
John C. Glasgow I1

YANLI: A Powerful
Natural Language Front-End Tool

An important issue in achieving acceptance of computer sys-
tems used by the nonprogramming community is the ability
to communicate with these systems in natural language. Of-
ten, a great deal of time in the design of any such system is
devoted to the natural language front end. An obvious way to
simplify this task is to provide a portable natural language
front-end tool or facility that is sophisticated enough to allow
for a reasonable variety of input; allows modification; and,
yet, is easy to use. This paper describes such a tool that is
based on augmented transition networks (ATNs). It allows
for user input to be in sentence or nonsentence form or both,
provides a detailed parse tree that the user can access, and
also provides the facility to generate responses and save in-
formation. The system provides a set of ATNs or allows the
user to construct ATNs using system utilities. The system is
written in Franz Lisp and was developed on a DEC VAX 1 l/
780 running the ULTRIX-32 operating system.

Augmented Transition Networks

The system is named YANLI in (shameless) imitation of
“yet another compiler compiler” (YACC) (Johnson 1984).
The programs are similar in that at the heart of both pro-
grams is a parser whose grammar is definable and serves as
the “source code” for the parser.

Additionally, both programs can perform actions at any
step during the parsing of input. However, YACC uses a
bottom-up (left-to-right) parsing method and is comfortable
with the grammars that conveniently describe programming
languages, and YANLI has a top-down parser based on
ATNs and is intended to parse a subset of common English.
YANLI is actually a set of tools for the development of
ATNs together with several built-in ATNs that describe a
subset of English.

John C. Glasgow II is systems manager for Florida Agricultural and
Mechanical University and Florida State University (FSU) College of
Engineering, Department of Computer Science, Tallahassee, Florida
32306 Mr Glasgow is also a Ph D. candidate at FSU, Department of
Computer Science. For information about obtaining YANLI write to: John
Glasgow, c/o FSU, Department of Computer Science, room 203, Love
Building, Tallahassee, FL 32306

Since first proposed by Woods (1970), ATNs have be-
come a popular method of defining grammars for natural
language parsing programs. This popularity is due to the
flexibility with which ATNs can be applied to hierarchically
describable phenomenon and to their power, which is that of
a universal Turing machine. As discussed later, a grammar
in the form of an ATN (written in LISP) is more informative
than a grammar in Backus-Naur notation. As an example,
the first few lines of a grammar for an English sentence writ-
ten in Backus-Naur notation might look like the following:

sentence : := [subject] predicate
subject ::= noun-group
predicate ::= verb [predicate-object]

Figure 1 illustrates this same portion of a grammar when
it is written as transition nets (TNs).

These TNs (ignoring augmentations for the moment)
have more of a procedural presentation than the same gram-
mar in Backus-Naur notation. Because words such as “if”
and “transit-to-state” are included in the TNs, the process
that must take place in recognizing a sentence of input is
easily discerned. The Backus-Naur notation makes only a
static definition of the grammatical structure. Actually, the
words “if” and “transit-to-state” in the TNs are just space
fillers, and the “test-for-xxx” words (referred to here as
“states”) serve only to mark the right hand of each produc-
tion rule in the Backus-Naur form. Thus, no procedural

Abstract This article describes “yet another natural language
interface” (YANLI), a small portable natural language interface
based on augmented transition networks The system consists of a
parser, a set of augmented transition nets that represent a subset of
English, utilities to allow modifications to the system, and utilities
to access the output of the system. Included is a response generator
that allows the system to be used “as is.” Also presented is an
example of how the system can be applied.

40 THE AI MAGAZINE

AI Magazine Volume 8 Number 1 (1987) (© AAAI)

(sentence
(test-for-subject

(if subject transit-to-state test-for-predicate
(if t transit-to-state test-for-predicate))

(test-for-predicate
(if predicate transit-to-state win))
(if t lose)))

(subject
(test-for-noun-group

(if noun-group transit-to-state win))
(if t lose))

(predicate
(test-for-verb

(if verb transit-to-state
test-for-predicate-object))

(if t lose))
(test-for-predicate-object

(if . . .

