
This overview of the Yale Artificial Intelli-
gence Project serves as an introduction to
Scientific Datalink’s microfiche publica-

tion of Yale AI Technical Reports

The Yale Artificial
Intelligence Project:
A Brief Historv

J

Stephen Slade

A n AI lab is like a greenhouse.
Researchers develop new ideas

and plant them in programs. The pro-
grams are cultivated, hybridized, nur-
tured. The weaker ideas die out. The
stronger ideas are grafted onto new
stock and serve as the basis of hearty
new strains.

At Yale, there has been a traditional
summer seminar series at which grad-
uate students present their unprepos-
sessing theories to the vocal and criti-
cal review of their colleagues. The
tenor of these discussions is conveyed
by their title: “The Friday Fights.”
Such occasions provide the Yale
researcher opportunities for both
pruning and growth. Cultivation by
candor is the standard. This level of
peer review has also been experienced
by colloquium speakers. Many visi-
tors to the lab were unprepared for the
onslaught. By now though, Yale’s rep-
utation for open debate has led many
speakers to agree to disagree.

Ideas and theories grow through
this process of natural selection. The
best are represented here, in this col-
lection of technical reports from the
past dozen years. These reports are
our harvest-the results of twelve
intense years of work by a large crop
of researchers.

In the present article, we survey
this collection, which is now made
available on microfiche through Sci-
entific Datalink. The work falls into
several areas.
l Cognitive Modelling This category
is quite broad, and is used here to
describe the work of Roger Schank
and his students. It includes natural
language processing, models of human
memory organization, learning, and
explanation.
l Spatial and Temporal Reasoning.
Drew McDermott and his students

have considered a range of topics
related to reasoning including non-
monotonic logic, planning with
incomplete knowledge, and reasoning
about space and time.
l Cognition and Programming. Elliot
Soloway, and David Barstow before
him, have undertaken a scientific
inquiry focused on the task of pro-
gramming itself. How could a com-
puter automatically write programs?
How do people learn to program?
How can a computer program help
people learn to write better programs?
l Cognitive Science All the work at
the Yale AI Project could be termed
part of cognitive science. We have had
a long association with members of
the Yale Psychology Department,
especially Robert Abelson and John
Black. Psychologists-faculty, visi-
tors, graduate students-have actively
contributed to the AI research efforts,
testing and refining theories of human
cognitive processing.

Cognitive Modelling
The Yale AI Project began in 1974
when Roger Schank and Chris Ries-
beck came from the Stanford AI Lab,
via the Istituto per gli Studi Semantici
e Cognitivi in Castagnola, Switzer-
land, to join the Yale Computer Sci-
ence Department.

The faculty at Yale, especially Alan
Perlis and Martin Schultz, were very
supportive of the establishment of an
AI lab. Robert Abelson, in the Psy-
chology Department, had a long-
standing interest in AI and had
already begun collaboration with
Schank Graduate students were
quickly drawn into the work. Jim
Meehan, Wendy Lehnert, Rich
Cullingford, and Gerry DeJong were
among the first students involved.

WINTER 1987 67

AI Magazine Volume 8 Number 4 (1987) (© AAAI)

The main research tool was a DEC
PDP-10, equipped with custom-built
Sugarman CRT’s and Yale’s own full-
screen “E” editor, courtesy of Ned
Irons.

The focus of the initial research was
natural language processing. At Stan-
ford, Schank had developed the
MARGIE system (Schank 1975) with
his students Goldman, Rieger, and
Riesbeck. MARGIE was used to
demonstrate the effectiveness of con-
ceptual dependency (CD) as a lan-
guage-free, canonical meaning repre-
sentation MARGIE would read an
English sentence, using Riesbeck’s
expectation-based parser to build a
CD form which represented the
meaning of the sentence MARGIE
would then make inferences based on
the meaning of the input sentence
using Rieger’s inferencing program.
Finally, the results of the initial parse,
as well as the inferences, could be
converted back into natural language
with Goldman’s generator program,
producing paraphrases in either
English or German.

The MARGIE program, though con-
sidered a toy system, was an effective
and productive model for the ensuing
research projects. There were several
salient characteristics of MARGIE
that have developed as themes in Yale
cognitive modelling research through
to the present.
l Task Orientation. An AI program
should address a specific, real-world
task. The program should model
something that a person actually does,
rather than an artificial abstraction of
intelligent behavior. MARGIE’s tasks
included reading, paraphrase, and
translation. Subsequent programs
have created stories, answered ques-
tions, summarized stories, skimmed
stories, professed opinions, related old
stories to new ones, and engaged in
conversations. There are several rea-
sons for choosing real tasks. First,
these tasks are in the realm of the
possible-people provide an existence
proof. Second, the researcher has tan-
gible ways of assessing the results of
the program through comparisons
with human performance Third, the
researcher has a ready supply of data.
It is preferable for a program to use
real data instead of canned examples.

In the latter case, even the most
objective researcher may find himself
tailoring the examples to just those
cases which he knows the program
can handle. Finally, the experimental
paradigm implicit in this approach
requires the researcher to build an
actual computer program. The pro-
gram is the crucible in which theories
are tested and molded. Without a pro-
gram, many of the unstated supposi-
tions in a theory are never revealed or
examined. In writing a program, the
researcher must confront these
assumptions.
. Psychological Process Model. The
MARGIE program was a cognitive
simulation. Not only did it try to per-
form tasks that people perform, but it
tried to simulate the manner in which
the human mind works. By compari-
son, a computer chess program which
exhaustively searches ahead several
moves may be able to play a fine game
of chess, but it is unrealistic to con-
sider such a program a model of the
way in which a person plays chess.
The underlying process model in
MARGIE comprised three stages:
parsing, inferencing, and generation.
This basic triad has been the founda-
tion for the subsequent generations of
programs. The primary focus has been
on integrating the three processes to
allow more interaction with memory.
In recent years, the role of memory
has transcended the specific natural
language concerns and has come to
encompass learning and explanation
processes. This development can be
viewed as a natural evolution of the
original central inference process.
. Canonical Representation of
Knowledge. The heart of the MARGIE
system was the conceptual dependen-
cy knowledge representation system.
CD provided a means of representing
actions and states in a canonical, lan-
guage independent fashion. A concept
represented using the dozen CD prim-
itives might be expressed in any num-
ber of ways in any number of lan-
guages. More specifically, CD
addressed a broad range of problems
associated with meaning in language.

