
The question of how humans process 
uncertain information is important to the 
development of knowledge-based systems 

in terms of both knowledge acquisition 
and knowledge representation This arti- 
cle reviews three bodies of psychological 

research that address this question: 
human perception, human probabilistic 

and statistical judgment, and human 
choice behavior The general conclusion is 
that human behavior under uncertainty is 
often suboptimal and sometimes even fal- 

lacious, Suggestions for knowledge engi- 
neers in detecting and obviating such 

errors are discussed The requirements for 
a system designed to reduce the effects of 
human factors in the processing of uncer- 

tain knowledge are introduced. 

How Humans Process 
Uncertain Knowledge: 
An Introduction for Knowledge Engineers 

Robert E Hink and David L. Woods 

What a chimera then is man! . Judge 
of all things . depository of truth, a 
sink of uncertainty and error, the 
glory and shame of the universe 

--Blake Pascal, Lettres 
Provinciales (1656-l 657) 

C urrently, a vigorous debate is in 
progress within the AI commu- 

nity concerning how best to represent 
and process uncertain knowledge in 
knowledge-based systems This 
debate carries great importance 
because most human decisions are 
made under conditions of uncertainty. 

Psychological research has revealed 
that human performance in the face 
of uncertainty is spotty at best. 
Humans display suboptimal choice 
strategies, miscalibrations in assess- 
ing probabilities, fallacious statistical 
inference, and inconsistencies in their 
preferences for uncertain outcomes. 
Moreover, both novices and experts 
are subject to these kinds of inaccura- 
cies and errors. 

This poor report card should be par- 
ticularly distressing to knowledge 
engineers (KEs) who are confronted 
with the dilemma that no matter how 
uncertain knowledge is represented in 
an expert system, it is suspect if 
acquired from a human, even a 
human expert. Those who are trying 
to automate knowledge acquisition by 
building intelligent interfaces to 
knowledge engineering tools cannot 
be comforted by this news. Their 
interfaces would have to contain 
sophisticated and as yet unspecified 
metaknowledge about these particular 
human frailties in order to overcome 
the problem. 

On the positive side, these weak- 

nesses in human judgment and rea- 
soning also present a challenge and an 
opportunity for knowledge-based sys- 
tems If the systems could compen- 
sate for human error in handling 
uncertainty, superexpert performance 
might be achieved. 

This article attempts to review 
what is known about how humans 
handle uncertainty. The primary 
objective is to give KEs a basis from 
which they can evaluate the accuracy, 
consistency, and correctness of the 
domain expert’s (DE’S) problem-solv- 
ing performance when faced with 
uncertainty. A secondary objective is 
to present possible knowledge-acqui- 
sition techniques that might improve 
communication between the KE and 
DE regarding problem solving with 
uncertain knowledge. Finally, we pre- 
sent the requirements for an automat- 
ed system designed to improve prob- 
lem solving with uncertain knowl- 
edge. 

Several caveats need to be addressed 
before proceeding further. First, we 
make no claim that this review is 
complete. As we stated earlier, the 
research in this area is extensive and 
includes at least three large areas of 
inquiry. One area deals with human 
perceptual capacity and performance. 
Another area focuses on comparisons 
of human judgment of probabilities 
and statistics with normative models. 
The third research area involves 
human choice behavior under uncer- 
tainty. Another caveat is that as with 
most areas of active inquiry, this field 
has its controversies. Because our pri- 
mary aim is to inform knowledge 
engineers about what they can expect, 
rather than to sort out theoretical 
issues, we avoid discussion of these 
theoretical controversies. 
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The Findings 
The studies reviewed in this section 
highlight the significant psychological 
research concerning how humans pro- 
cess uncertain information from the 
perspectives of perception, judgment, 
and choice behavior. 

Man against the Bits: Perception 

In 1948, C. E. Shannon (1948) pub- 
lished an article that gave birth to 
information theory. Shannon defined 
the amount of information carried by 
a signal in terms of probabilities. Pre- 
cisely, he defined the amount of infor- 
mation, I (in bits), a signal carries as 

Iixl = Log2 p&4 / Pi(X) I 
where PZ is the probability of correct- 
ly identifying the signal x after it is 
received, and P, is the probability of 
guessing x before it is sent. Therefore, 
the amount of information carried by 
a signal is related to the amount of 
uncertainty it dispels after it is re- 
ceived as opposed to before it is sent. 

Armed with a measure of informa- 
tion and a concept of an information 
channel, psychologists began to 
embrace the theory. The idea was that 
the human could be viewed as an 
information channel receiving signals 
through the senses and sending sig- 
nals in response. 

Channel Capacity. Perhaps the first 
behavioral effect related to uncertain- 
ty which was observed is that task 
performance generally falls off with 
higher stimulus or response uncer- 
tainty. This decrement in perfor- 
mance was observed in learning 
paradigms, perceptual recognition 
tasks, and perceptual reaction-time 
studies. 

Is this decrement in performance 
related primarily to stimulus uncer- 
tainty or response uncertainty? 
Garner (1975) in his classic review of 
this early literature argues convinc- 
ingly that the effect is attributable 
mostly to response uncertainty. When 
stimuli are regrouped to elicit 
responses of differing average uncer- 
tainty, large effects are observed even 
though stimulus uncertainty remains 
constant. However, when response 
uncertainty is held constant, and 

stimulus uncertainty is varied by 
offering or withholding knowledge of 
upcoming stimuli, the effect is only 
minimal. 

Another question addressed in this 
early work concerns the channel 
capacity of the human observer. 
Given that the human could be 
viewed as an information channel, 
then as stimulus uncertainty (that is, 
amount of information received) is 
systematically increased, the amount 
of information transmitted should 
increase in step until the channel 
capacity is reached. At this point, the 
amount of transmitted information 
levels off. The amount of transmitted 
information is, in essence, a correla- 
tion measure between stimulus and 
response. 

The results from experiments to 
measure channel capacity show that 
the limit seems to fall somewhere 
between 2.3 and 3.2 bits when sub- 
jects make absolute judgments on a 
single stimulus dimension. That is, if 
one asks a subject to order stimuli 
according to the magnitude of a given 
stimulus dimension, the subject will 
be able to use only five to nine ranks 
efficiently. 