Figure 1. Example of a Grammar in the Form of a
Transition Network.

meaning is attached to these TNs that is not implicit in the
Backus-Naur grammar; one can be converted directly into
the other. Still, the form of TNs assists a person with the
construction of a grammar by making it easier to conceptual-
ize the process that is to take place. The process implied by
the form and content of TNs is carried out by the parser.

The Parser

The parser works by traversing the TN list and making tran-
sitions as appropriate. For instance, the parser evaluates the
second argument in a list headed by an “if” as a new TN to be
traversed; so, in figure 1, the words subject and predicate
following the “if’s indicate to the parser that it should now
traverse the TN of that name. Proceeding in this manner, the
parser must eventually arrive at a TN that tests a word of
input. If the word exhibits the proper feature (for example, is
a noun where a noun is required, which is information found
in a dictionary provided by YANLI), then the parser pops
back to the previous TN reporting success (win). However,
if the word does not pass the test, the parser pops back report-
ing failure (lose). Now, the parser continues in the manner
implied by the if. In the event of a win, the traverse proceeds
to whichever state is indicated after the transit-to-state word
of the if statement. In the event of a lose, the parser proceeds
to the next if list in the TN. If there are no more if lists, it pops
back again reporting “lose. ” In any given TN, the parser
must eventually reach the win or lose state or run out of if
lists. Inevitably, the parser must return to the TN from which
it began in either a win or a lose condition, The win indicates

that the words of input seen during the traverse were a sen-
tence of the grammar, and a lose means the words were not a
sentence of the grammar. Thus, what YANLI recognizes as
acceptable, is defined by the grammar represented by TNs.
A sentence of the grammar need not be a correct English
sentence, but simply a structure that should be recognized.
For example, a tutoring system might ask, “Do you under-
stand the problem?” and the student might respond, “not
really. ” Although the response is not a sentence, the system
would expect such a response, and the grammar would be
defined to accept it. The English recognizing networks sup-
plied with YANLI are similar in appearance to the ATN
shown in figure 2. To make the process that is to occur as
explicit as possible, notations such as (np/ (cat det . . .)),
(jump np/ . . .), and so on, have been dropped in favor of
descriptive phrases.

The parser, operating on TNs, is capable only of recog-
nizing a sentence of the grammar. To be useful, TNs must be
augmented with the ability to perform actions. Providing
TNs with this ability requires the addition of some extra ele-
ments to the TN lists. These extra elements will be inter-
preted as Lisp symbolic expressions, or s-expressions. S-
expressions are evaluated when and if the parser encounters
them in the traversal of ATNs (see figure 2). When evalu-
ated, an s-expression always returns a value (although the
main purpose might be to cause some side effect).

f -

(sentence
(test-for-subject

(if subject transit-to-state test-for-predicatl
(if t transit-to-state test-for-predicate

but-first
(addr 'comments 'no-subject))

(test-for-predicate
(if predicate transit-to-state win

but-first
(print "It's a sentence"))

(if t transit-to-state lose))))

Figure 2. An Example of an Augmented Transition Network.

The addition of the element “but-first” to an if list sig-
nals the parser to look for s-expressions to execute. In the
figure, a return to the previous ATN from the test-for-
predicate state (win) results in “It’s a sentence” being
flashed on the screen, and, significantly, if the parser had
failed to find a subject in “test-for-subject,” then “no-
subject” would have been added to the property list of “sen-
tence” under the register “comments. ” At a later time, this
register can be accessed, and it can be deduced that the sen-
tence is a command or a question. It is useful to be able to
issue messages to the screen during a parse, but it is more

SPRING 1987 41

. . . A problem in natural language-processing
is determining when the time is appropriate to
perform syntactic and semantic processing . . .

important to be able to deposit messages at different times
during the parse to be read at a later point in the parse or after
the parse has concluded. The augmentation makes the pars-
ing system powerful enough to do anything that can be done
by high-order (third generation) programming languages.