Translation, Synonymy and Para-
phrase CD insured an identical rep-
resentation for two different sen-
tences having the same meaning.

Inference.CD included a process
model for determining the implicit
meaning of a sentence.
Ambiguity. The same word can
have a variety of meanings. (“John
gave Mary a kiss.” versus “John gave
Mary a book.“) The CD paradigm
provided a means of distinguishing
among multiple word senses.
As the domain of concepts expand-

ed in the subsequent years, new types
of knowledge representations were
developed These included primitives
for social acts, attitudes, and objects,
as well as larger knowledge structures
built from these primitives, such as
scripts, plans, goals, memory organi-
zation packets (MOPS), thematic orga-
nization packets (TOPS), and explana-
tion patterns (XPs).

One additional feature of the
MARGIE system that carried over to
Yale researchers was the habit of giv-
ing programs names of people. From
SAM and ELI through BORIS and
CYRUS, this convention has been fre-
quently adopted.

Scripts, Plans, Goals,
and Understanding

The Yale AI research reports begin
with SAM, the Script Applier Mecha-
nism, the first computer program to
understand stories in context.
MARGIE had been able to understand
simple sentences in terms of the
actions or states which they repre-
sented. However, connected text-a
story-could cause a problem if the
series of actions and states could not
be connected through simple infer-
ences. How can a program infer con-
text? Two brief stories illustrate the
problem.

John picked up a rock. John threw
the rock at Mary. The rock hit
Mary.
In this first case, the actions are

causally linked. A reader can infer the
connections from one action to anoth-
er and build a causal chain based on
the inferences associated with each
action. For example, picking up an
object can enable a person to propel
that object.

John went to a restaurant. He
ordered a lobster. He paid the
check and left.

68 AI MAGAZINE

This second story demonstrates
that some causal chains are derived
from context. In this case, the reader
can infer a lot about what John did at
the restaurant simply because the
reader knows a lot about restaurants.
For example, we presume that John
ate something-probably a lobster.
The story, though, does not mention
eating at all. However, the reader
knows that people usually go to
restaurants to eat. This type of knowl-
edge about stereotypical events has
been termed a script Scripts were
originally proposed by Schank and
Abelson (1975, 1977) for story under-
standing and are similar to the frame
knowledge structure proposed by
Minsky (1975).

Scripts comprise a set of roles,
props, goals, locations, and events. In
the restaurant script, notated as
$RESTAURANT, the roles might
include customer, waitress, and cook;
the props could be a menu, table, and
silverware; the locations could be the
bar, dining area, and kitchen; and the
events would include arriving, seat-
ing, ordering, and so forth. Other
script-based situations would be tak-
ing a plane, attending a concert, buy-
ing a car, or going to the dentist.
These are situations in which people
have sets of expectations based on
numerous previous episodes. The con-
stituent events of these episodes are
sufficiently similar to allow a person
[or a program) to make inferences
when details are not explicitly stated.

SAM was a test of the script knowl-
edge structure. After development
using simple stories about restau-
rants, SAM was applied to real news-
paper stories using scripts describing
events such as automobile accidents.
Like MARGIE, the SAM project was a
group effort. SAM’s parser was ELI
[English Language Interpreter], which
was a revised version of Riesbeck’s
original parser. Anatole Gershman
developed a method for parsing com-
plex noun-groups (for example, “Frank
Miller, 32, of 593 Foxon Rd., the driv-
er,“). Rich Cullingford built the actual
script applier which was the core of
the system. Wendy Lehnert developed
a conceptually-based question-
answering system that allowed the
program to respond to queries about
the content of the stories. Rick

Granger built a parsing module that
could infer the meaning of unknown
words from context.

SAM had a small repertoire of
scripts, and would read news stories in
great detail, looking for every bit of
meaning it could find. Another
approach to reading news stories was
explored by Gerald DeJong in FRUMP
[Fast Reading Understanding Memory
Program). FRUMP was connected

was not about earthquakes at all, but
concerned the tragic shooting death of
the Mayor of San Francisco. FRUMP
had taken the lead sentence literally:
“San Francisco was shaken by the
death of Mayor Moscone and City
Councilman Harvey Milk.” The figu-
rative use of language remains an open
question for researchers in natural lan-
guage processing.

In addition to looking at scripts,

An AIprogram should address a specific, real-world
task. The program should model something that a

person actually does, rather than an artificial
abstraction of intelligent behavior.

directly to the United Press Interna-
tional news wire and could skim news
stories in dozens of different domains,
and produce summaries in several lan-
guages. On the DEC-20 (which by
1978 had replaced the PDP-101,
FRUMP could process an average
news story in under ten seconds.
FRUMP’s domain knowledge was rep-
resented in sketchy scripts that lacked
the detail of SAM’s scripts, but provid-
ed a feasible method for capturing the
salient details of news stories.
FRUMP’s world knowledge comprised
a range of news events including natu-
ral disasters, such as floods and earth-
quakes, international incidents, such
as breaking diplomatic relations or
armed conflict, and deaths of famous
people.

It is important to note that the
scripts in FRUMP and SAM were not
triggered by keywords like “earth-
quake” or “death,” but by the concepts
that embody the underlying meaning.
This point can be illustrated by an
error FRUMP made in processing a
certain story. From a UP1 wire dis-
patch, FRUMP produced the summary
“There was an earthquake in San Fran-
cisco. Two people were killed.” This
summary initially appeared plausible,
but FRUMP usually provided more
details for an earthquake story, such
as the severity of the earthquake and
the amount of damage reported. As it
happened, the original news report

Yale researchers explored intentionali-
ty One of the earliest programs to
embody goals and plans within the
CD paradigm was Jim Meehan’s
TALESPIN, which made up stories
similar to the fables of Aesop. The
program would start with a set of
characters who wanted to achieve cer-
tain goals. The story would be a narra-
tion of the characters’ attempts at exe-
cuting plans to satisfy their goals.
Many of the unsuccessful stories are
striking in exposing inferences that
the program had been unable to make.

