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Origins 

The idea of developing a tutoring program from the 
MYCIN knowledge base was first described by Ted Short- 
liffe (1974). In fact, it was the mixed-initiative dialogue of 
the SCHOLAR teaching program (Carbonell, 1970) that 
inspired Shortliffe to produce the consultation dialogue of 
MYCIN. He conceived of it as a question-answer program 
in SCHOLAR’s style, using a semantic network of disease 
knowledge. Shortly after I joined the MYCIN project in 
early 1975, Bruce Buchanan and I decided that developing 
a tutoring program would be my thesis project. 

The GUIDON program was operational in early 1979. 
This review describes the key ideas in GUIDON and the 
important developments of the following six years as re- 
search continued under funding from the Office of Naval 
Research (ONR), the Defense Advanced Research Projects 
Agency (DARPA), and the Army Research Institute. The 
first three years were covered briefly in an earlier report 
(Clancey & Buchanan 1982). In general, only publications 
from this project are cited; many other references appear 
in the cited publications. 

Overview: Introduction to the Programs 

Figure 1 shows the relationship between programs we 
have constructed in the past six years, including MYCIN 
and EMYCIN, which served as the foundation. 

The medical consultation system, MYCIN, was gener- 
alized to EMYCIN (van Melle, 1979). The tutoring sys- 
tem, GUIDON, was designed to work with any EMYCIN 
knowledge base (Clancey 1979a, Clancey & Letsinger 1984, 
Clancey 1982a). 

NEOMYCIN, another medical diagnosis program, ex- 
pands MYCIN’s disease knowledge to include competing 
alternatives, for example, diseases that might be confused 
with meningitis. This provides an opportunity for teaching 
diagnostic strategy. MYCIN’s strategy of exhaustive, top- 
down refinement is sufficient for the small set of diseases 
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it knows about, but it is unrealistic for medical diagnosis 
in general. Using NEOMYCIN, we can convey the more 
complex processes of forming hypotheses, grouping com- 
petitors discriminating among competitors and reasoning 
causally. A second important idea in NEOMYCIN, distin- 
guishing it from other expert systems, is that the inference 
procedure for diagnosis is represented in a well-structured 
language, separate from the medical knowledge. This fa- 
cilitates explanation and student modeling. 

HERACLES is the generalization of NEOMYCIN, 
standing for Heuristic Classification Shell (Clancey 1985a). 
By analogy with EMYCIN, we might say that HERACLES 
is “NEOMYCIN without the knowledge,” but there is a big 
difference. We retain NEOMYCIN’s diagnostic procedure; 
it is reused and adapted in new applications. 

GUIDON2 is a set of tutoring systems that work for 
any HERACLES knowledge base; it is currently being de- 
veloped with NEOMYCIN. In the GUIDON2 family of 
programs, we are exploring different forms of student and 
teacher initiative (Clancey 1984a). 

Guidon: “Transfer of Expertise” 

In GUIDON (See Figure 2), we held the MYCIN knowl- 
edge base constant and considered the additional knowl- 
edge about teaching that would provide a good tutoring 
system. We were especially interested in teaching from dif- 
ferent knowledge bases using one program. This exciting 

Abstract 
I review the research leading from the GUIDON rule-based 
tutoring system, including the reconfiguration of MYCIN into 
NEOMYCIN and NEOMYCIN’s generalization in the heuristic 
classification shell, HERACLES. The presentation is organized 
chronologically around pictures and dialogues that represent 
conceptual turning points and crystallize the basic ideas. My 
purpose is to collect the important results in one place, so they 
can be easily grasped. In the conclusion, I make some observa- 
tions about our research methodologv. 
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NEOMYCIN > HERACLES -----+ GUIDON2 

MYCH ------+ EMYCN -----+ CUDON 

/\ c 

BUFF SACON 

Figure 1. A Map Showing the Evolution of Research. 
NEOMYCIN, a reconfiguration of MYCIN, is also a medical 
consultation program. Research from both programs follows 
a parallel path: generalizing the system into a knowledge sys- 
tem shell, applying the shell to develop knowledge systems in 
other domains (PUFF, SACON, CASTER), and developing an 
instructional system compatible with any knowledge system de- 
veloped from the shell. This paper describes the key ideas in 
GUIDON and the upper path of research. 

idea was motivated by the EMYCIN design that allows 
putting in a different knowledge base and carrying on a 
consultation in a different domain. GUIDON’s teaching 
knowledge is separate from the medical knowledge; so, it 
is reusable and adaptable to new applications. This is a 
significant advance over traditional computer-assisted in- 
struction methodology that requires writing a new pro- 
gram for each case to be discussed. We now have two 
kinds of generality: First, this tutor can discuss any case 
that MYCIN can solve. Second, WC can swap in a different 
knowledge base and discuss cases in another domain. The 
separation of the knowledge base from the procedures that 
interpret it is the important idea. 