In his famous and entertaining 
review, George Miller (1956) relates 
this narrow range of capacity for abso- 
lute judgments to a similar range for 
immediate memory span. Most people 
can remember about seven items for a 
period of several seconds. A local tele- 
phone number, for example, can usu- 
ally be remembered long enough to 
find a pencil and write it down. Tricks 
can be learned to increase this span 
These tricks, or recodings as Miller 
calls them, allow people to represent 
longer lists as shorter lists composed 
of recoded chunks. A good example of 
recoding is the use of six octal digits 
to represent 18 binary digits. Good 
evidence exists that recoding is a sign 
of expert performance. The point is 
that even with recoding, only about 
seven chunks can be remembered. 
Although Miller stopped short of 
declaring the discovery of a universal 
constant of psychology, the implica- 
tion was clear: the human informa- 
tion processor seems to be limited to 
dealing with only about seven mental 
entities at a time. 

Signal Detection Theory. Not long 
after the advent of information theory, 
another theory came onto the scene. 
As with information theory, this new 
approach had its origins in engineer- 
ing. It was called signal detection the- 
ory (SDT) (Tanner and Swets 1953, 
1954). SDT is statistical rather than 
probabilistic in that sensory evidence 
for various stimulus conditions is 
assumed to be normally distributed 
(see figure 1). In its simplest form 
when a stimulus to be detected is pre- 
sent, the distribution representing 
this state of the world is offset some 
distance to the right [that is, increased 
sensory evidence) with respect to the 
distribution representing the absence 
of the target stimulus; variance is 
unaffected. The observer has knowl- 
edge of both these distributions. On a 
given trial, the observer receives a cer- 
tain amount of sensory evidence; the 
task then is to decide from which dis- 
tribution the evidence comes. This 
task is accomplished by strategically 
placing a criterion to maximize gain 
or minimize loss at least for the ideal 
observer. Any evidence that equals or 
exceeds the criterion level warrants a 
yes response; otherwise, a no response 
is given. In effect, the observer is per- 
forming a statistical hypothesis test 
on the sensory evidence received. 

The observer’s performance is usu- 
ally evaluated in terms of P(Hit) and 
P(False Alarm). From these data, a 
measure of sensitivity (d’) and the cri- 
terion level I3 can be derived. The for- 
mer shows how well the observer dis- 
criminated between the two stimulus 
conditions (that is, how far apart the 
distributions were). In fact, dtz is pro- 
portional to the amount of informa- 
tion transmitted. However, 8 is a 
measure of response bias. One of the 
main virtues of SDT is that d’ and 13 
can be measured independently. 

How well do humans perform as 
assessed by the SDT model? The 
answer is not too well. The problem is 
not so much with d’, which we 
already know from the work with 
information capacity has an upper 
bound, as it is with how observers 
locate their 13. Two important vari- 
ables have an effect on 13: stimulus 
probability and payoff structure. 
When observers know that the target 
stimulus is likely to be presented, 
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they are inclined to give the yes 
response, and 13 is smaller (that is, less 
strict). Of course, the opposite would 
occur if the observers had prior 
knowledge that the target stimulus is 
presented only infrequently. In a simi- 
lar fashion, when the payoff matrix 
offers incentives for responding yes, 
observers will lower their criteria; 
with corresponding disincentives, cri- 
teria become stricter. 

This situation is as it should be. In 
fact, observers are quite good at locat- 
ing the optimal 8 in balanced situa- 
tions [that is, P(target) = 0.5 and 
incentives = disincentives) (Green and 
Swets 1966; Ulehla 1966). When stim- 
ulus probabilities are unequal, most 
researchers report less criterion shift 
than is optimal, although this shift is 
in the appropriate direction (Ulehla 
1966; Dorfman 1969; Thomas and 
Legge 1970; Thomas 1975; Craig 
1976; Kubovy 1977; Healy and 
Kubovy 1978, 1981). In other words, 
observers tend to not go far enough in 
adjusting their criteria to the situa- 
tion. 

A moment’s reflection reveals why 
conservative placement of 13 is subop- 
timal. The criterion represents the 
subjective point of neutrality between 
the two responses. Where should the 
ideal observer locate the neutral 
point? When one is neutral, no reason 
exists for favoring one response over 
the other. With the payoffs balanced, 
the probability of receiving a certain 
level of evidence (E) from the signal- 
present distribution (S) relative to the 
evidence level from the signal-absent 
distribution (NJ should be offset pre- 
cisely by the prior probabilities at the 
point of neutrality: 

13 = P(EIS) / P(EIN) = P(N) / P(S). 
To place the criterion lower would 

result in too many false alarms, and 
to place it higher would result in too 
few hits. 

A number of explanations have 
been offered to account for this con- 
servatism, but perhaps the best-sup- 
ported explanation involves a phe- 
nomenon called probability matching 
(Dorfman 1969; Thomas and Legge 
1970; Thomas 1975; Craig 1976; 
Healy and Kubovy 1978, 1981). We 
discuss probability matching in detail 
when we cover choice behavior Suf- 

Conservative Criterion Placement 
During 

Signal Detection 

13 %(FA) 

Sensory Evidence 

Figure 1. Conservative Criterion Placement. 
The actual f.? (dashed line) is placed to the left of the optimal j3 (solid line) with unequal 
stimulus probabilities (P(N) = 87; P(S) = 12) The hit probability (P(H)) and the false 
alarm probability P(FA)) are indicated by the shaded areas under the curves 

fice it to say at this point that proba- 
bility matching is a strategy whereby 
people attempt to match their 
response probabilities to the corre- 
sponding stimulus probabilities. 

Probability matching leads to sub- 
optimal behavior. Consider an observ- 
er trying to detect a signal that has a 
known prior probability of 25 percent 
(the optimal 13 is 3). Assume that the 
observer has just had a run of rejec- 
tions (for example, the no response 
has been given 10 times over the past 
10 trials). Now, the observer might 
think it is time for a signal and as a 
consequence relax the criterion over 
several trials (for example, adjust 13 to 
2.5). Over this period, the observer is 
exposed to an increased probability of 
registering false alarms, and perfor- 
mance deteriorates. The process is 
asymmetric because the prior proba- 
bilities are unequal. In other words, 
the observer occasionally might set 
the criterion in anticipation of a stim- 
ulus event that should favor the more 
probable stimulus only less often than 
in the converse situation. 

Another possible interpretation of 

the conservative is placement is that 
the observer is miscalibrated for prob- 
ability. That is, instead of judging 13 = 
P(n) / P(s), as it should be for optimal 
performance, the observer sets i3 = 
[P(n) - x] / [P(s) + x] simply because of a 
misjudgment of the objective probabil- 
ities. The topic of miscalibration is 
discussed in detail in the next section. 