One day Joe Bear was hungry. He
asked his friend Irving Bird where
some honey was. Irving told him
there was a beehive in the oak
tree. Joe threatened to hit Irving if
he didn’t tell him where some
honey was.
Here, the program did not know

that it could infer the location of an
object from the location of the con-
tainer of that object. Once this piece
of knowledge was added, the program
tried again.

One day Joe Bear was hungry. He
asked his friend Irving Bird where
some honey was. Irving told him
there was a beehive in the oak
tree. Joe walked to the oak tree.
He ate the beehive.
Examples such as these serve to

increase an AI researcher’s respect for
the complexity and diversity of com-

WINTER 1987 69

monsense knowledge.
Goals and plans received a different

treatment in Jaime Carbonell’s POLI-
TICS program, which modelled sub-
jective beliefs using a hierarchy of
goals. The program would read a news
headline and interpret it from one of
two opposing perspectives: conserva-
tive and liberal. The program would
reason about its opponent’s behavior
(in this case, the Soviet Union) based
on a model of the goals of the oppo-
nent. In the event of competing goals,
the program would use counterplan-
ning to block an opponent’s goal, or to
make sure that its own goals were not
blocked by the opponent.

The domain of political judgement
in POLITICS led to the development
of a new set of semantic primitives to
represent institutional actions. These
social acts could capture the differ-
ence between “John gave Mary a
book” and “The policeman gave Mary
a ticket.” The first case is a simple
transfer of possession, while the sec-
ond embodies an institutional act
based on the implicit authority of the
polity for which the policeman is an
agent. The social acts were designed
to represent institutional actions and
mediated disputes.

Two other domains were the sub-
ject of new semantic primitives:
objects and attitudes Wendy Lehnert
with Mark Burstein developed a set of
primitives to capture inferences about
physical objects, such as bottles, pens,
sponges, umbrellas, and shopping
carts. Object representations allow
the inference of default information
such as location, associated scripts,
and relations. Object primitives
embody a psychological approach to
the problems of naive physics.

The attitudes primitives attempted
to represent a number of dimensions
of attitudes including fondness-
antipathy, fascination-disinterest,
fear-security, attraction-repulsion,
jealousy-concern, irritation-comfort,
respect-disdain, and trust-distrust.
These semantic primitives provided a
basis for making inferences about
interpersonal behavior.

At this point, it should be apparent
that a wide range of problems were
under investigation. The next stage of
development involved both exposi-
tion and synthesis. Yale researchers

had produced a number of theories
and techniques that could be adopted
by others outside Yale. Within the
Yale AI lab, the new challenge was to
combine the various knowledge struc-
tures and theories in an integrated sys-
tem.

In the summer of 1978, Yale was the
site for a workshop in cognitive sci-
ence. Psychologists, linguists, philoso-
phers, and anthropologists convened
in New Haven for four weeks of AI,
programming, CD, scripts, and theo-
retical cross-pollination. Most of these
researchers had little programming
background Chris Riesbeck and Gene
Charniak (a frequent visitor at Yale)
developed “micro” versions of SAM
and ELI that made those programs
more accessible to neophyte program

One day Joe Bear was
hungry. He asked his

friend Irving Bird where
some honey was. Irving

told him there was a bee-
hive in the oak tree. Joe
walked to the oak tree.

He ate the beehive.

This pedagogical approach was later
expanded into a book which included
five Yale AI programs (Schank and
Riesbeck 1981).

Meanwhile, Rick Granger, and later
Mike Dyer, addressed the synthesis
problem. BORIS (Better Organized
Reading and Inference System) was an
effort to combine disparate knowledge
types including CD actions, scripts,
plans, goals, interpersonal relations,
role themes, and affect. Dyer’s pro-
gram could read stories in great
depth-making numerous inferences
and tying together various pieces of
information The domain of Dyer’s
BORIS was melodramatic divorce sto-
ries, such as one might encounter on a
soap opera.

These various programs reflected
the natural language processing
paradigm that began with MARGIE.
The role of syntax was secondary to
the problems of meaning representa-
tion. Larry Birnbaum provided argu-
ments for the roles that meaning and

world knowledge must play in lan-
guage tasks, pointing out the problems
associated with the “syntax module”
approach to language processing. Car-
bonell, Cullingford, and Gershman
discussed the crucial role of meaning
in machine translation. Later, Steve
Lytinen’s MOPTRANS program
embodied an approach to machine
translation which integrates seman-
tics and syntax in a psychologically
motivated fashion.

Learning, Memory, and Explanation

The work on conceptual dependency,
scripts, plans, and goals demonstrated
the importance of knowledge repre-
sentation for cognitive modelling
tasks. It was clear that people relied
on a considerable amount of knowl-
edge about the world. It was also
apparent that much of this knowledge
was not innate. People acquire knowl-
edge. To get computers to simulate
human cognitive behavior, the pro-
grams would have to learn as well.

One of the first Yale learning pro-
grams was developed by Mallory Self-
ridge. His program modelled the learn-
ing of language during a child’s second
I2 months, that is, between the ages
of one and two. At this stage, a child
presumably understands certain basic
concepts such as specific physical
objects, movement, eating, and so
forth. In learning language, the child
develops a mapping between
sounds-the words-and these con-
cepts. Selfridge’s program was based
on extensive protocols, and concen-
trated on learning the meaning of
words and word sequences, rather
than syntax rules. Selfridge demon-
strated the generality of his system by
having it learn not only English, but
Japanese as well.

Beyond the specific task of language
acquisition, there lies the general
problem of learning. The issue of
learning can be seen from many per-
spectives. The computational
metaphor leads one to view learning
as a matter of updating memory. Sev-
eral questions arise.
l How is human memory organized?
l How are new events assimilated
into memory?
l How are memories indexed for
retrieval?