As the parser proceeds through ATNs, it constructs a
tree by joining, as limbs, those subtrees from which it returns
in the win state. Upon returning to the starting ATN, it has
constructed a tree of nodes that represents the structure of the
input sentence it has just read. Thispnrse tree is the output of
the parser and contains all the information that the parser has
been able to gather about the sentence by matching it to the
grammar represented by ATNs. The tree structure consists
of nodes that contain named registers. The registers can con-
tain any information about the input that the parser, follow-
ing the pattern of the ATNs, was able to deduce. The content
of the parse tree thus created depends completely upon how
carefully and for what purpose the ATNs were constructed.
The purpose may be as simple as recognizing a sentence of
the grammar or as difficult as understanding the semantics of
that sentence. The purpose of YANLI’s ATNs is to discover
the syntactic structure of the input sentences (as well as it can
without using world knowledge) and to make the elements of
that structure easily accessible to other programs, in particu-
lar to make these elements available to the response genera-
tor.

A problem in natural language processing is determin-
ing when the time is appropriate to perform syntactic and
semantic processing: Should the syntactic processing occur
first with a separate semantic parse later, or should both
kinds of parsing be done at the same time? Arguments (and
parsers) can be made for both sides. It would be impossible
to write a complete grammar for common English without
providing for semantic analysis. For instance, the phrase
“have the doors closed” can be interpreted either as the com-
mand “You have the doors closed” or as the question “Are
the doors closed?” The meaning of the phrase, which must
be determined from the context in which the phrase is issued,
is crucial to the way it is parsed. Thus, the requirement exists
that knowledge of the situations in which this phrase might
occur, be available to ensure a correct syntactic parse. How-
ever, building a grammar for common English and a parser
which can take advantage of world knowledge so that ambi-
guities can easily be handled is difficult, and the result of
such a project would be an unwieldy and impractical natural
language front end (at least on existing machines).

Fortunately, for every ambiguous statement, there are
many semantically equivalent statements that are not ambig-
uous. By restricting conversations with computers to unam-

biguous or easily disambiguated and simply structured sen-
tences, useful grammars which do not rely on world
knowledge and which are comfortable for people to use can
be built. This flexibility of English is good because for a
small natural language interface such as YANLI, space and
time considerations require that the parser conduct a mostly

syntactic parse. YANLI’s built-in ATNs contain very little
knowledge that does not pertain to the syntax of English
grammar (however, there is no reason why semantic knowl-
edge cannot be added as needed). When YANLI is used with
its ATNs unmodified and without the response generator, an
analysis of the parse tree generated during a parse is neces-
sary to be useful.

Utilities
ATNs provided with YANLI cause a number of items to be
stored in registers attached to the nodes of the parse tree;
these registers serve to direct the parse and to capture the
syntactic structure of the input. These registers include items
such as children nodes, parent nodes, parts of speech, pars-
ing data, input words, clause sequence, sentential con-
structs, number values, and comments. Although these reg-
isters save sufficient data for many analytical purposes,
other things, especially semantic information, might be use-
fully included for particular purposes. The parser utilities
such as addr, setr, setf, getr, getf, movr, and peek (look
ahead) which are common in the literature (see, for example,
Christaller 1982; Finin 1977; Harris 1985) and which pro-
vide the ability to add registers and data to nodes and to test
the data and the input are available in YANLI so that the
ATNs supplied with it can be modified to provide desired
additional data collecting and testing. Furthermore,
YANLI’s ATNs can be completely replaced or used as part
of other ATNs that conform to the YANLI ATN structure.

To facilitate the construction of ATNs in a form amena-
ble to YANLI’s parser, a program is provided as a guide.
The program is activated by “(make-atn)” and presents a
template of an ATN so that it is only necessary to fill in the
blanks. The output is an ATN directly usable by YANLI. To
aid in debugging, YANLI can be run in a mode that displays
every step in its parsing process.