The picture to this point is that the 
human can be viewed as an informa- 
tion-processing system of limited 
capacity. In and of itself, this view is 
neither surprising nor damning. We 
know of no real system that has 
unlimited capacity. However for the 
KE, this limitation does pose a practi- 
cal problem: how to elicit the suffi- 
ciently precise and accurate informa- 
tion concerning the DE’s state of con- 
fidence regarding some fact or rela- 
tionship. The absolute-judgment 
research suggests that the KE can 
expect only approximately 2.8 bits 
worth of precision. That is, the DE 
will use only about seven response 
categories when attempting to judge 
confidence in a given proposition, 
even though an infinitude of possible 
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responses are offered. The SDT stud- 
ies indicate that this confidence 
might be misplaced (that is, B might 
be taken as a measure of confidence). 

Methods to Enhance Precision. Pre- 
cision can be expanded by several 
means. One method is to make a 
series of absolute judgments by pro- 
viding anchor points. This method is 
similar to recoding in that the judg- 
ments can be structured in a serial 
process so that the parallel-processing 
capacity is not overwhelmed by the 
information load. By offering the DE a 
point of reference that divides the 
range of confidence into two parts, 
the DE can first locate the confidence 
level above or below this so-called 
anchor point. Then the process can be 
repeated on the subrange containing 
the judged confidence level until the 
subrange becomes so small that the 
DE is unable to make further judg- 
ments. The problem is in providing 
meaningful anchor points. Of course, 
the natural points are absolute confir- 
mation, absolute d&confirmation, and 
neutrality (that is, maximum uncer- 
tainty). Clearly, a means of providing 
additional anchor points is needed. 

S ome decision analysts have tried 
to represent anchor points graphi- 

cally with the probability wheel, an 
adjustable pie chart (Spetzler and 
Stael von Holstein 1975). The DE is 
asked whether betting on the proposi- 
tion under consideration or the proba- 
bility wheel is preferred. This process 
is repeated with different “pie slices ” 
When there is no preference, the level 
of confidence can be measured direct- 
ly from the probability wheel. 

The problem of accuracy is some- 
what involved. We defer discussion of 
this issue until after we have consid- 
ered how people make probabilistic 
judgments. 

Humans as Bayesians. One model to Bayes’ formula, are held constant 
well known to the AI community is (Beach 1968). Finally, as the propor- 
the Bayesian probability theory. Sup- tion of objects in each population is 
pose you are given the task of estimat- made comparable, conservatism 
ing the probability that a certain diminishes or even reverses (Peterson 
hypothesis holds given a set of data. and Miller 1965; Phillips and Edwards 
The basic concept behind the Bayesian 1966). 
approach is that as additional informa- Several explanations have been 
tion (E) becomes available, adjust- offered to account for conservatism. 
ments can be made to the prior proba- Fischhoff and Beyth-Marom (1983) 
bility of the hypothesis (H) to yield its catalog seven possible points in the 
posterior probability. The relationship application of Bayesian reasoning 
is simply where bias could enter: (1) inappropri- 

O(HIE) = LR(EIH) x O(H), ate hypothesis formation, (2) misas- 
where O(H) is the prior odds that sessment of subjective probabilities, 
H holds (3) misapplication of prior odds, (4) 
LR(EIH) = P(EIH) / P(Elnot H) inappropriate or incomplete assess- 
O(HIE) is the posterior odds of H ment of likelihood ratios, (5) misaggre- 
given E, gation (that is, calculation error], (6) 
and O(x) = P(x) / (1 - P(x)) . incomplete search for evidence, and 

The adjustment factor is the likeli- 
(7) misinterpretation of analysis. 

hood ratio (LR). This relationship can 
Research efforts were under way to 

be applied recursively; as new evi- 
sort out where and to what degree 

dence (E’) becomes available, the old 
biases were affecting the application 

posterior odds become the new prior 
of Bayesian logic when a new finding 

odds assuming conditional indepen- 
was uncovered that suggested humans 

dence (that is, the introduction of new 
are not conservative Bayesians. In 

data does not affect the conditional 
fact, they are not Bayesians at all. 

probabilities involving the old data). 
This finding is called the base-rate 

When human posterior probability 
fallacy. Whereas conservatism might 

estimates are compared to those esti- 
be considered a mild bias considering 

mates by the model, the prevalent 
the adjustments are in the right direc- 

finding is that the human estimates 
tion, the base-rate fallacy involves 

are too conservative (that is, too close 
what appears to be a total disregard for 

to the prior probabilities] (Edwards 
prior probabilities. Kahneman and 

and Phillips 1964). A long series of 
Tversky (1972a) report a particularly 

“bookbag-and-poker-chip” studies 
dramatic case of this fallacy. Consider 

were reported that were designed to 
the following problem 

describe this phenomenon. In these 
Two cab companies, the Blue and 

experiments, subjects are given sam- 
the Green, operate in a given city 

ples of objects, usually poker chips of 
(according to the color of the cab each 

two different colors, and knowledge of 
runs]. Eighty-five percent of the cabs 

the conditional, as well as the prior, 
in the city are Blue, the remaining 15 

probabilities. They are then asked to 
percent are Green. A cab was involved 

estimate, not calculate, the probabili- 
in a hit-and-run accident at night. A 

ty that the sample was drawn from 
witness identified the cab as a Green 

one of two populations, usually book- 
cab. The court tested the witness’ 

bags. 
ability to distinguish Blue and Green 

Here is a synopsis of the findings. 
cabs under nighttime visibility condi- 

Conservatism is least when the sam- 
tions. It found that the witness was 

ple size is small (Peterson, Schneider, 
able to identify each color correctly 

and Miller 1965). Payoffs for accuracy 
about 80 percent of the time and con- 

reduced conservatism (Phillips and 
fused it with the other color about 20 

Edwards 1966). Conservatism falls off 
percent of the time. What do you 

as prior probabilities become extreme 
think are the chances that the errant 

(Peterson and Miller 1965). Larger con- 
cab was indeed Green, as the witness 

ditional probabilities result in less 
claimed? 

conservatism, even though the likeli- 
The vast majority of their subjects 

hood ratios, which are all that matter 
reported probabilities close to 80 per- 
cent; the Bayesian answer is 41 per- 

Man against the Models: Judgment 

The study of probability and statistics 
has given us a variety of models that 
are designed to extract as much useful 
information as possible from uncer- 
tain or incomplete data. The research 
we are about to review focuses on 
whether humans process information 
as these models indicate that it 
should be processed. 
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cent. Apparently, the subjects were 
not adjusting prior odds (that is, base 
rate); they simply ignored them. This 
situation is the base-rate fallacy. Tver- 
sky’s and Kahneman’s subjects might 
have read more into this particular 
problem than was warranted, 
although the effect has been demon- 
strated in many diverse contexts 
(compare Kahneman and Tversky 
1972b; Fischhoff, Slavic, and Lichen- 
stein 1979) and among lay people as 
well as professionals. Evidence exists 
of the fallacy not only among practic- 
ing physicians but also in the medical 
literature (compare Bar-Hillel 1980) 

Tversky and Kahneman (1980) use 
causality to account for the effect. 
They argue that base-rate information 
is observed when it fits into a causal 
schema of the problem, as with the 
bookbag-and-poker-chip studies. 
When the base rate does not fit the 
schema, it is discounted or ignored. 
Bar-Hillel (1980) offers an alternative 
explanation. She believes that people 
order information according to its per- 
ceived relevance. Highly relevant 
information would dominate less rele- 
vant information, thereby accounting 
for the effect. Specificity to the indi- 
vidual case is what determines rele- 
vance. Although specificity might be 
a slightly broader concept than causal- 
ity, both explanations seem consis- 
tent. 