70 AI MAGAZINE

Given the psychological claims
made for the AI knowledge structures,
it was important that the predictions
made by the theories reflect empirical
findings In an experiment to explore
scripts, the psychologists Bower,
Black, and Turner (1979) tested sub-
jects who had read script-based sto-
ries. The results demonstrated that
subjects would confuse elements of
different stories if the underlying
events were similar For example, a
visit to a doctor’s office is similar to
going to the dentist This confusion
suggested that there were not in fact
distinct, mutually exclusive scripts
$DOCTOR-VISIT and $DENTIST-
VISIT.

The theory needed revision to
account for this data. Schank pro-
posed a generalization of the script
notion: a higher-level knowledge
structure that organized smaller com-
ponents. This higher-order script was
termed a Memory Organization Pack-
et, or MOP. Thus, there could be a
MOP for IJROFESSIONAL-OFFICE-
VISIT which could have complex and
variable sets and orders of scenes
This hierarchical view allowed greater
flexibility. Each scene component
would have less variability, but might
be shared among several higher-level
knowledge structures In the PROFES-
SIONAL-OFFICE-VISIT MOP, there
would be common components such
as making an appointment, going to
the office, sitting in the waiting room,
and paying the bill. Only the dentist
version of this MOP would have a
scene for tooth extraction.

MOPS provide an architecture for
human memory of episodes, and sug-
gest an explicit mechanism for the
process of reminding. However, it was
apparent that people often relate
events that have little surface similar-
ity, but share an underlying goal
structure. Schank proposed Thematic
Organizational Packets or TOPS to
provide a goal-based indexing mecha-
nism for human memory. These top-
ics are explored in depth in Schank
(1982).

An early application of MOPS was
Janet Kolodner’s program CYRUS
[Computerized Yale Retrieval and
Updating System). CYRUS represents
one of the first attempts to model the
organization of episodic human mem-

ory CYRUS stored and retrieved
episodes in the lives of Secretaries of
State Cyrus Vance and Edmund
Muskie. When new events were added
to its memory, CYRUS integrated
them with the events it already
knows about. CYRUS answered ques-
tions using memory search strategies
based on reconstructive memory pro-
cesses

How could story understanding pro-
grams benefit from these theories?
The FRUMP program provides an
illustration If FRUMP were given the
same story to read a dozen times in a
row, it would process the story exact-
ly the same way each time, and pro-
duce the same set of summaries This
repetitive behavior should not be sur-
prising from a computer, but it would
be most unusual for a person. We
would expect the person’s reaction to
change over time In particular, the
person should remember having
already seen the story FRUMP’s prob-
lem was that it could not remember
what it had read.

Michael Lebowitz’ IPP program
applied MOPS to the problem of read-
ing newspaper stories IPP (Integrated
Partial Parsing) had two thrusts. The
first was a parsing strategy that
allowed the program to focus its
attention on the interesting words or
phrases, and skip the dull ones. IPP’s
domain of terrorism had a great deal
of intrinsic interest

The second and most significant
aspect of IPP was its ability to remem-
ber stories that it had read and relate
them to new episodes Using this
MOP-based mechanism, IPP could
detect similarities among stories and
arrive at generalizations. For example,
IPP would notice that the victims of
terrorist acts in Northern Ireland were
establishment, authority figures, such
as policemen or soldiers, and that the
terrorists were members of the IRA.
When IPP subsequently read a story
about a policeman being shot in
Northern Ireland by an unidentified
gunman, IPP could infer that the gun-
man was a member of the IRA.

Another broad area of application
for episodic memory is the area of
expert systems The central feature of
expertise is experience An expert is
someone who has vast, specialized
experience, who has witnessed

numerous cases in the domain, and
who has generalized this experience
to apply it to new situations When
confronted with a problem, the expert
is reminded of previous, similar prob-
lems and their respective resolutions.
It may be that the expert has so many
exemplars for a given problem that
the experiences have been distilled
into a general rule to be applied.

In the production system paradigm,
the rule is hard-wired into the system.
If a rule fails, the system generally
requires human intervention to revise
the rule. This makes the system more
fragile and less robust

Furthermore, most of the knowl-
edge in the system is written strictly
in terms of the domain. While it is
certainly important for the system to
have much domain-specific knowl-
edge, it is also true that people have
the valuable ability to generalize their
knowledge across domains. That is,
they can apply general principles
acquired in one setting to a situation
involving quite different specific
knowledge While the production-sys-
tem approach offers a general
paradigm for expert systems, it does
not provide a general mechanism for
applying knowledge from one domain
to another area of expertise.

A memory-based model of human
expertise can be contrasted with the
rule-based approach.
0 Psychologically valid. People don’t
become experts simply by being told
the rules. They become experts by
extracting the rules from experience
l Tolerant of rule-failure. Since the
rules of the system are derived from
experience, a new experience which
violates a rule would be assimilated to
modify the rule.
l Generalizable across domains. The
general mechanism of developing
expertise through experience allows
the system to be applied directly to
new domains.

An expert system that can extract
information from its experience will
be able to grow and acquire knowl-
edge on its own This is a crucial step
for the long-range success of the
expert system concept in AI There
are so many tasks to which automat-
ed reasoning power might be applied,
that it is absolutely necessary to

WINTER 1987 71

develop a mechanism that can assimi-
late new knowledge directly from
experience.

There are several complex research
issues involved in developing this
novel approach to expertise. These
include the familiar questions of
memory organization and indexing,
and the underlying learning mecha-
nism IPP can be viewed as a proto-
type of this approach.

IPP’s learning was based primarily
on noticing similarities between
events. This similarity-based learning
is clearly part of human cognitive pro-

tence to mete out, based on the
judge’s experience.

Kristian Hammond’s CHEF program
has the task of solving problems by
reusing plans for similar problems.
The plans are recipes, and the prob-
lems are the creation of new dishes
with specific ingredients. CHEF is
able to reason about multiple, inter-
acting goals, and furthermore, can
learn more general planning heuristics
in the process. When CHEF detects a
failure in one of its recipes, it can ask
itself questions to reason about the
cause of the failure. This process of

The central feature of expertise is experience.

cessing, but it does not account for
the human ability to reject some simi-
larities as mere coincidences while
labelling others as significant.