Discourse Procedures: 
Alternative Dialogues and Transitions. 

Another successful aspect of GUIDON’s design is the rep- 
resentation of the tutoring knowledge. This knowledge can 
be shown as a transition diagram, where each node rep- 
resents a situation within a tutoring dialogue (See Figure 
3). The program has a list of rules for reasoning about 

GUIDON 

Consultation 
US3 Student 

Figure 2. Guidon Teaches from MYCIN’s Knowl- 
edge Base. The MYCIN knowledge base, combined with 
an interpreter for applying rules and interacting with a user, 
forms a consultation program The same knowledge base is in- 
terpreted by teaching rules for interacting with a student in a 
case-method dialogue, constituting the GUIDON instructional 
program. MYCIN’s rules are ranked, relating them to years of 
medical experience (for modeling the student and selecting new 
material for the student to learn). Additional annotations indi- 
cate subtype and causal relations among rule clauses and relate 
the rules to a general description of the infectious process which 
is used by GUIDON to provide more concise explanations of 
MYCIN’s reasoning. Within a few limits, GUIDON can discuss 
any case that MYCIN or any EMYCIN program can solve. In 
conventional computer-assisted instruction, a new program is 
written for each cast. 

toring or t-rules, numbering about 200. We built the sys- 
tem very much like a traditional expert system, running 
cases and incrementally modifying the t-rules. When the 
program said something inappropriate, we modified t-rule 
conditions to change when that kind of remark would oc- 
cur. Similarly, GUIDON sometimes missed an opportunity 
to say something interesting. For example, if a fact can be 
inferred by definition, there is no need to go through a 
long dialogue, gathering data and forming hypotheses and 
so on; so we added t-rules to deal with this case, leading 
the program to give MYCIN’s conclusion or to ask for the 
student’s conclusion, depending on the model of what the 
student knows and the goals for the dialogue. 

what to do ai each step. For example, when GUIDON de- This works rather well, though it lacks a theoretical 
tects that a goal under consideration has been determined foundation. Arbitrary strategies are encoded in the tutor- 
(from MYCIN’s point of view), it selects from three al- ing rules. Building on the t-rule idea, Beverly Woolf has 
ternative transitions: presenting a conclusion, presenting added a hierarchical structure to the alternative dialogues, 
a summary, and asking the student to make a hypothesis couched in the terminology of discourse analysis. This rep- 
(Clancey 197913). resents in a more principled way the choices the program 

Each of these transitions is encoded by rules called tu- is making. (See Woolf & McDonald 1984.) 
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Figure 3. Dialogue Transition Diagram. Each node 
stands for a situation in a case-method dialogue, represented 
in GUIDON as a stylized procedure of ordered rules or a rule 
set, totalling 200 rules in 40 situations. For example, in pur- 
suing a goal explicitly agreed upon by student and program, 
the student can request more cast data. GUIDON can recog- 
nize the data as relevant to a subgoal, provide it as a set of 
related information (block), or determine that there is no need 
to ask (perhaps because the requested data can be inferred 
from known information). Arrows that loop back indicate that 
a situation may occur iteratively or recursively. For example, 
several related rules might be presented after a given rule is dis- 
cussed. The italicized labels indicate the basis for a transition: 
Economy, Domain logic, and Tutoring goals. 

Overlay Model: Evaluating a Student Hypothesis 

Perhaps the most interesting reasoning in GUIDON in- 
volves evaluating a student’s partial solution (See Figure 
4) (Clancey 1979c). In this example, the student says 
that the organisms causing the infection could be Diplo- 
coccus, Pseudomonas, or Neisseria. The program looks at 
MYCIN’s rules and sets up a consistent mapping. It uses 
double evidence, a history of interaction with the student, 
and a measure of rule difficulty to construct a consistent 
model. 