To provide access to the parse tree, two display func-
tions, two access functions, and a storage-retrieval facility
are provided. The access functions are “poll” and “ex-
tract.” Both functions traverse the parse tree generated by
YANLI gathering information. During the parsing process,
YANLI stores information in the registers of the nodes of the
parse tree. This information, as indicated earlier, can range
from information about the part of speech of a word of input
to the sentential structure of the entire input. Poll looks for
the contents of a specific register from a specific node on the
tree and extract gathers the contents of a specific register
type along a given branch of the parse tree. For instance, the
parse tree for the sentence “The condemned man ate a hearty

42 THE AI MAGAZINE

start

sentence72
/ / \ \

subject75 verb82 predicate-object@ prepositional-phrase91
I I I / \

noun-group76 ate noun-group86 in noun-group95

/ I \ / I \ / \
The condemned man a hearty meal his cell

Note: The digits attached to the parts of speech are appended by YANLI and make each node of the parse tree unique.
Figure 3. Example of a Parse Tree.

meal in his cell” could be represented graphically as shown
in figure 3.

In words, the function call

(extract ‘word ‘subject ‘start)

means extract the contents of the register ‘word from every
node of the subtrees whose root nodes are of type ‘subject
and do this for all the subtrees in the tree whose root name is
‘start. For figure 3, the list “(The condemned man)” is re-
turned. The function call

(poll ‘word ‘subject ‘start)

means extract the contents of the register ‘word from the
nodes of type ‘subject and do this for all the nodes in the tree
whose root node is ‘start. In this case, because YANLI does
not attach a register for words to nodes of type ‘subject, no
words are returned. By combining these functions, any part
of the parse tree can be accessed; for example:

(extract ‘word

(car (poll ‘noun-group ‘predicate-object ‘start))
I start)

returns “(a hearty meal),” because the embedded function
call

(poll ‘noun-group ‘predicate-object ‘start)

returns “(noun-group86)” as the noun group in the noun-
group register attached to the predicate-object node. Then,

(car ‘(noun-group86))

evaluates to “noun-groupS6” so that the final evaluation is
of

(extract ‘word ‘noun-group86 ‘start) .

This evaluation returns a list of all the words in noun-
group86, that is, “(a hearty meal).”

Because YANLI is designed to run on standard DEC
terminals, a graphic representation similar to that shown in
figure 3 is difficult to produce and wastes screen space. So

that the parse tree can be displayed, the function “write-
parse” is provided. It is called with one argument that repre-
sents the node at which to begin, for example, “(write-parse
‘start),” and displays the parse tree on the screen in an out-
line form (see figure 4) that is equivalent to the tree in figure
3.

start
sentence..00072

subject. .00075
noun-group-type-l..00076

the
condemned
man

verb-group..00082
ate

predicate-object..00085
noun-group-type-l..00086

a
hearty
meal

prepositional-phrase..00091
in
noun-group..00095

his
cell

nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil
nil

Note; Comments are written at the right when found attached to the node;
otherwise, “nil” is written

Figure 4. Display of a Parse Tree in Outlirze Form.

Activating YANLI
The functions “verbose” and “talk” activate YANLI in a
mode that causes the parse tree, its associated node list, and
all the values attached to these nodes to be stored in a file.
Stored data can be retrieved later using the function “(re-
trieve filename), ” where “filename” is normally the default
storage name “parsout.dat”. The function verbose causes

SPRING 1987 43

each step of the parse to be displayed, and talk issues occa-
sional prompts for input but otherwise remains silent. An-
other function, “silent, ” can be used to embed YANLI in an
application; it returns nothing to the screen and stores no
information, but it does generate the parse tree that can be
accessed using poll and extract. Each of the calls can be made
with an optional argument, “atn,” where atn is the name of a
foreign ATN. For instance, “(verbose ‘my-atn)” activates
YANLI specifying that “my-atn” is to be used in place of
ATNs provided with YANLI.

Two other modes of YANLI activation are “respond”
and “build-responses.” The call build-responses allows the
creation of a response and the association of this response to
the input if no response has already been associated with the
input. It prompts for input and provides several displays to
guide the construction process. The function respond waits
silently for input from the terminal, parses this input, and
makes a response if one has been provided or makes a default
response. The function respond is equivalent to silent in that
it can be used as an embedding mechanism for applications
which use the response-generation feature of YANLI. The
final modes for activating YANLI are “(respond-to input
btnl> , ” “(talk-to input t/nil [atn]),” and “(silent-to input
[atn]). ” These modes are the same as the “to” less version of
the same function except that input is accepted from a pro-
gram (the “input” argument) instead of the keyboard.