Schank proposed that learning is
triggered by expectation-failure That
is, when we observe a discrepancy
between our predictions and some
event, we then have something to
learn. We need to revise our knowl-
edge structure. The mechanism for
updating our knowledge often
requires explanation. Schank suggests
that explanation plays a central role
in learning and intelligence (Schank
1986). He proposes an explicit knowl-
edge structure, explanation patterns
(XI%), that are used to generate, index,
and test explanations.

The theories of failure-driven learn-
ing and explanation are being explored
in several domains, including eco-
nomics, law, and cooking. Chris Ries-
beck, together with Jim Spohrer and
Charles Martin, have developed a pro-
gram in the domain of political eco-
nomics. The program begins with a
novice view of economic questions,
and becomes increasingly knowledge-
able through reading the opinions of
experts, such as Milton Friedman and
Lester Thurow.

William Bain has applied the mem-
ory-based approach to legal reasoning.
Bain observed several lawyers and
judges in the context of sentencing
convicted criminals. His program,
JUDGE, simulates the process of a
judge deciding the appropriate sen-

examining failures can generally lead
to an explanation of the failure.

Computer models of human learn-
ing provide insights into how people
learn. Schank recognized that these
theories can be applied to the teaching
of children (Schank 1981). One major
lesson learned from building comput-
er programs that read stories is that
children, even at the age of 3 or 4,
have a tremendous amount of knowl-
edge about the world. Computer pro-
grams have to be fed that knowledge
in order to read. With children, that
knowledge is a rich asset that the edu-
cation process should exploit. In
recent years, Schank and the author
have applied AI perspectives to the
construction of educational software
for microcomputers. Together with
Riesbeck and Soloway, we have begun
to look at a wide range of issues to
create effective educational programs
that address the pressing needs of the
schools.

In summary, Schank’s work in cog-
nitive modelling has three broad agen-
das. The first is scientific. What is the
nature of the human mind? How do
people remember, learn, and under-
stand?

The second is technological. How
can we build intelligent machines?
How can we program computers to
communicate in natural language,
learn from experience, and explain
anomalies?

The final goal is educational. How
can the scientific and technological

results be applied to primary and sec-
ondary education? How can micro-
computers best be deployed in our
schools?

Spatial and
Temporal Reasoning

Drew McDermott came to Yale from
MIT in 1976. At MIT, McDermott had
worked with Gerald Sussman in
developing the CONNIVER AI pro-
gramming language (McDermott and
Sussman I973), and applied deductive
techniques to problem solving and
planning. Three themes of McDer-
mott’s early work have continued in
his past ten years at Yale.
l Deduction McDermott has based
much of his research on the underly-
ing paradigm of logical deduction. His
work with Doyle on non-monotonic
logics is one extension to classical
logic to address particular AI problems
of plausible reasoning.
l Embedded AI Languages. The origi-
nal work on CONNIVER has been
extended with the Duck language.
Practical issues of portability were the
motivation for the NISP language used
in implementing Duck.
l Planning. The intellectual testbed
for McDermott’s theories is problem
solving in the physical world. McDer-
mott and his students have explored a
range of issues involved in reasoning
about space and time including
knowledge representations, planning
strategies, and scheduling heuristics.

McDermott has termed his research
domain theoretical robotics Just as
Schank’s work explores the implicit
knowledge that people have about
intentionality and social domains,
McDermott tries to make explicit the
knowledge that people have about
space and time. A robot must be able
to solve problems which require
knowledge about spatial and temporal
phenomena, and the ability to act in
the absence of complete information.

Deduction and Duck

Many early AI programs adopted the
robot planning metaphor, but usually
in a restricted domain, such as the
blocks world. In these cases, it was
feasible to represent the complete
world. That is, the robot would have

72 AI MAGAZINE

exact knowledge of the location, size,
and shape of all relevant objects. It is
now clear to most AI researchers that
such complete world knowledge is
not merely an experimental abstrac-
tion-it is delusional. Rarely if ever
does a person have exact knowledge
The blocks world thus finessed one of
the toughest AI problems. reasoning
under uncertainty.

The typical reasoning paradigm for
the blocks world was deductive
retrieval. In a traditional deductive
logic system, every item in the
database is true-either as an axiom
or as a theorem derived through a
valid inference process. The addition
of facts always increases the number
of facts in the database The size of
the database is a monotonic increas-
ing function. Deduction provides a
tidy way to keep track of the state of a
closed world.

When faced with uncertainty, a per-
son or robot must make assumptions.
These assumptions become part of
the reasoning process. Non-monoton-
ic logic derives its name from the sig-
nificant property that the addition of
a new fact to a database can result in a
decrease in the size of the database.
This curious state is due to the inclu-
sion of assumptions in the database
along with observed and proven facts.
The addition of a new fact could
result in previous assumptions
becoming invalid and then deleted
from the database. For example, if we
are given the statement “John is mar-
ried to Mary,” we might infer a range
of things about John including the fol-
lowing.

1. John is an adult male.
2 John has the usual anatomical

structure.
3 John can walk, talk, and chew

gum
4. John has a primary interest in

the welfare of Mary and himself.
These inferences are based on

default reasoning, and they are not
facts. In particular, if we later are told
“John died, I’ we must revise our
beliefs to remove any conclusions
that we had inferred based on the
assumption, directly or indirectly,
that John was alive. Thus, learning of
John’s demise results in our removing
conclusions from the database.

Non-monotonic logics comprise a
range of logical assumptions, from the
conceivable to the provable, from the
arguable to the doubtless. The point is
that people must rely on inferred
information to understand the world
around them Inference is the rule, not
the exception. The problem of reason-
ing from incomplete information per-
vades disparate AI domains

McDermott implemented default
reasoning in the context of a deduc-
tive retrieval language: Duck Duck

substantiated.
l Duck is a general-purpose AI pro-
gramming language which is particu-
larly suited to rule-based applications.
Duck provides an interactive debug-
ging environment, including a conve-
nient way to integrate English lan-
guage templates into the program.
This means that Duck can explain its
actions in a pseudo-English, instead of
regurgitated code fragments or stack
frames

Duck has been around for nearly a

When faced with uncertainty, a person or robot
must make assumptions.

has been the primary vehicle for
McDermott’s research, and has also
been made available to researchers
outside Yale, in both universities and
industry.