Calibration. Human behavior does 
not seem to conform well to the 
Bayesian model. As suggested earlier, 
some of the discrepancies can be 
accounted for by misjudgment (that 
is, miscalibration) of subjective proba- 
bility. Calibration is typically assessed 
by having people assign numeric val- 
ues that represent their degree of con- 
fidence in their responses to items 
from problem-solving or judgment 
tasks. These values, scaled appropri- 
ately, are the subjective probabilities. 
A person is considered perfectly cali- 
brated when the probability of a cor- 
rect response is equal to its subjective 
probability (that is, the level of confi- 
dence). 

The pervasive finding of calibration 
studies is that judges show overconfi- 
dence with low-objective probabilities 
and underconfidence with high-objec- 
tive probabilities [compare Lichten- 

stein and Fischhoff 19771 figure 2). 
Interestingly, the overconfidence bias 
diminishes in easy tasks, and experts 
tend to show less bias than nonex- 
perts (compare Lichtenstein, Fischoff, 
and Phillips 1982). 

These miscalibrations are affected 
by psychological variables. In assess- 
ing positive events, subjective proba- 
bilities are higher when the events 
described would personally affect the 
assessor rather than some unknown 
person; for negative events, the OPPO- 
site is found (Zakay 1983). Subjective 
probabilities are influenced by payoff 
structures (Phillips and Edwards 
1966) Physicians’ probability assess- 
ments of diagnoses are affected by the 
severity of the corresponding treat- 
ment consequences (Betaque and 
Gorry 1971). In competitive tasks 
requiring skill, people are prone to 
overestimate their own abilities (that 
is, subjective probability of success) 
(Howell 1972). 

Evidence exists that calibration can 
be improved through learning (Licht- 
enstein and Fischhoff 1980). The 
learning is very fast, although it does 
not seem to generalize well to other 
situations. 

Properties of Subjective Probabilities. 
Do subjective probabilities conform to 
the same relationships as objective 
probabilities? One such relationship is 
the requirement that the sum of all 
probabilities from a collectively 
exhaustive, mutually exclusive set of 
events equals one. For children esti- 
mating relative frequencies, the result 
depends on the sample size. With 
small samples (less than five trials), 
the sum exceeds one; for larger sam- 
ples (greater than five trials), the sum 
is less than one. Adults’ subjective 
probabilities sum closer to one, 
though only inconsistently [see Lee 
1971 for review). 

Another relationship is the multi- 
plicative rule for conjoined, indepen- 
dent events [that is, P(A&B) = P(A) x 
P(B)). The general finding is that sub- 
jective probabilities of independent 
events are not multiplied together to 
yield the subjective probability of the 
compound event. The compound 
event’s subjective probability is usual- 
ly too high (Cohen and Hansel 1958; 
Cohen, Dearnaley, and Hansel 1958). 

Figure 2. Miscalibration. 
The shaded areas show the typical pattern 
of miscalibration between subjective and 
objective probabilities 

For example, in Tversky and Kahne- 
man’s study (1983), 72 percent of the 
subjects ranked the statement “(Bjorn) 
Borg will lose the first set but win the 
match” as more probable than “(Bjorn) 
Borg will lose the first set.” Even if the 
two events were viewed as perfectly 
correlated (that is, the independence 
assumption is violated), the state- 
ments should have been ranked equal- 
ly. Apparently, the subjects were bas- 
ing their estimates more upon what 
they knew about Bjorn Borg than upon 
what they knew about probability the- 
ory. 

Judgments of Statistical Parameters. 
In regard to statistical, rather than 
probabilistic, judgments, a number of 
studies show that people do not 
appear to independently judge the 
mean and variance of a sample. For a 
given variance, the mean can be esti- 
mated fairly accurately (Beach and 
Swensson 1966). However, the vari- 
ance of these estimates increases with 
sample variance and sample size 
(Spencer 1961; Beach and Swensson 
1966). In addition, estimates of vari- 
ability decrease as the mean increases 
(Hofstatter 1939; Lathrop 1967) as 
though the coefficient of variation 
were being estimated. 

In order to determine how people 
estimate dispersion, Beach and Scopp 
(1967) tried to find the exponent that 
best simulated the estimates of their 
subjects. The normative exponent for 
variance, of course, is two. Low values 
tend to emphasize the effect of small 
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Figure 3. The Regression Effect 

The “true” level of performance is shown as the mean; deviations to the right (lucky) or 
the left (unlucky) are random The shaded areas indicate the probabilities of exceeding 
the deviations on subsequent trials Because these areas are small compared with the 
rest of the area under the curve, subsequent scores are likely to be closer to the mean 

deviations; high values emphasize 
large deviations. They found an expo- 
nent of 0.39, indicating that in their 
study people were strongly influenced 
by small deviations. 

Correlation is a statistical concept 
that has received much attention 
from cognitive psychologists mainly 
because it provides a model and a 
measure of relationship. The cogni- 
tive process of uncovering relation- 
ships is fundamental to learning and 
thinking. Ironically, humans seem to 
estimate correlation from data sam- 
ples rather imperfectly in certain cir- 
cumstances. Alloy and Tabachnik 
[ 1984) give an excellent survey of the 
research in this area. They discuss 
work that shows humans can esti- 
mate correlation, especially positive 
correlation, accurately except when 
their prior expectations contradict the 
objective data. In this case, the prior 
expectations seem to dominate the 
judgments. 

An example of the effect of prior 

expectations is the so-called illusory 
correlation. This phenomenon occurs 
when judges overestimate correlation 
even in cases where none exists or 
where only negative correlation is pre- 
sent Evidence of illusory correlation 
has been found in a variety of situa- 
tions among professionals and nonpro- 
fessionals (Smedslund 1963; Chapman 
and Chapman 1967, 1969). Studies 
show that illusory correlations arise 
and persist because of a tendency to 
discount or ignore disconfirming (that 
is, noncorrelational or anticorrelation- 
al) evidence contrary to prior expecta- 
tions. This effect has been used to 
account for the persistence of social 
and ethnic stereotypes (Hamilton and 
Rose 1980). 