Preprocessor
The input to YANLI is processed before being passed to the
parser. During this preprocessing phase, all capital letters
are converted to lowercase letters, sentence punctuation is
recognized and replaced by markers attached to the property
lists of the words ending sentences, contractions and abbre-
viations are replaced by their full-word equivalents, num-
bers are replaced by variable names to which the numeric
value is attached as a register (so that number values can be
treated as data in the same manner as word features), some
sentences with ellipses are made whole, and short idiomatic
expressions or terse ungrammatical responses are converted
to full sentences with equivalent meaning. The conjunctions,
abbreviations, and expression equivalents are maintained in
a table separate from the compiled YANLI code so that addi-
tions can be made to the set of entries provided. During pre-
processing, if a word is detected that is not in the dictionary,
the user is prompted for a definition, which can, if desired,
be made a permanent entry in the dictionary.

The Response Generator

The parser and associated tools have been used to construct a
response generator so that YANLI can be used as both the
input and the output interface for application programs. The
action of the response generator is to produce a pattern from
a given input sentence and allow this pattern to be modified
as a template for matching other similarly formed sentential

44 THE AI MAGAZINE

inputs. A hand-built response can then be associated with the
template so that it is invoked whenever a sentence which
matches the pattern is detected. The response can be con-
structed to depend upon the elements which fill in the slots in
the template so that it is customized to the particular words of
the input. Furthermore, the response can be executable s-
expressions or a combination of text and s-expressions, and
the s-expressions can contain the elements that fill in the slots
in the template. Each template and the responses it contains
are stored under a unique name that describes the structure of
the template. This storage facility creates a file system, each
file of which matches a generic kind of sentential input and
contains the correct responses for variations on these kinds
of input. These response files need not be loaded into mem-
ory until the parser detects a sentence of this type. For a
response generator of this kind to be effective, YANLI need
only be able to create unique patterns for the sentences that
are input to it. Knowledge contributing to the construction of
a correct response comes from the person building the re-
sponse or a program supplied by that person. The response
generator works as shown in figure 5. This figure illustrates
that a possible application of YANLI is as a natural language
interface for UNIX.

1)

2)
3)

4)

5)

6)

YANLI is activated with the command “(build-
responses)“.
YANLI waits for input, reads it and parses it.
If there is already a response for that particular input then
the program just makes the response and goes to 2.
YANLI displays a table of most of the words of the input
classified as to sentence structure and part of speech.
YANLI requests an appropriate response for this input. A
response may be constructed that uses the parts of speech
as variables or that contains executable LISP expres-
sions. You may quit.
YANLI displays the table again and asks for modifica-
tions to the original input. These modifications may in-
clude wildcards, indicating that any word should be ac-
cepted, or a list of alternative acceptable words. YANLI
goes to 5.

For example:
comments are in italic

-(build-responses) ‘ ’ + ” is the Franz Lisp prompt
..(whoareyou?) “ ” is the YANLIprompt . .

start YANLI
we will build an answer to
this query. YANLIparses and
presents a table. This is only
part of the 21 categories that
would normally be displayed

sbj-det _
sbj-adj _
sbj-noun YOU

vrb-aux -
vrb-wrd are
vrb-adv -

po-det -
po-adj _
po-noun who

The input is displayed
according to part of speech.

Subject, verb andpredicate-
object words are grouped.

after the user enters a ‘ ‘c “for continue the program offers an
opportunity to look at instructions on how to make a response
and then gives the prompt ‘ ‘. . ” to enter the response.

..(I am YANLI\", Yet Another Natural Language
Interface\",

(*process-send "whoami"))
I

Zhe response is made. “*process-send” is simply a LISP
command that sends a UNIX command out to the UNIX system.
In this case “whoami ” causes the user name to be returned.

I have read
I am (YANLI,(Yet Another Natural Language /Interface,]
(*process-send "whoami")
Is this ok? ok
You may now modify the input and responses.
m=modify, d=enter default response, q=quit modifying
. -9
c=continueresponses, q=quit

::;"h 0 are you?)
I am YANLI, Yet Another Natural Language Interface,
glasgow
c=continue responses, q=quit
. .9

aLines displayed in reverse video head categories.