Duck has several facets
l Duck is a logic programming lan-
guage, similar to Prolog. However,
Duck is a descendent of Hewitt’s orig-
inal PLANNER language (Hewitt
1969), which pioneered logic-based
programming Duck maintains a rela-
tional database that supports predicate
calculus deductions, using both for-
ward and backward chaining.
l Duck is built on top of NISI’ (Nifty
LISP)-McDermott’s portable dialect
of LISP that itself runs on top of other
dialects of LISP, including Common
LISP, Interlisp, Franz LISP, ZetaLISP,
and Yale’s own T (Slade 1987). NISP
provides a range of features including
a structure package, type declarations,
stream-oriented I/O, closures, and a
workspace manager. Duck has access
to all the features of NISP.
l Duck provides a reason mainte-
nance system which is a mechanism
for plausible reasoning. In particular,
Duck maintains justification links, or
data-dependencies, for assertion-infer-
ence chains. If some fact is removed
from the Duck database, then Duck
can automatically remove all related
beliefs that were derived based solely
on that fact, and thus are no longer

decade. It is a mature programming
environment for both teaching and
research-especially in domains that
are rife with uncertainty. In recent
years, Duck has been recognized out-
side academia as an effective tool for
building expert systems.

The Realms of the
Unknown: Space and Time

The domains on which McDermott
and his students have concentrated
are space and time-an abundant
source of reasoning problems. Spatial
reasoning encompasses a range of
problems. These include the follow-
ing:
l Naive physics. How do physical
forces affect physical objects? For
example, suppose a robot accidentally
drops a computer out of a third floor
office window. Where will the com-
puter end up and in what condition
will it be?
l Navigation. How could a robot rep-
resent knowledge about a familiar ter-
rain to allow it to plan a route? For
example, in the previous situation,
what is a reasonable path for the robot
to take to get to the new location of
the computer? Presumably, the robot
should try a route other than that
taken by the computer itself.
l Design. What physical properties of
objects can be exploited to solve prob-
lems? What available containers could

WINTER 1987 73

our forlorn robot use to help carry the a state change that occurs over time,
pieces of the computer back upstairs? we may invoke a rule such as
An envelope? A Coke bottle? A desk Rule: If a person is eating, then his
drawer? A trash can? hunger decreases.

Ernie Davis’ program MERCATOR We might then read the story.
was a computational model of memo- John was hungry. He started eat-
ry for spatial relations McDermott

Reading a computer program is like reading a
story-almost.

and Davis demonstrated that a simple
Cartesian representation of space is
not appropriate. In general, people do
not know the precise location and
extent of objects in the world Yet,
people can nevertheless perform a
range of spatial reasoning tasks based
on a cognitive map, a conceptual rep-
resentation of spatial relations

MERCATOR addressed a number of
problems, including the following.
l Inexact knowledge. Many geograph-
ic facts are imprecise or incomplete
MERCATOR used a fuzzy representa-
tion scheme to capture partial knowl-
edge. Locations could be specified
with great imprecision.
l Retrieval The program accessed a
database of geographic knowledge to
accomplish tasks such as finding
routes and answering geographic
queries. A question like “Is the Chi-
nese restaurant within walking dis-
tance?” does not require calculating
the exact distance involved.
l Assimilation. The program could
learn new geographic facts. That is,
the program would revise its cognitive
map to be congruent with new senso-
ry data This learning component was
the primary focus of Davis’ thesis

The domain of spatial relations is
enormous. Davis argues that almost
any physical problem includes spatial
reasoning. Furthermore, many
abstract problems benefit from spatial
analogies. Space invades our thoughts

The companion of space is time
Like space, time is pervasive and peo-
ple reason about time without com-
plete knowledge

Using default logic to reason about
time can be revealing and problemat-
ic. Data-dependencies and temporal
reasoning can have anomalous inter-
actions. For example, in representing

ing a hamburger. He finished
lunch.
When we observe John eating, we

infer that his hunger subsides. That is,
John’s diminished hunger is an
assumption based on the fact that he
is eating. However, once John stops
eating, we must remove this assertion
from the database. At this point, we
can no longer infer a decrease in his
hunger, so this fact is erased The sys-
tem then concludes that John is still
hungry after eating lunch.

What is needed to rectify this situa-
tion is some notion of effects that per-
sist. Thorny issues of causality often
appear in the guise of temporal prob-
lems. McDermott and his students
have addressed these problems from a
variety of perspectives.

McDermott devised a temporal
logic for planning and problem solv-
ing. A computer program, the Forbin
planner, was developed to explore
issues of temporal reasoning in plan-
ning. Forbin builds plans top-down,
expanding and analyzing the sub-
tasks. Forbin may have many alterna-
tive plans in its library for accom-
plishing a given task It must decide
which plan best achieves its goal. In
this process, Forbin relies on two key
components: a temporal database and
a task scheduler.

The ordering of events in a plan can
be represented using a time map, anal-
ogous to Davis’ cognitive map, but
with distinct properties. The cognitive
map was a geographical database; the
time map is a temporal database Tom
Dean implemented a time map main-
tenance system to allow a planner to
reason about persistent and transient
states. A planner faces a dynamic
world of shifting goals, deadlines,
changes in the environment, and

revised assumptions. Dean’s program
provides a methodology for reasoning
about these kinds of temporal dimen-
sions to planning.

Dean’s temporal database is used by
David Miller’s task scheduler. A given
plan may have a large number of steps
which can be arranged in a number of
orders. The question for the planner
is What is the best order? The answer
to that question depends on a variety
of factors.
l Preemption. Can a task be broken
up into parts that may be executed
noncontiguously?
l Resources Do plan steps have over-
lapping resource requirements?
l Precedence Is a given step a prereq-
uisite to another?
l Delays How soon can a given step
be initiated?
l Deadlines How soon must a given
step be completed?
l Execution time How long will it
take to complete a given step?