Numerous explanations exist of the 
genesis of illusory correlation. One 
suggestion is that it is a vestige of bio- 
logical adaptation (McArthur 1980). 
The argument is that the need to dis- 
cover biologically important relation- 
ships, such as between the ingestion 

of certain foods and subsequent ill- 
ness, biased the cognitive system to 
overdetect relationship. Another pos- 
sibility is that the practice of under- 
valuing disconfirming evidence is 
learned (compare Einhorn and Hoga- 
rth 1978). Indeed, there are many real- 
life circumstances where one cannot 
readily obtain disconfirming data. 
Consider the case of a job applicant 
who is rejected because of the lack of 
a particular qualification. How would 
the employer ever assess the value of 
this qualification unless the person 
without it was observed? An extreme 
example is the case of superstitious 
behavior in which it is deemed unwise 
to seek disconfirming evidence 
because of some untoward event 
occurring on perhaps only a single 
trial. 

Correlation appears to be a difficult 
concept for people. Inhelder and Piaget 
(1958) reported that the concept of 
correlation does not develop until age 
I4 or 15. Wason (1960) showed that 
humans tend to not seek disconfirm- 
ing evidence even when to do so is 
more efficient. Einhorn and Hogarth 
(1978) in their review of the literature 
expand on this point. They indicate 
that the formal notion of experimen- 
tal control (that is, the search for dis- 
confirming evidence) came late in the 
history of scientific thought. Also, the 
need for placebo conditions and dou- 
ble-blind designs in clinical trials is a 
recent development (Shapiro 1960). In 
any event, the rather disconcerting 
conclusion is that people appear to 
have perfect vision for what confirms 
their beliefs and severe myopia for 
what disconfirms them. 

A concept closely related to correla- 
tion is regression. The basic idea of 
regression is that nonrandom and ran- 
dom processes can be separated using 
statistical methods. The former is rep- 
resented by a mean value and the lat- 
ter by a deviation from the mean. 
Usually, the random process is as- 
sumed to be normally distributed so 
that large deviations are less probable 
than small deviations (compare figure 
3). 

The regression effect can be 
expressed simply as a tendency for 
observations to cluster about the 
mean. For example, consider a piano 
student performing a composition for 
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the teacher. The student does remark- 
ably well, and the teacher offers 
appropriate praise. When the student 
performs the piece a second time, the 
student does less well. This lesser per- 
formance could be a result of the 
regression effect. The first effort was 
not representative of the true level of 
proficiency; subsequent regression 
toward the mean occurred. Now 
assume the student performs 
extremely poorly and is scolded by 
the teacher. On the following trial, 
the student’s performance improves 
again because of the regression effect. 
The teacher, however, is left with the 
distinct impression that punishment 
is far more effective than praise, 
when, in fact, the changes in perfor- 
mance were out of the student’s con- 
trol. Again, attempts to find discon- 
firming evidence guard against such 
misconceptions. 

Admittedly, the regression effect is 
subtle. However, even with sophisti- 
cated subjects given hints and prod- 
ding, susceptibility to the regression 
effect seems to persist Kahneman and 
Tversky (1973) described an experi- 
ment with psychology graduate stu- 
dents who were to give their 95 per- 
cent confidence interval around an IQ 
score of 140. They were told explicitly 
that the I40 score was the sum of a 
true score and a random error. 
Because this score is well above the 
population mean, one could infer that 
the error component is large (that is, 
there should be a significant regres- 
sion effect). Seventy-three of the 108 
subjects reported confidence intervals 
symmetric around the I40 score, 
ignoring the random element. The 
authors conclude that there is a ten- 
dency for people ” . ..to predict as if the 
input information were error free.. . .‘I 

Heuristics of Probabilistic Judgments. 
The work of Kahneman and Tversky 
deserves special consideration 
because their ideas provide a useful 
framework with which to integrate 
and amplify much of what has been 
discussed. In their view, humans use 
heuristics to process uncertain infor- 
mation (Tversky and Kahneman 1971, 
1973, 1974, 1980, 1983; Kahneman 
and Tversky 1972a, 1972b, 1973, 
1982; Kahneman, Slavic, and Tversky 
1982). One heuristic is representative- 

ness which is based on the assump- 
tion that the more an object [or event) 
typifies a corresponding class [or pro- 
cess], the higher the probability of a 
relationship between the two. Repre- 
sentativeness seems to have a certain 
commonsense plausibility about it 
However, Kahneman and Tversky 
invoke representativeness to explain a 
wide variety of errors and fallacies We 
now examine their explanations in 
detail. 

They explain the base-rate fallacy 
with representativeness People focus 
on how closely a hypothesis matches 
the facts given at the near exclusion of 
what is known about the tenability of 
the hypothesis in general (that is, the 
base rate). Even when uninformative 
though case-specific facts are given, 
people tend to ignore the base rate 

Another frequently observed error is 
the inattention to sample size. For 
example, when asked to judge the 
probabilities of attaining more than 60 
percent male births from both a small 
[15 births per day] and a large 145 

People often show a propensity for 
making cavalier predictions based on 
only scant information. Kahneman 
and Tversky describe an experiment 
that illustrates this tendency. Two 
groups were given accounts of lesson 
presentations of several student teach- 
ers. One group evaluated the perfor- 
mance of each student teacher on a 
percentile basis; the second group sim- 
ilarly was to predict performance five 
years hence. The range of evaluations 
matched the range of predictions, but 
given the low predictability value of 
the accounts, one would expect the 
predictions to have a much tighter 
range (that is, a clustering around the 
mean value) because of the regression 
effect. 

The illusion of validity is the ten- 
dency for people to express overconfi- 
dence in their predictions. This effect 
is not surprising given that representa- 
tiveness controls both prediction and 
its associated confidence. Overconfi- 
dence is observed in predictions based 
on redundant information contrary to 

. ..the human can be viewed as an information- 
processing system of limited capacity. 

births per day) hospital, most respon- 
dents gave the same values. Of course, 
probability should have been higher 
for the small hospital because the pro- 
portions are more variable as a result 
of its smaller sample size (for exam- 
ple, consider a very small hospital 
with 1 birth per day; the probability 
should be about 50 percent). Represen- 
tativeness suggests that people ignore 
sample size because they are focusing 
on the relationship between the sam- 
ple parameter and the corresponding 
population parameter 

Representativeness also explains 
why most people when asked to gen- 
erate random sequences tend to pro- 
duce too many short runs. The expla- 
nation is that people expect random- 
ness to be exhibited over the short 
term as well as the long term. In a 
similar fashion, representativeness 
explains the gambler’s fallacy, which 
comes from a misguided belief that 
the termination of a long run is a pre- 
dictable event 

statistical theory. Presumably, redun- 
dancy reifies the representative quali- 
ty of the information and, thereby, 
enhances confidence. However, redun- 
dancy adds nothing to the predictive 
value of the information. 