Note:Namingconventionsarediscussedinthesubsection Classification of
Input

Figure 5. Example of How the Response Generator Works.

An Application of YANLI

One recent application of YANLI is as a parser of arithmetic
word problems. These problems are to be included in a prob-
lem bank that is part of an arithmetic word problem-solving
tutorial system. The system is being developed by the Train-
ing Arithmetic Problem-Solving Skills (TAPS) project un-
der the direction of Dr. Lois Hawkes and Dr. Sharon Derry
at Florida State University. Part of the project requires that
the tutoring system be able to solve arithmetic word prob-
lems by recognizing each problem as one or more schemas
for which a solution method is known by the system. The aim

verify the response.

We ‘11 quit for now to test
the response just entered.
make the query again.
YMLI knows the answer now.

is to help the student recognize the schemas and learn how to
solve the problems with the given methods. YANLI’s part in
the system is to parse the arithmetic word problems and com-
pile the information in the parse tree into a form that can be
used by a semantic analyzer (YANLI will also play a role in
the interface with the student).

The semantic analyzer determines the schema to which
the problem belongs, and this information along with values
from the parse tree is then given to a problem solver. The
information required by the semantic analyzer is well speci-
fied so that all YANLI must do is extract the information and
present it in a list. Although this process could be performed
interactively during a tutoring session, the intention is to pro-
vide the means of entering new problems in preprocessed
and readily accessible form into the system’s problem bank
to be drawn upon during tutoring sessions.

SPRING 1987 45

The system is aimed at grade school children and poses
problems such as the following (which is chosen from the
simplest variety): Joe had 3 marbles. Tom had 5 marbles.
Then, Joe gave Tom his marbles. How many marbles does
Tom have now?

YANLI is capable of parsing multiple sentences and
creates a register named “clause-sequence” into which a list
of the types of the sentences are put. For this set of sentences,
the register and contents look like the following:

(. . . clause-sequence
(declarative declarative declarative

how-much) . . .) .

This register provides an obvious signature for a word prob-
lem (which would be important if YANLI were to play an
active part in the system). The parse tree is converted by the
response generator into the pattern shown in figure 6 (omit-
ting categories into which no words fall for the sake of brev-
ity) ,

sbj-noun Joe+Tom+Joe+tom

vrb-wrd
vrb-adv

had+had+gave+does+have
now

w-mp
pp-noun
po-det
po-adj
po-noun
po-rl-val

tom
many
his
marbles+marbles+marbles+how+marbles
34

Figure 6. Example of a Pattern Resulting from Conversion
of a Parse Tree by the Response Generator.

The data required by the semantic analyzer are specified
for each sentence in the problem. The information required
from sentence 1 is the following:

(((verb-tense verb-root)
(subject-type subject-noun)
(predicate-object-noun

predicate-object-quantity)) .

The second and third sentences supply much the same infor-
mation, but the last sentence requires the following:

((question-type)
(predicate-object-noun)
(subject-type subject-noun)
(verb-tense verb-root))) .

All the elements of a pattern can be used in the response
either individually or as a group. For instance, by including
“sbj-noun” in the response, the textual list “joe tom joe tom”
is produced at the point of substitution; “(sbj-noun)” pro-
duces the Lisp list “(ioe tom joe tom)“; and “(sbj-noun 3)”
produces the third noun, or “joe.” The items of information
other than parts of speech can also be accessed; for instance,
the tense of the second verb can be selected using “(verb-
tense 2) ,” which produces “past.” Thus, a response consist-
ing of any information gathered during the parse, even one
that uses the information in s-expressions, can be con-
structed. An appropriate response to the example in figure 6
is to set a previously created global variable, say “data,” to
the list of lists. The constructed response, in part, is the fol-
lowing:

((setq data (list (list (verb-tense 1) (verb-root 1))
(list (sbj-type l)(sbj-noun 1))
(list (po-noun l)(po-rl-val 1))) . . .