Miller developed a representation
and heuristics for scheduling combi-
nations of plans, such as preparing
dinner while washing clothes. The
program recognizes which steps could
be reordered or interleaved.

The work of McDermott and his
students represents a long-term
research program. These research
issues are broad in scope. They can
provide an illuminating perspective to
many areas of artificial intelligence.
McDermott has applied his vision and
methodology in his introductory AI
textbook, written with Charniak
(Charniak and McDermott 1985).

Cognition and Programming
The one knowledge domain in which
AI researchers feel most at home is
computer programming. Many fields
of computer science develop tools and
techniques to make the construction
of computer programs easier to learn,
more accurate, quicker, and generally
more efficient. AI research efforts
have attempted to automate and
model the process of programming.

David Barstow’s work represents
the automatic programming paradigm.
Barstow’s PECOS system is a knowl-
edge-based coding expert. Developed
at Stanford, PECOS takes a high-level

74 AI MAGAZINE

representation of an algorithm and
converts it into a concrete implemen-
tation through a process of gradual
refinement. PECOS’s programming
knowledge comprises a set of transfor-
mation rules. Barstow came to Yale
after Stanford. He explored both the
applicability of algorithm refinement
to new problems and the contrasting
paradigm of deduction-based theorem
proving for program synthesis, before
moving on to Schlumberger.

Following Barstow, Elliot Soloway
arrived at Yale with a different
approach to studying programming.
Instead of a rule-based or logical
methodology, Soloway’s research is
goal-based and psychological. Soloway
established the Cognition and Pro-
gramming Project (CAPP) which
focuses on two themes:
l AI and Software Engineering
Rather than prescribe how software
should be designed and maintained,
CAPP’s approach is first to under-
stand how experts (and non-experts)
design, develop, debug, and maintain
programs, Based on this understand-
ing, one then is in a better position to
design tools and make prescriptions.
l AI and Education. What should
children be taught about program-
ming? How should they be taught? AI
offers some answers to these key edu-
cational questions. In particular,
Soloway has focussed on the develop-
ment of a curriculum for introductory
programming, which should teach
more than just the syntax and seman-
tics of Pascal. More generally,
Soloway is exploring the development
of computer-based instructional sys-
tems than can deliver high-quality,
individualized instruction.

AI and Software Engineering

The design, development, and mainte-
nance of significant pieces of software
are complex tasks. One aim of soft-
ware engineering is the development
of methodologies, languages, and tools
that facilitate these tasks. There are
several approaches to developing such
methodologies or tools. For example,
some researchers advocate a more for-
mal approach to software: by provid-
ing a mathematical grounding for soft-
ware, the claim is that the product
will be more reliable, easier to main-

tain, and so forth. Soloway’s approach,
however, is to look less at software
per se, but rather, focus on designers,
programmers, and maintainers as they
engage actively in building and main-
taining software The claim, then, is
that by understanding how program-
mers go about comprehending a pro-
gram, one can pinpoint where they are
having difficulties, and thus be in a
position to design methodologies, lan-
guages, or tools that address the pro-
grammers’ problems from a princi-
pled, cognitive viewpoint.

Soloway and his group have applied
this cognitive approach to a number
of issues in software.
l Language Design. CAPP has found
empirical evidence that in a wide
class of situations, Pascal’s while con-
struct is more difficult to use correct-
ly than is Ada’s loop construct.
l Program Documentation. Soloway
and his students have identified spe-
cific types of knowledge (for example,
static and causal knowledge] that
maintainers need to abstract from
documentation in order to carry out
effective enhancements. CAPP then
has gone on to prescribe a documenta-
tion format that enables maintainers
easy access to these key types of
knowledge.
l Programming Instruction Lewis
Johnson of CAPP has constructed a
system, PROUST, that can identify,
for a class of moderately complex
introductory programming assign-
ments, the non-syntactic bugs in stu-
dents’ programs PROUST’s perfor-
mance is comparable to a human
teaching assistant. Currently,
Soloway’s group is designing a cur-
riculum for an introductory program-
ming course, as described in the next
section.

The particular theoretical perspec-
tive Soloway brings to the study of
programmers can be summed up by
saying. “Reading a computer program
is like reading a story-almost.” That
is, Soloway has explored the notions
of schema, goal, and plan that were
developed in the story understanding
world, and applied them to the pro-
gramming world. Building on these
notions, Soloway has developed fine-
grained cognitive models of how pro-
grammers design, comprehend, and

generate programs. In developing
these models, CAPP has carried out
traditional controlled-experiments,
analyzed talking-aloud protocols, and
constructed computer-based simula-
tions. In sum, the theoretical aspects
of this research push the frontiers of
problem solving and text comprehen-
sion research, while practical payoffs
for software engineering follow direct-
ly from the principled study of the
programming process.

AI and Education

A commonly held belief is that teach-
ing kids computer programming really
teaches them some important prob-
lem solving strategies that transfer to
other subject domains. Unfortunately,
there is precious little evidence that
supports this claim. Soloway’s group
is carrying out a number of studies in
search of this elusive transfer effect.
For example, they are looking to see if
learning programming helps students
to solve certain types of algebra word
problems more effectively. Unless
transfer can be shown, then program-
ming might best be viewed as simply
another job skill, along with drafting.
In fact, this view is gaining accep-
tance in educational circles now.
Soloway disputes that vocational view
of programming, and is attempting to
provide quantitative evidence of the
elusive transfer effect.

One main reason why transfer has-
n’t been found can be traced to the
current content of the vast majority of
introductory programming courses. By
and large, students are taught the syn-
tax and semantics of a programming
language. A quick look at the intro-
ductory programming textbooks will
convince the reader of this claim. The
tables of contents are typically orga-
nized in terms of the constructs of the
language being taught. Based on
studying thousands of programs-and
bugs-generated by novice program-
mers, Soloway feels that language
constructs are not the problem, but
rather that students are having signifi-
cant difficulty in “putting the pieces
together,” that is, composing and coor-
dinating constructs, plans, and goals
into a coherent whole. Moreover,
based on what CAPP researchers have
learned about what expert program-

WINTER 1987 75

mers know and about the strategies
they employ, Soloway has identified a
set of concepts that need to be taught
explicitly. In teaching introductory
programming, Soloway introduces
concepts such as goals, plans, rules of
programming discourse, problem sim-
plification, simulation, reflection on
past problem solving efforts, and top-
down design. Studies are now under-
way to assess the effectiveness of this
new curriculum.