Kahneman and Tversky use repre- 
sentativeness to suggest why the 
regression effect seems so elusive. 
They submit that the regression effect 
operates contrary to what people 
expect according to the representative- 
ness heuristic Extreme observations 
are expected to be representative of 
their underlying process; regression 
toward the mean is incompatible with 
this notion. 

A second heuristic is called avail- 
ability. The logic of availability is that 
easily recallable information has high- 
er associated probability than less eas- 
ily recallable information In general, 
frequently presented material is both 
more probable and more easily 
recalled (compare Kintsch 1970). How- 
ever, other factors such as salience, 
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recency, and primacy affect how easi- 
ly information can be recalled. There- 
fore, reliance on this heuristic can 
lead to biases and errors. 

Biases from the availability heuris- 
tic often appear in tasks where fre- 
quency is to be estimated. In estimat- 
ing the length of lists with people’s 
names, for example, lists with more 
famous and familiar names are usual- 
ly judged to be longer Also, people 
estimate the frequency of English 
words starting with R or K higher 

that an individual examining a con- 
junctive (or a disjunctive) event begins 
by looking at the probability of an 
elementary event (for example, the 
coin comes up heads) Given that this 
person then adjusts down for the con- 
junctive event (or up for the disjunc- 
tive event) but insufficiently, the prob- 
ability estimate would be too high (or 
too low). 

In a similar fashion, adjustment and 
anchoring is used to explain miscali- 
bration of subjective probabilities. As 

. ..decision makers seem to excercise good sense by 
evaluating risk. On the other hand, decision makers 

seem to gamble inconsistently and subobtimally. 

than words with these consonants as 
the third letter, even though the oppo- 
site is true. Searches for words in 
memory with a first-letter key are 
easier than those with a third-letter 
key 

Kahneman and Tversky explain the 
illusory correlation in terms of avail- 
ability. They suggest that the frequen- 
cy of co-occurrences of two events 
can be overestimated if there is a 
strong associative bond between these 
events in memory Therefore, events 
strongly associated in memory are 
judged to occur often together, even 
though this assumption might not be 
valid. 

A third heuristic presented by Kah- 
neman and Tversky is adjustment 
and anchoring. The procedure 
involved in adjustment and anchoring 
is to estimate or compute an initial 
starting point and then make adjust- 
ments away from the initial value. On 
the surface, this heuristic seems rea- 
sonable. The concept behind Bayesian 
probability theory, regression analy- 
sis, analysis of variance, and factor 
analysis resembles the adjustment 
and anchoring procedure. However, as 
we soon see, people tend to make con- 
servative adjustments. 

Adjustment and anchoring could 
account for why people often overesti- 
mate the probability of conjunctive 
events and underestimate the proba- 
bility of disjunctive events (Cohen, 
Chesnick, and Haran 1972). Assume 

stated earlier, usually infrequent 
events are overestimated, and frequent 
events are underestimated. Kahneman 
and Tversky suggest that people might 
use the neutral confidence point as an 
anchor point; insufficient adjustments 
from this point would cause conser- 
vatism (that is, the pattern described). 

Methods for Unbiasing Judgments. 
The research comparing human judg- 
ment against prescriptions of norma- 
tive models clearly shows that 
humans do not behave in accordance 
with the models. Humans also do not 
seem to have an intuitive understand- 
ing of stochastic processes. 

For the KE, the effect of these 
human frailties can be minimized, 
though usually not completely elimi- 
nated The best way to reduce the 
effects is to avoid using probabilistic 
or statistical judgments by the DE as 
much as possible. Of course, if the 
hard data are available, they should be 
used. When the data are unavailable, 
the necessary probabilities and statis- 
tics can be estimated from the DE’s 
subjective probabilities to primitive 
events. 

The problem then reduces to mini- 
mizing miscalibrations. Several 
approaches could be taken at this 
point. DES could be trained to become 
better calibrated (Lichtenstein and Fis- 
chhoff 1980). Another technique is to 
require the DE to offer reasons for 
why the event(s) under consideration 

should not or could not occur (Fis- 
chhoff 1982). The purpose is to have 
the DE focus attention explicitly on 
negative scenarios, evidence, or possi- 
bilities, thereby reducing overconfi- 
dent judgments. Some researchers 
have suggested that better calibration 
can be achieved by asking for subjec- 
tive probabilities associated with fixed 
values from the underlying distribu- 
tion rather than for the values associ- 
ated with fixed probabilities of the dis- 
tribution (Seaver, von Winterfeldt, and 
Edwards 1978) Whichever method is 
employed, the KE should never ask 
leading questions, lest the KE’s own 
biases return in disguise. 

Spetzler and Stael von Holstein 
(1975) discuss how the interview pro- 
cess should be structured in order to 
reduce or remove biases in estimating 
probabilities. They break down the 
process into five phases: (1) motivat- 
ing, (2) structuring, (3) conditioning, 
(4) encoding, and (5) verifying. The 
motivating phase has two purposes: to 
familiarize the DE with the procedure 
and its importance and to uncover any 
biasing related to the process, such as 
any implicit payoff structure associat- 
ed with responses. 

The structuring phase is designed to 
define and structure the uncertain 
quantities. The aim is to eliminate 
any ambiguities so that the DE knows 
exactly what is being assessed. The 
DE should be encouraged to identify 
what is relevant to the task. 

The conditioning phase is con- 
cerned with reducing potential bias. 
The DE is asked to justify the 
response given both in terms of 
explicit information provided by the 
KE and of background information 
The KE should be alert for signs of 
representativeness and availability 
from these justifications. In both 
cases, the DE should be queried about 
other possible cases which might 
influence the estimate but which have 
gone unmentioned. 

During the encoding phase, the DE 
makes the estimates Spetzler and 
Stael von Holstein advocate the use of 
the probability wheel, although other 
psychophysical techniques are avail- 
able. The discriminations should 
become increasingly difficult. Also, 
each quantity being estimated should 
be randomly selected to avoid order or 
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carryover effects. A cumulative proba- 
bility distribution generated from the 
responses highlights any inconsisten- 
cies or gaps in the data. 