For example, suppose the student mentions Neisseria. 

GOAL : COVERFOR 

Figure 4. A Student Model Constructed by the 
Overlay Technique. The student states that the organisms 
causing the infection might be Diplococcus, Psuedomonas, 
or Neisseria. MYCIN rules that conclude about the organ- 
isms causing the infection are shown with associated patient 
data For example, rule 507 states that if the patient is be- 
tween 15 and 55 years old, then Diplococcus and Neisseria 
are organisms that therapy should cover. Circled values are 
missing from the student’s hypothesis (for example, E.coZi) or 
wrongly stated (for example, Neisseria). Dotted lines lead 
from rules the student probably did not use. m = evidence 
link that the tutor believes is unknown to the student. R and 
W = links to the right and wrong values the tutor believes are 
known by the student; ! = a unique explanation; the tutor 
knows of no other evidence at this time. ? = questionable, the 
tutor is uncertain about which evidence was considered by the 
student. For example, R? means that the student stated this 
value, it is correct, and more than one MYCIN rule supplies 
evidence for it. 

If MYCIN’s rules argue for and against this hypothesis, 
then the student might know the positive evidence, but 
not the negative evidence. GUIDON concludes in a simi- 
lar way that Pseudomonas is believed by the student be- 
cause the patient is burned-but not because of the white 
blood count (WBC) or because the infection occurred in 
the hospital (nosocomial)-given that the student didn’t 
mention the two other diagnoses associated with this ev- 
idence (E.coZi and Klebsiella). It’s a straightforward, log- 
ical analysis, demonstrating the value of production rules 
for indexing how facts are concluded and used in a pro- 
gram. 

The Sacon Tutorial: 
Experimenting with other Knowledge Bases 

Figure 5 shows an excerpt from a dialogue with GUIDON 
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using the SACON knowledge base. It graphically demon- 
strates the value of keeping GUIDON’s tutoring knowl- 
edge general: The same tutoring program can interpret 
SACON’s rules and discuss a structural analysis problem 
with a student. 

We must now determine whether the shape of the floor sec- 
tion (SW-STRWCTURE-I) is one of: the surface shapes. 
Here is some relevant data you could have asked for: the 
geometry of the floor section is planar, the modelling dimen- 
sionality of the @or section is 2, and continuum is one of the 
constructions of the floor section. 
What does this tell you about the shape of the floor section? 
** MEkP 
Can you conclude that the shape of the floor section is (sefect 
from the following): 
(1) beam-suggestive evidence (52) 
(2) semimonococque-suggestive evidence (.62) 
(3) not sheH---strong!y suggestive evidence (-.95) 
(4) plate-with certainty (1.0) 
** 4 
Yes, that’s right (see RULElOO). 

Figure 5: Excerpt of GUIDON Tutorial Using SACON 
Knowledge Base. GUIDON encounters an incomplete sub- 
goal in a rule that it’s trying to discuss with the student. A 
t-rule in the procedure for discussing an incomplete subgoal 
finds that the subgoal can be inferred by a definitional rule 
and then invokes the procedure for discussing definitional rules. 
GUIDON gives the student new information (the geometry, di- 
mensionality, and construction of the floor section), and then 
asks him if he can now infer the shape of the floor section. The 
student asks for help, and GUIDON converts the question into 
a multiple choice. Reasoning about the current problem state, 
text generation, and quiz construction and evaluation are all 
accomplished by general t-rules that were originally developed 
in the context of a medical diagnosis dialogue. 

This interaction plausibly captures some of the behav- 
ior we’d like to see in a teaching program. It was produced 
entirely by t-rules that were written for medical examples 
and then just plugged into SACON. It took about an hour 
to make it all work, with a few modifications to cope with 
syntactic variations in SACON’s rules. For further dis- 
cussion and an example from PUFF, see (Clancey 1979a, 
Clancey 1982a). 

Inadequacy of Mycin: 
Implicit, Nonpsychological Strategy 

We now consider the analysis that led to NEOMYCIN. 
What problems arise in using MYCIN for teaching? 