(list I (how-many) (predicate-object-noun)
(list (sbj-type 4) (sbj-noun 4))
(list (verb-tense 4)(verb-root 4)))),

which, when activated as a response causes the value of data
to become the following:

(((past have)(name joe)(marbles 3))

((how-many)(marbles)(name tom)(present have))) .

YANLI allows you to modify the input and provide a re-
sponse for the modified input. If a wild card value were sub-
stituted for “joe,” “tom,” “marbles,” “3 ,” and “5” and if the
response were kept the same, then many equivalent but
different-sounding problems could be parsed correctly for
the semantic analyzer.

Classification of Input
The name shown in the displays in the figures is generated by
classifying the nouns and verbs of the sentences that are input
to YANLI. The intention is to partition possible inputs into
named generic categories so that responses to similar senten-
tial structures can be stored together in secondary memory.
These responses need not be loaded into random-access
memory until required. The information about each sentence
of the input (see figure 7) is used in the classification scheme.

46 THE AI MAGAZINE

1) context (supplied by the user)
2) type sentence (d =declarative, q = interrogative, i = imperative,m = multiple sentences)
3) subject type (n=name, p=pronoun, o=object)
4) verb-root (the actual root form of the verb)
5) prepositional-phrase-type (n = name, p = pronoun, o = object)
6) predicate-object-type (n=name, p=pronoun, o=object)

Figure 7. Sentential Information Used in the Classification Scheme.

If there is no information for a category, then an under-
score character is used in place of the character that is other-
wise supplied by the scheme. When there are multiple sen-
tences or multiple items in a category, each item contributes
a character (or word in the case of context or verbs) and is
separated by a “ + ” from the other items in the category. In
the tutoring example, the fact that no context was supplied
forces the first character in the name to be the underscore
character. The type sentence is “m” for multiple sentences.
The subject type is “(name name name name),” which pro-
duces “n + n + n + n” in the next part of the name. The other
items in the classification list contribute their part so that we
finally derive the name
’ mn+n+n+nhave+give+do+haveno+o+o+o+o’. -
For ambiguous sentences or phrases such as “have the doors
closed,” the device can be useful. The main purpose, though,
of the context category is to allow for different responses in
different situations, even when there is no mistake about
meaning. Such an instance can occur, for example, when a
student (or computer user) asks for help. The help given by a
computer program should depend upon the situation.
YANLI initializes a global variable named context to value
“ 7, . This variable can be changed at any time by the user’s

-t(setq context ‘sit-a)
--f (build-responses)
. . (help)

..((help ‘a))

. . 9
+(setq context ‘sit-b)

+(build-responses)
. . (help)

..((help lb))

. . 9

Figure 8. Example of the Construction of a Context Sensitive Help Function.

program so that the current context is reflected in responses
from YANLI. Assume that there exists a help function,
“(help x) ,” which accesses different help libraries named in
its argument x. An example illustrating the construction of a
help function is given in figure 8.

If the application program keeps track of the situation by
setting the context variable to “sit-a” or “sit-b,” the correct
help is given whenever “(help)” is input. If the context is set
to neither sit-a nor sit-b, then a default response is generated.

Default Responses
When an input to YANLI is not recognized by the grammar,
YANLI simply prompts for a different input or a quit signal.
When the input is recognized but YANLI does not know a
proper response, three default-response levels are provided.
A default response can be given for each generic sentential
input. This default is activated when an input falls into a
category that does not have a proper response supplied for it.
A default response of this type can be entered or changed any
time that a response is being built by “(build-responses).” If a
category has no default response specified for it, and input is
given for which no response is available, then YANLI re-
plies with a response that it finds in the file-system file
“default-answer.” This file can contain any textual response.

The context classification is set.
Xhe response generator is activated.
The word “help ” is the input sentence.
YANLI responds with a table in which
the name is “sit-aiphelp “. (omitted)
The only response will be to activate
help library “a “. Quit to build next.
Set the situation in which help library
“b ” is appropriate.
Turn the response generator on.
Table is again presented. This time
the name is “sit-biphelp “. (omitted)
Again, the only response-is to activate
the help. Quit.

SPRING 1987 47

Finally, if there is no default-answer file in the file system,
YANLI replies, “I’m not programmed to respond to that.”