The verification phase is used to 
provide feedback to the DE. The 
cumulative distribution is shown to 
the DE for comment. If the DE is 
unsatisfied with the plot, the 
procedure might have to be repeated. 
Another method of verification is to 
construct pairs of bets based on the 
distribution. These bets are offered to 
the DE, who is to express a preference 
if any. This method checks the consis- 
tency of the data. 

Man against the Odds: Choice 

As foreshadowed by the preceding dis- 
cussion, the topic of choice behavior 
in the face of uncertainty is inextrica- 
bly bound to the specific topic of gam- 
bling behavior. The relationship 
between the two can be traced back at 
least to the nineteenth century with 
Daniel Bernoulli’s (1954) solution of 
the St. Petersburg paradox. Assume 
we offer you a chance to play a game. 
The game is simply that we flip a coin 
until a head appears. We pay $2,-l, 
where n is the trial on which the first 
head appears. How much would you 
be willing to pay in order to play this 
game? The view of how choices are 
made had been that people always 
choose between alternatives in order 
to maximize expected value. The 
expected value for this game is infi- 
nite given a true coin. Indeed, an infi- 
nite amount is only the expected 
return; you might win even more! 
You should be willing to put up all 
your assets and all you could borrow 
according to the expected value rule. 
Would you2 Most people would not. 
This deviation from the expected 
value rule is the St. Petersburg para- 
dox. 

Maximizing Utility. Bernoulli’s solu- 
tion was that people do not maximize 
expected value but rather maximize 
utility, which is the subjective value 
that individuals place on commodi- 
ties, opportunities, or states of the 
world. It is a measure of desirability. 
Bernoulli’s solution was important for 
several reasons. First, it shifted the 
emphasis from objective measures 
(that is, expected value) to subjective 

Table 1. 
An Example of Savage’s Axiom. 

measures (that is, utility) in explain- 
ing choice and decision-making 
behavior. Second, it implied that 
choosing or deciding between alterna- 
tives is an individual affair; different 
people have different utility functions. 
Third, it suggested that risk (that is, 
uncertainty in outcomes) is some- 
thing people tend to avoid. Therefore, 
in the case of the St. Petersburg para- 
dox, people are not willing to put up 
all their worldly possessions against 
the flip of a coin, no matter how high 
the expected value of the game, 
because there is too much variance in 
the outcomes. 

The utility function represents an 
ordering of preferences. The shape of 
the utility function can be illuminat- 
ing in assessing risk-taking behavior. 
A concave-down function is said to 
indicate risk aversion. Why? The slope 
of the utility function can be viewed 

as a measure of sensitivity to variation 
in the underlying commodity. When 
the curve is concave down, the slope 
is a decreasing function of this com- 
modity. In other words, an increment 
of payoff gives less than a commensu- 
rate increment in utility because the 
extra payoff carries extra variation 
(that is, increased risk). In an analo- 
gous fashion, concave-up functions 
indicate risk-seeking behavior (for 
example, gambling), and a linear func- 
tion indicates risk neutrality (that is, 
an expected value maximizer) 

Most people are predominately risk 
averse, as reflected by their utility 
functions. How then can a given per- 
son be willing both to buy insurance 
and to bet on the horses? Friedman 
and Savage (1948) proposed that such 
apparently inconsistent behavior 
could be explained by a utility func- 
tion with two concave-down segments 
and an interposed concave-up seg- 
ment. People can be both risk averse 
and risk preferring. 

Inconsistent Choice Behavior. Utili- 
ty can account for many apparent 
inconsistencies, but some effects 
remain difficult to explain no matter 
what theory is invoked. Lichtenstein 
and Slavic (1971, 1973) uncovered 
such an example. They asked their 
subjects to choose between bets with 
high probabilities of winning but low 
payoffs and those with low probabili- 
ties of winning but high payoffs. They 
then asked the subjects to bid for the 
bets. Curiously, they found that when 
the high-probability bets were chosen, 
they later lost to the high-winning 
bets in terms of bids. The authors sug- 
gest that these reversals might be 
another instance of the adjustment- 
and-anchoring heuristic of Kahneman 
and Tversky in operation. 

Another inconsistency is related to 
an axiom of utility theory. The axiom 
states that when deciding between 
two alternative gambles with a com- 
mon outcome, the value of this out- 
come cannot affect the choice (that is, 
it could be anything). This postulate is 
known as Savage’s (1954) indepen- 
dence principle, because the choice is 
independent of the value of the com- 
mon outcome. Although this axiom 
seems logically sound, Slavic and 
Tversky (1974) found that people 
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often violated it. They gave their sub- 
jects choices to check for the consis- 
tent application of Savage’s axiom (see 
table 1). 

When viewed in this manner, it is 
clear that for tickets numbered 12 and 
greater, nothing is contributed to the 
decision-making process; the out- 
comes are identical The indepen- 
dence principle says you can ignore 
them. The decision comes down to a 
choice between a risky gamble for 
$5,000,000 and a less risky gamble for 
$l,OOO,OOO. Consistency demands 
that either gamble I and gamble 3 (for 
the risk averters) or gamble 2 and 
gamble 4 (for the risk takers) are cho- 
sen The majority of the subjects (17 
of 29) mixed their choices. 

No good explanation seems to exist 
for why some people violate the inde- 
pendence principle, which seems 
plausible if not logically compelling 
Perhaps people view certainty in a 
qualitatively different way than they 
view uncertainty. After all, a gift of $1 
million does not seem quite compara- 
ble to a gamble for $5 million regard- 
less of the odds. Clearly, Savage’s 
axiom does not capture the way some 
people behave, but it is difficult to 
argue that this axiom is at variance 
with the way people should behave. 

Probability Matching. Perhaps the 
most studied gambling behavior is 
probability matching To demonstrate 
this phenomenon, people are asked to 
guess the outcomes of independent 
Bernoulli trials (that is, stable proba- 
bilities) given a particular probability 
structure. Of course, the optimal 
strategy is to guess the most probable 
outcome. However, most people 
match their response probabilities to 
the corresponding outcome probabili- 
ties (compare figure 4). This strategy 
is suboptimal because whenever sub- 
jects guess the long shot, they are 
exposing themselves needlessly to a 
loss. This probability-matching ten- 
dency is a manifestation of the gam- 
bler’s fallacy. 

Interestingly, people can be induced 
to perform optimally. One way is to 
increase the number of outcomes 
(Gardner 1958). Another way is to 
emphasize gambling rather than the 
problem-solving aspects of the task in 
the instructions (Goodnow 1955). 
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Resolving Inconsistencies. This sam- 
pling concludes our survey of the liter- 
ature. Our image of the humans mak- 
ing choices in the face of uncertainty is 
somewhat perplexing. On the one 
hand, decision makers seem to exercise 
good sense by evaluating risk. After all, 
not many sane people would be willing 
to risk everything to play the St 
Petersburg paradox game. On the other 
hand, decision makers seem to gamble 
inconsistently and suboptimally. 