Figure 6 shows an excerpt from an experiment with 
GUIDON; this was a pivotal example for me. GUIDON 

indicates that the the age of the patient, 34, is not ev- 
idence for Neisseria. Yet, a rule in the knowledge base 
says, “If the age of the patient is between 15 and 55, then 
Neisseria is one of the organisms.” I was rather surprised. 
This rule is consistent with the student’s hypothesis and 
justification. 

The problem is that some of the information in the 
premise of this rule is still unknown, so MYCIN can’t ap- 
ply the rule. Specifically, there is no indication that the age 
of the patient is causally related to Neisseria and that the 
age would be sufficient in itself to suggest this conclusion. 
GUIDON has no way of knowing that one of the clauses 
is more directly associated with the conclusion than any 
other clause. To make this clear, consider another rule: “If 
the age of the patient is greater than 17 and the patient 
is an alcoholic, then Diplococcus might be causing the in- 
fection.” Considering this rule and knowing only that the 
patient is 34 would not make you think of Diplococcus. 
Here the age clause controls the application of the rule, 
preventing the program from asking whether a child is an 
alcoholic. The causal relation is between alcoholism and 
Diplococcus. 

The student’s knowledge and the procedure being used 
are very different from MYCIN. The student has probably 
formed a hypothesis just hearing the age of the patient and 
some tentative information (not shown in the excerpt) that 
suggests meningitis. MYCIN will only conclude Neisseria 
when, from its point of view, it has exhaustively consid- 
ered the evidence for meningitis and considered whether 
it is bacterial and so on. MYCIN does a top-down search 
through the set of diseases, but the student has “triggered” 
meningitis from just partial information, with no direct ev- 
idence for an infection or bacterial infection at all. 

To properly respond to the student, we would have 
to represent the association between age and Neisseria 
explicitly and separate out the search procedure. How- 
ever, to recognize what strategy the student is following, 
we’d have to encode a different strategy, expressing why 
it makes sense to think about Neisseria just knowing the 
age and some tentative evidence for meningitis. The very 
idea of a hypothesis is foreign to MYCIN. 

The Idea of Strategy: From “tracing a parameter” 
to “focusing on a hypothesis” 

Figure 7 and Figure 8 illustrate that at a certain level 
MYCIN’s reasoning is arbitrary, lacking the focus on hy- 
potheses we find in people. People group their questions 
logically; they don’t jump around without reason. How- 
ever, MYCIN does not focus on a particular hypothesis as 
it goes down through its (implicit) tree of diseases. When 
it considers types of meningitis or organisms, the types 
are considered arbitrarily, based on the order in which 
rules were entered into the program. The program pro- 
ceeds systematically from infection to meningitis to bacte- 
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What are the organisms which might be causing the infec- 
tion? 

>> NEISSEF%IA-MENINGITIDIS 

What facts about this case tell you that Neisseria-meningitidis 
is one of the organisms which might be causing the infection? 

>> AGE 

>> 

- > The fact that the age of Pt538 is 34 years is not evidence 
for the conclusion that Neisseria-meningitidis is one of the 
organisms which might be causing the infection. 

Do you have a question? 
** 

Figure 6: Problematic Excerpt of GUIDON Tutorial 
Using MYCIN Knowledge Base. The student offers to 
state a partial solution (student input follows “>>“). The pro- 
gram responds by rephrasing the current topic as a question, 
“What are the organisms which might be causing the infec- 
tion?” When the student says Neisseria, GUIDON checks and 
finds that MYCIN has made no conclusion at all up to this 
point. A t-rule prompts the student to justify his hypothesis. 
The student says that he is considering the age of the patient. 
It’s a lost cause for the student, however; whatever he says 
next GUIDON will reply, “No, that’s not sufficient,” because 
MYCIN has made no conclusion. At the final prompt, the stu- 
dent can review the available data and MYCIN’s reasoning, if 
desired. In fact, the student’s hypothesis is reasonable, but 
GUIDON would need to know how MYCIN’s rules are con- 
structed and a different model of reasoning to understand why 
the student did something different. 

rial meningitis to organism, but the process is unordered 
at each level of refinement with regard to children. This 
is because the goals that MYCIN pursues are always more 
general than the conclusions in the rules being applied. In 
order to teach a procedure to a student and to recognize 
what the student is doing, we need a program that will 
deliberately focus on particular diseases and that will be 
able to articulate its focusing principle. 