Cognitive Science
Many of the questions posed by artifi-
cial intelligence researchers are not
new or unique to AI. Other disciplines
have examined the problems of lan-
guage, mind, and cognition. In recent
years, researchers from many circles
have reached out across traditional
academic boundaries to explore con-
trasting perspectives and paradigms.
The intersection of these fields-psy-
chology, philosophy, linguistics,
anthropology, neuroscience, and
AI-has become known as cognitive
science

This research program provided per-
spective on the process of psychologi-
cal experimentation. Researchers
noted a marked contrast between dis-
covery and verification research. AI
research tended to generate new
hypotheses, while cognitive psycholo-
gy served to test existing ones. While
both roles were important and sug-
gested synergism, the Yale psycholo-
gists argued that cognitive psychology
should develop more hypothesis gen-
eration techniques.

sus scruffy In this view, a theory or

This dichotomv between verifica-
tion and discovery paradigms is
reflected in another distinction adopt-

discipline or hypothesis (or researcher)

ed by Abelson and Schank: neat ver-

can be neat or scruffy. Neat implies
formal, quantitative, and observable

Yale researchers embrace this inter-
disciplinary approach. Over the years,
we have invited visitors from dis-
parate fields to spend time at Yale to
share their views. They represent a
wide spectrum, including George
Lakoff, John Ross, James McCawley,
Donald Norman, Joseph Weizenbaum,
Hubert Dreyfus, John Searle, and Jer-
rold Katz.

The primary source of ongoing
interdisciplinary research has been
Yale psychologists, in particular,
Robert Abelson. In 1979, Schank and
Abelson established a formal research
and training program at Yale in cogni-
tive science. Under that aegis, they
attracted many young psychologists
including John Black, James Galam-
bos, Noel Sharkey, Ray Gibbs, Steven
Shwartz, and Steven Read Psychology
graduate students were likewise
attracted to the program They includ-
ed Brian Reiser, Scott Robertson,
Colleen Seifert, and Valerie Abbott.

Scruffy suggests the antithesis: infor-
mal, qualitative, and intuitive

Broadly speaking, AI is scruffy and
cognitive psychology is neat. There
are clear exceptions, such as automat-
ic theorem proving in AI and Freudian
mentalism in psychology. More
importantly, there is a symbiosis
between the neats and scruffies of the
world. They each need the other,
though they may not be willing to
admit it. The scruffies generate boun-
tiful harvests of ideas, while the neats
painstakingly sift the grains of truth
from the pounds of chaff

The process continues. AI
researchers plant the seeds that sur-
vived previous harvests. The cultiva-
tion proceeds under various guises:
scientific, technological, and educa-
tional

The experimental paradigm of psy-
chology provided a vehicle for explor-
ing the AI theories of cognitive pro-
cessing, and the results of the experi-
ments stimulated new AI theories
Much of Black’s early work focussed

Acknowledgments
This work was supported in part by the
Defense Advanced Research Projects Agen-
cy and the Office of Naval Research under
contract N00014-85-K-0108, by the Air
Force Office of Scientific Research under
contract AFOSR-85-0343, and by the
National Library of Medicine under con-
tract 1 -RO 1 -LM0425 1

on the psychological implications of
scripts, and subsequently, MOPS.
Story understanding tasks explored
issues in causal coherence of texts,
hierarchical memory organization,
and the thematic organization of the
story itself.

References
Bower, G. H.; Black, J B ; and Turner,
T. J. 1979 Scripts in Memory for Text.
Cognitive Psychology 11.177-220.
Charniak, E , and McDermott, D.
1985. Introduction to Artificial Intel-
ligence. Reading, Mass . Addison-Wes-
ley.
Hewitt, C 1969. PLANNER: A Lan-
guage for Proving Theorems in
Robots. In Proceedings of the Interna-
tional Joint Conference on Artificial
Intelligence, 295301. Bedford, Mass :
Mitre Corporation.
McDermott, D. V., and Sussman, G. J.
1973. The CONNIVER Reference
Manual, Technical Report, 259, AI
Laboratory, Massachusetts Institute of
Technology.
Minsky, M 1975. A Framework for
Representing Knowledge. In The Psy-
chology of Computer Vision, ed. P.
Winston, 211-277. New York.
McGraw-Hill.

Schank, R. C. 1982. Dynamic Memo-
ry. A Theory of Learning in Comput-

Schank, R. C. 1986. Explanation Pat-

ers and People Cambridge, England:

terns. Understanding Mechanically

Cambridge University Press
Schank, R. C. 1981. Reading and

and Creatively Hillsdale, N J..

Understanding Teaching from the
Perspective of Artificial Intelligence.
Hillsdale, N. J.: Lawrence Erlbaum

Lawrence Erlbaum Associates.

Associates.
Schank, R. C. 1975. Conceptual Infor-
mation Processing. Amsterdam.
North-Holland.
Schank, R. C., and Abelson, R. 1977.
Scripts, Plans, Goals and Under-
standing Hillsdale, N. J.: Lawrence
Erlbaum Associates
Schank, R. C., and Abelson, R. 1975.
Scripts, Plans, and Knowledge. In Pro-
ceedings of the Fourth International
Joint Conference on Artificial Intelli-
gence, 151-157. Los Altos, Calif:
William Kaufmann.
Schank, R. C., and Riesbeck, C. 1981.
Inside Computer Understanding: Five
Programs with Miniatures. Hillsdale,
N.J.. Lawrence Erlbaum Associates
Slade, S 1987. The T Programming
Language: A Dialect of LISP Engle-
wood Cliffs, N.J.: Prentice-Hall.

76 AI MAGAZINE