Figure 4. Probability Matching. 
These schematic data are typical of actual 
results from probability-matching experi- 
ments Each plot shows the probability of 
choosing a given stimulus whose prior 
probability is displayed on the right over 
five trial blocks (1 unit = 5 trials) 

This inconsistent behavior presents 
a dilemma to the KE. If apparent 
inconsistencies are detected in the 
DE’s decision-making behavior, are 
they real or merely results of poorly 
articulated problem solving? If real, 
how can they be resolved? In order to 
detect real inconsistencies, the KE 
must obtain detailed justifications for 
each decision made. Restructuring 
questions by asking about what fac- 
tors would have to be different to alter 
the decision can be helpful in this 
regard The KE should be wary of pos- 
sible confabulations Confabulations, 
a term from clinical medicine, are fab- 
ricated explanations for an event or 
behavior that seems to defy rational 
explanation in order to cover up some 
weakness or failing. 

Having uncovered a genuine incon- 
sistency, the KE has several options. 
One option is to point out the prob- 
lem to the DE and let the DE resolve 
the inconsistency. Another approach 
is to model the decision making math- 
ematically. Evidence exists that linear 
models (regression or discriminant 
analysis models) often perform quite 
well (Dawes 1982). The DE’s role in 
constructing the model would be to 
identify relevant variables. This 
approach does have merit in that it 
allows the humans to focus on what 
they do best, detect relationships, and 
it lets the machines to do what they 
do best, integrate information. 

Getting It Automated 

The foregoing review emphasizes the 
recurring observation that humans 
often introduce biases, distortions, or 
even errors in their processing of 
uncertain knowledge. One major con- 
clusion from this observation is that 
the processing of uncertain knowledge 
could be improved if it could be objec- 
tified. An expert system seems to be a 
most suitable vehicle for acquiring the 
necessary objective information as a 
product of its use. This view has been 
expressed elsewhere (Cohen 1985). 

A first step toward building a sys- 
tem capable of automatically acquir- 
ing such information is the design and 
implementation of a usage log, a 
database that would contain detailed 
records of each consultation with the 
system (sufficient to reconstruct the 
consultation]. The usage log could be 
used to periodically test the appropri- 
ateness and validity of the knowledge 
represented in the system. Formal 
knowledge representations-whether 
production rules, frames, semantic 
nets, or whatever-are embodiments 
of associations between facts, objects, 
or concepts. The degree of association 
between these entities usually takes 
the form of likelihood ratios, certainty 
factors (CFs), or some other form of 
uncertainty representation. Because 
the values of these measures of associ- 
ation are typically based on the DE’s 
subjective assessment, they are sub- 
ject to possible bias. The usage log 
provides the objective data from 
which these assessments can be veri- 
fied or corrected. 



The obvious question is how to 
integrate objective data with subjec- 
tive assessments. This question is 
nontrivial. One possible approach is 
to put the subjective assessments on 
the same dimension as the objective 
data. The use of contingency tables is 
a convenient way to accomplish this 
end in many cases. For example, con- 
sider a simple rule from a rule-based 
system. This rule has a single 
antecedent, A (or a conjunction of 
antecedents considered as a simple 
antecedent for the purposes of this 
discussion), and a consequent, C. 
Now, rather than directly ask the DE 
for a likelihood ratio or a CF to value 
the strength of the association 
between A and C, the KE would ask 
the DE to fill in the 2 x 2 contingency 
table based on the DE’s experience or 
knowledge. Each cell of the table rep- 
resents one of the four possible states 
of truth. The table might appear as 
shown in table 2. 

The values in each cell are relative 
estimates of the DE’s confidence in 
the corresponding state of truth. Ideal- 
ly, each value would be the number of 
cases observed. 

More typical measures of uncertain- 
ty can easily be derived from such 
tables. The likelihood ratio is 3.33 
(that is, 50/60 / 10/40) for this exam- 
ple. The CF, defined as 

CF = P(CIA) - P(C) / 1 -P(C) when 
A supports C 
and 
CF = P(CIA) - P(C) / P(C) when A 
supports not C, 
would have a value of 0.58 (that 
is, 50/60 - 60/100 / 1 - 60/100). 
Assume that the system is run, and 

it is determined by independent 
means that the consequent of the rule 
was false but that the antecedent was 
true. The table would be updated as 
shown in table 3. 

The likelihood ratio now is 3.11, 
and our table-based CF is 0.56. In this 
manner, the system could acquire 
objective data and update subjective 
assessments. 

Several points deserve comment. 
First, as the system gains experience, 
its measures of association converge 
toward the true values (that is, values 
supported by the objective observa- 
tions). Second, with initially confi- 

dent subjective estimates [that is, 
large cell values), this convergence 
takes longer. Third, this methodology 
naturally incorporates several of the 
psychological techniques for unbias- 
ing subjective assessments of uncer- 
tainty, such as focusing on discon- 
firming conditions and using concrete 
measures (for example, frequencies 
rather than probabilities). Finally, lim- 
itations of precision with human judg- 
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Tables 2 and 3. 
Original Contingency Table (above). 
Updated Contingency Table (below). 

ments are overcome; precision is lim- 
ited only by the amount of data 
acquired. 

An additional benefit in acquiring 
objective data through system usage is 
that statistical information could be 
derived from such data about the effi- 
ciency of the knowledge base. Are sets 
of rules consistently firing together? 
Are some rules never firing? Are some 
rules always firing? This kind of infor- 
mation would be invaluable to a KE 
trying to tune an expert system. 

One limitation to the approach pro- 
posed here is that not all uncertain 
knowledge conforms well to a 
contingency table analysis. For exam- 

ple, how should a DE analyze this 
rule: “If the ozone layer depletion con- 
tinues at its present rate, then the 
polar ice caps will melt by the year 
2050.” This rule represents a scenario 
that would occur only one time if at 
all. Moreover, how could the system 
ever update the DE’s estimate? In 
such cases, one can fall back on the 
reliability of the model used to make 
the prediction and the plausibility of 
its underlying assumptions. The 
acquisition of verifying data would be 
of little use because the knowledge 
could be tested only once at most. 

Clearly, building such a system is 
an ambitious project. Besides a usage 
log, for example, the system would 
require support facilities, including an 
editor to maintain the log. However, 
the stage is set for knowledge-based 
systems to begin assuming the tasks 
for which they are best suited and for 
which the human is least well 
equipped to handle. The processing of 
uncertain knowledge seems to be such 
a task 
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