This analysis of MYCIN was directly inspired by a 
study of strategy by Brown (Brown, Collins, & Harris 
1977). He points out that a problem solver does not apply 
algebraic operators randomly when simplifying an equa- 
tion; there is some logic behind each choice, describing a 
line of reasoning. Applying this analysis to MYCIN, I un- 
derstood for the first time how a strategy reasons about 
operators or problem-solving methods, focusing their ap- 
plication. In MYCIN, a rule corresponds to an operator, 
and problem solving involves some strategy for selecting 
which rule to apply. Specifically, diagnostic reasoning is 
usefully controlled by focusing data requests and hypoth- 
esis testing. 

From this perspective, it can be seen that describ- 
ing strategy only in terms of domain rule ordering, as 

in Davis’s original conception of metarules, is inade- 
quate. The problem is that there is an implicit, undisci- 
plined mapping between medical knowledge and MYCIN’s 
parameter-value language. For example, if MYCIN’s dis- 
eases were all represented by individual parameters (rather 
than by a general parameter called “coverfor” with or- 
ganisms as values), then the normal back-chaining process 
would make the reasoning focused. Thus, a strategy can 
be implicitly encoded in the relation between parameters 
and their values. Recalling the age-alcoholism example, a 
strategy is already implicitly coded in the ordering of rule 
clauses. Before metarules can be written to systematically 
control domain rules according to a hypothesize-and-test 
strategy, conventions must be established for distinguish- 
ing between data and hypothesis parameters and consis- 
tently encoding causal and subtype relationships among 
them. 

The Tetracycline Rule: 
Structure, Strategy, and Support 

This brings us to about 1980 when I studied MYCIN’s 400 
rules to determine how they might be reconfigured for use 
in teaching. Up to this point, in constructing GUIDON, 
only limited annotations had been added to the original 
rule set. Now any change at all would be allowed. 

Early on, I developed a framework that turned out to 
be very useful in protocol analysis. In this framework, ex- 
planations are analyzed according to knowledge roles, how 
knowledge is used in relation to other knowledge (Clancey 
1983a) (See Figure 9): 

l The heuristic rule: A relation between data and diag- 
noses or therapies 

l Structure: Subsumption relations among data, diag- 
noses, and therapies 

0 Strategy: The procedure for applying rules 
l Support: The justification for rules 

As an example of structural knowledge, you might 
think of “SSS” when trying to remember this framework. 

To understand the different kinds of knowledge here, 
suppose that you have a patient who is four years old. 
You would probably say, “Well, I’m not going to prescribe 
tetracycline.” However, that’s not a very good model of 
how a physician reasons; this would be a strange conclu- 
sion to make right at the beginning. Just as there is a 
logic for requesting data and for focusing on hypotheses, 
there is a logic for making assertions given available infor- 
mation. All together, we call this logic the inference proce- 
dure. (In the literature, it is also called control knowledge 
or, more specifically, diagnostic strategy. To emphasize the 
reasoning about control alternatives, the term managerial 
strategy or metastrategy is also used, particularly in the 
education literature [Schoenfeld 1981]). 

By strategy, I mean the general goal that leads the 
physician to remember a heuristic rule. For example, when 
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32) Does J. Smith have a history of NEUROSURGERY? 
** NO 
33) Does J. Smith he in a crowded environment? 
** NO 
34) Do you suspect recent alcokolic history in J. Smith? 
** NO 
35) Is the meningitis a hospital-acquired infection? 
** YES 
36) Is J. Smith’s clinical history consistent with 
EPIGLOTTITIS? 
** NO 
37) Is .I. Smith’s clinical history consistent with 
OTITIS-MEDIA? 
** NO 
38) Has J. Smith ever undergone spienectomy? 
** NO 
39) Is J. Smith a burn patient? 
** YES 

Figure 7: Sequence of Data Requests from MYCIN 
Consultation. 

GOAL HYPOXSS RLLE alJEs7oN 

- ECOL: - (Ru:eSll) ----- 032 ?.lEUROS~RGERY 

- (t?U!c-533) I 033 CRCWC 

I iRuie535) - 0% ALCOHOLIC 

(RUkS50) - cm SPLEKC7oMY 
;O’JERFOR 

,- (Ru~&%J - 035 NoSOCO!4!m. 

L (RulC395) 
03~ wuornx 

/ --c 037 onns-h.wx. 