Summary
YANLI is a small (about 4000 lines of code) versatile tool for
building a customized natural language interface for pro-
grams in the Lisp environment. Although YANLI does not
depend upon or use world knowledge, the ATNs that define
its grammar can be modified to contain such knowledge. If
they cannot be modified, new ATNs can be built using
“make-atn.” The addition of a response generator makes
YANLI useful even in the absence of world knowledge. The
response generator makes the parts of the input structure
easy to access and makes possible the classification of sen-
tential structures. Because of this ability, responses based
upon the input can be stored in secondary memory for recall
when needed. The responses can consist of text, executable
expressions, or a combination of the two. The executable
expressions can contain as data any information compiled by
the response generator. These features make YANLI a use-
ful natural language front end for a variety of applications, in
particular those applications which have their own knowl-
edge representation schemes.

Acknowledgments
I want to thank Lois Hawkes for her help in writing this paper
and for her support and suggestions.

References

Christaller, T. 1982 An ATN Programming Environment In Augmented
Transition Networks, ed L Bolt, 71-148 Berlin: Springer Verlag

Finin, T W 1977 The Planes Interpreter and Compiler for Augmented
Transition Networks. In Augmented Transition Networks, ed L Bolt,
1-69 Berlin: Springer Verlag

Harris, M D. 198.5. Introduction to Natural Language Processing Reston,
Va : Reston Publishing.

Johnson, S C 1984. YACC: Yet Another Compiler-Compiler In
ULTRIX-32 Supplementary Documentation, Volume II, 3-l 12 Nashua,
N H. : Digital Equipment.

Woods, W A 1970. Transition Network Grammars for Natural Language
Analysis. Communications of Association of Computing Machinery
13:591-606.

“Complete?”
“But of course! I speak of The
Spang Robinson Report on AI!”
“Call (415) 424-1447 for completeness.’

For free information, circle no. 33

48 THE AI MAGAZINE

L

TRW Needs Experts
in Artificial
Intelligence

A company called TRW is teaching machines how to help
make decisions. We’re programming the experience and
special knowledge of experts into computers.

These machines will tell us what those experts think, and
why. By working together, people will teach their machines to
become even smarter. And vice-versa.

TRW is looking for your expert knowledge, to help perfect the
art of artificial intelligence To help bring tomorrow’s solutions
closer. Tomorrow is taking shape at a company called TRW.

System Development Division
Redondo Beach, CA
At TRW’s System Development Division in Redondo Beach,
CA, we’re involved with a variety of projects including the ap-
plication of Expert Systems, Building the Software Develop-
ment Environment of the Future, Battle Management
Systems, Sensor and Mission Data Processing Systems, Mis-
sion Definition, System Engineering, Space Exploration,
Aircraft Ground Control Systems, and Telecommunications.

We have openings for individuals with a strong grounding in
artificial intelligence to assess the applicability of expert
systems and other artificial intelligence technology to various
aspects of large hardware projects. Areas of interest include
spacecraft anomaly resolution, computer security and com-
puter system fault management. Please send resumes to:
Gene Goodban, TRW SDD, Dept. Al, 02/2761, One
Space Park, Redondo Beach, CA 90278.

System Engineering &
Development Division
Redondo Beach, CA
The SEDD Technology Center in Redondo Beach, CA, is
delivering real-time Al systems using state-of-the-art LISP
machines and tools. We are building operational systems
incorporating planning, inference architectures, distributed Al,
and the mixing of Al and operations planning algorithms

If you are skilled in problem understanding and decomposi-
tion, frame or blackboard representations, OPS, Al planning
systems or natural language understanding, you can help us
continue to lead in delivered, operational Al systems. Please
send resumes to: E. Houser, TRW SEDD, Dept. Al,
13415817, One Space Park, Redondo Beach, CA 90278.

TRW’s comprehensive employee compensation package in-
cludes professional amenities that are among the best in our
industry. Included are medical/dental/vision care coverage,
liberal stock savings programs, Christmas week shutdown,
educational assistance, employee seminars and colloquia, a
progressive retirement program, flexible work hours and more.

Equal Opportunity Employer
Principals Only, Please
U.S. Citizenship Required

