medi-
um viewpoint has, I think, something
to add. Considered in representational
media terms, AI literacy might well
include two fundamental points: (1)
At one level, AI seeks new expressive
power through new computation-
based expressive means. This seeking
of expressive power fastens it to an
overarching concern with modifying
representational facility—making
some representational tasks easier and
others harder. AI efforts cannot escape
from this core. (2) As Margaret Boden
observed (Bobrow and Hayes 1987, p.
41), as representations, computations
are commitments to particular ways
of thinking about the world and, thus,
are challengeable with respect to the
distinctions they make, their decision
criteria, and the values they embody.
This observation is particularly rele-
vant to intelligent artifacts, which by
virtue of their symbolic complexity
and depth don’t wear their presupposi-
tions on their sleeves.

On the first point, it is just as hard
to say what new representational
techniques future models of computa-
tion will inspire as it is easy to cri-
tique the limits of existing tech-
niques. Whatever the new representa-
tional techniques might be, it seems
certain we will test their potential for
fashioning likenesses of our own men-
tality. I have suggested that the repre-
sentational technologies under test
are likely to draw attention to them-
selves—attracting a large portion of
effort into mucking about with the
way in which the techniques facilitate

particular representational tasks
rather than into developing theory
about the mind. I claim this fact is so
because extensible representational
facility is the central technical
advance that models of computation
enable. Even while drawing away
effort from theory, the new tech-
niques will inspire new thoughts
about what kind of event mentality
might be.

On the second point, it is currently
quite difficult to challenge program
presuppositions. The only avenues of
approach are to get the source code
and analyze it in depth or write anoth-
er program. However, given the repre-
sentational potential inherent in com-
putation, this case need not be true.
AI programs should appear more like
what-if artifacts; their presuppositions
should be apparent and modifiable.
The nature of declarative representa-
tion invites making these presupposi-
tions apparent and modifiable and we
will see what comes of the invitation.
David Owen, at the University of Cal-
ifornia at San Diego Cognitive Science
Institute, has applied the phrase cen-
ter of gravity to human computer
interfaces to communicate the obser-
vation that interfaces gently coerce
users into a particular level of analysis
and action for a given activity which
in fact has many levels. Although this
concept of center of gravity is impre-
cise, I believe it is important that
future representational media offered
by the AI research community draw
their users into a superior position, a
high center of gravity, where it is
expected and easy to recast so-called
facts. This suggestion asks a good
deal, but empowering users by such
means retards the prospect of using
the representational means of compu-
tation coercively.
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Notes

1. By model of computation, I mean
specifications of formal calculi one can at
least partially realize with finite-resource
algorithms. Older examples are the Turing
(1936) machine, the Post (1936, 1943) pro-
duction system, Church’s (1936, 1941)
Lambda calculus, Kleene’s (1936) general
recursive functions, Curry’s (1958) combi-
natory logic, Mealey’s (1955) machine,
Kleene’s (1956) analysis of McCulloch and
Pitts threshold neurons, von Neumann’s
(1956) cellular automata, Chomsky’s (1956)
context-free language type, and Moore’s
(1956) machine. Recent examples include
Smullyan’s (1961) formal systems, Hol-
land’s (1975) genetic algorithms, Procedu-
ral Horn-clause logic (Kowalski 1974), vari-
ous hidden node connectionist architec-
tures (Rumelhart, McClelland, and the
PDP Research Group 1986), Fredkin and
Toffoli’s (1982) conservative logic, Margo-
lus’s (1984) ballistic model of computation,
Chapman’s (1987) planning paradigm, and
Agre and Chapman’s (1987) improvisation
notion. Each model focuses attention on
new facets of computation. No model has
an a priori claim to preeminence. Each is
more or less useful. Hence, fashion among
these computational models matters. 
2. Associated with each recording device
are stylized usage conventions, arts of
composing expressions in accordance with
the conventions, and common ways of
selectively attending to records. Such con-
ventional usages are integral aspects of
media (without associated usage conven-
tions and rhetorical art, a recording device
isn’t a medium) and, thus, contribute to
categorization as media.
3. Proposing a representational medium
analysis of computation is not original.
Notably, Edwin Hutchins (1988b), Jim Hol-
land et al. (1988), and Norman and
Hutchins (1988) point to the utility of this
perspective and clarify the vocabulary of
concepts with which such analyses can be
fruitfully conducted.
4. This is not to say that these novel repre-
sentational properties are used well or
even at all. Right now designers tend to
copy the prevalent content of earlier media
in computation (for example, the desktop
metaphor, rooms, and static icons). This
content recapitulation is not exclusive to
computation. As many commentators
have pointed out, most early uses of new
media exhibit this trend.
5. This possibility is the point of the intro-
ductory illustration of the successor axiom
using the elk variable juxtaposed with the
Cro-Magnon painting from La Mairie
Cave. It is common to presume formal rep-
resentations (such as the successor axiom)

constitute a representational advance of
such magnitude as to disdain categorizing
them with more naive or primitive repre-
sentations (such as the cave painting).
Looking at AI as only a recent representa-
tional advance in a long history suggests
the two might have more in common than
a really modern (but provincial) outlook
would perceive.
6. At this point, the bells and whistles
should start chiming and hooting, and the
fireworks should fire off. To really ease the
activity of deliberately experimenting with
representational facility, now that’s some-
thing new and exciting in the world.
7. This effort was an experiment undertak-
en by a world-class research group. It did
not propose or advocate final solutions to
representational inadequacies in Prolog. I
have chosen the work of this group as an
example primarily because of the clarity
and depth with which they reported this
piece of their research.
8. For further detail, see Sergot et al.
(1986).
9. Brenda Laurel (1986) introduced the
human-computer interaction research
community to the concepts of personness
and first-person experiences of interactive
computation.
10. For an interesting example of how an
author plays explicity with “the fictional
stance,” read Italo Calvino’s If on a Win-
ter’s Night a Traveler (Calvino 1979).

11. Imagine what it might mean to be
stuck with a QWERTY knowledge base in
the way we are now stuck with the
QWERTY keyboard.
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