Figure 8. Relating MYCIN’s Data Requests to Or- 
ganism Hypotheses. MYCIN’s questions, shown in Figure 
7, have been reordered according to the hypotheses that moti- 
vate them. For example, question 33 about living in a crowded 
environment is asked in order to apply rule 533, which con- 
cludes Neisseria. All of the questions pertain to the same 
goal - determining what organisms therapy should cover ~ 
but the rules conclude about different organisms. Neither 
the sequence of rule applications nor the questions are sorted 
by organism Questions 34 and 38 pertain to Diplococcus- 
pneumoniue, with three intervening questions pertaining to 
Hemophilus-influenzae. Thus, in pursuing a goal, MYCIN’s 
reasoning is unfocused at, the level of possible values for the 
goal, in this case organisms that might be causing the infec- 
tion. 
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Figure 9. Analysis of Knowledge Relating to 
MYCIN’s Tetracycline Rule. The rule states, “If the 
patient is less than seven years old, then remove tetracycline 
from the list of drugs under consideration.” Relation of age to 
other contraindication factors (such as whether the patient is 
pregnant), justification for the rule, and time when it would be 
considered are relevant to explaining this rule, but arc not rep- 
resented in MYCIN. Making explicit this structural, support, 
and strategic knowledge enhances our ability to understand and 
modify MYCIN 

is it important to remember not to prescribe Tetracycline? 
Obviously the physician must take this into account 

when prescribing therapy. 
By structural knowledge, I mean the relations by 

which heuristic rules are indexed and subsequently con- 
trolled. In general, this involves categorizing the facts the 
rules use (for example, patient factors) and the facts they 
conclude about (for example, therapies). 

By support knowledge, I mean the justification for the 
rule. Why wouldn’t you prescribe tetracycline to someone 
who is less than seven years old? Here we have a chem- 
ical process, a chelation mechanism, that results in the 
molecule binding to the growing teeth and bones, and a 
social consideration that attests people don’t want to have 
discolored teeth. This is a very interesting justification be- 
cause it shows that giving tetracycline might save 
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the patient’s life, even though it might have an undesirable 
side effect. That’s important to know if tetracycline is the 
only drug available. It’s a nice example of why it’s useful 
to know the justification of a rule-so you can violate the 
rule and know what the consequences will be. 

Generally, this figure suggests a framework for under- 
standing an expert’s explanations. When I ask a physician 
who is solving a problem, “Why did you ask that ques- 
tion?” I classify the answer into one of these categories. 
If the physician tells me, “Well I’m not going to prescribe 
tetracycline because the age is less than seven,” I am bc- 
ing told what assertions were made from given information 
(that is, a heuristic rule). If I ask the physician why and 
I get an explanation having to do with chelation, then 
I’m being given the justification for the assertion (that is, 
support). If the physician says “This is just one of the con- 
traindications I’m going to consider,” then I’m being told 
about the organization of his knowledge, the categories 
used for focusing (that is, structure). Finally, if the physi- 
cian tells me when contraindications are considered and 
how each type is considered, then I’m getting the infer- 
ence procedure (that is, strategy). I tried to consistently 
apply this analysis when working with physicians, particu- 
larly to focus their explanations on strategy and avoid the 
bottomless pit of support explanations. 

NEOMYCIN research focuses on representing strategy 
and structure because this is the deficiency of GUIDON we 
most want to improve. We also sense that structure and 
strategy are at the top of a pyramid of knowledge and are 
more limited in nature. A research effort focused on them 
is attractive because this knowledge conceivably might be 
carefully and exhaustively explored. 

The Beckett Tapes: An Articulate Teacher 

In 1980, Reed Letsinger and I worked with Tim Beckett, 
M.D., who was recommended by Ted Shortliffe and who 
turned out to be a rather fortunate choice. Beckett was 
known at Stanford for being a good teacher. He could 
articulate general principles for reasoning very well. He 
didn’t just say what it is you should ask about or what your 
conclusions should be-he was able to speak in general 
terms about how you should think. 

We taped interviews and classroom interactions, and 
transcribed and studied them (Clancey 198413). In one 
interaction, Beckett interrupts a student who is examining 
a patient played by another student: 

When you ask these questions about whether gar- 
gling makes it better or worse, or whether it’s bet- 
ter certain times of the day, are you thinking about 
how that’s going to help you move down different 
diagnoses? . . . ask a couple of general questions 
maybe that could lead you into other areas to fol- 
low up on, rather than zeroing in. 

Note the absence of medical terms in his strategic ad- 
vice. Again: 

We’re talking at the top of infections, but before 
we go down infections, are there any other things 
you can think of? The mistake you don’t want to 
make is leaving out the important things on top. 

We repeatedly heard these general statements-move 
down different diagnoses, ask general questions, don’t leave 
out important things on top. These were the strategic 
gems-better than I could have expected-that would al- 
low us to construct NEOMYCIN. Essentially, I saw the 
opportunity here for a program that would talk procedu- 
rally about these operations: Moving down different diag- 
noses, asking general questions, not leaving out important 
things at the top. This procedure is separate from the 
medical knowledge, describing how the medical knowledge 
is searched. That is, the statement of strategy does not 
directly mention domain terms; it is abstract. 

In Beckett’s explanations, we see regular switching 
back and forth between the concrete situation and a gen- 
eralization: 

Ask it very generally, like “Have you had any ma- 
jor medical problems, or are you on any medica- 
tion?” Those types of general questions are impor- 
tant to ask early on because they really tell you 
how soon you can focus down. 

You have to think of some of the common things, 
but at the same time you have to think of some 
of the serious things that may not be common. 
What is a serious infection that can get in your 
throat? 

This last example shows most clearly my model of in- 
ference in NEOMYCIN. 

Refining the diagnosis and thinking of some of the 
common things, the physician looks into the domain model 
and asks, “What is a serious infection that can get in the 
throat?” and “What are some of the common things that 
could cause it?” This is how the metarules in NEOMYCIN 
work. 

As confirmation of the potential effectiveness of Beck- 
ett’s approach, we analyzed his best student’s reasoning. 
The student obviously followed the procedure Beckett ar- 
ticulated in class. Of course, not all students would nec- 
essarily find Beckett’s teaching approach to be useful, but 
we had an existence proof and clear statements of at least 
one diagnostic procedure, so we wrote the approach down. 

About this time, we also had the first glimmer of how 
an explicit procedure could help a student learn relevant 
medical knowledge. When I had Beckett present problems 
to me, I often lacked the medical knowledge to carry out 
the procedure. However, knowing the procedure, I found 
that I could ask reasonably intelligent questions: “I know 
I should be thinking about some of the serious and com- 
mon causes of this disease, but I don’t know what they 
are.” This has evolved into our version of explanation- 
based learning (see The Situation-Specific Model: From 
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a Diagnosis to an Exploration). We also applied the pro- 
cedure to an analysis of Beckett’s interruptions of students: 
Given this model of his reasoning, could we use it to infer 
his strategy for interrupting students and providing assis- 
tance? The most telling example, occurring just before 
Beckett asks the question about sore throats shown here, 
is analyzed in (Clancey 1984c). 

Neomycin: Separating the Medical Knowledge 
from the Diagnostic Procedure 

Figure 10 shows the architecture of NEOMYCIN, illus- 
trating the idea of separating the diagnostic inference 
procedure (control knowledge) from the medical knowl- 
edge. Crucially, both are represented in well-structured 
languages so that they can be reasoned about by the expla- 
nation, knowledge-acquisition, and student-modeling pro- 
grams (Clancey 198313). 

(FOLLOW-UP-QUESTION headache $FINDING) ? 

\ Diagnostic 
Inference 
Procedure 

i / 

(CAUSED-BY diplopia $HYPOTHESIS) ? 

Figure 10. Architecture of NEOMYCIN. An infer- 
ence procedure queries the knowledge base, relating findings 
and hypotheses to one another in order to make a diagnosis. 
For example, given that the patient has diplopia (double vi- 
sion), the program asks the knowledge base what could cause 
it One or more hypotheses might be returned, which the in- 
ference procedure will proceed to discriminate, test, and refine, 
making further inquiries about disease and symptom relations. 

Davis’s conception of metarules for expressing strategy 
inspired this design. However, TEIRESIAS’s metarules 
compose domain facts with procedure, just like MYCIN’s 
rules (Clancey 1983a). NEOMYCIN’s metarules mention 
no domain terms. Moreover, they constitute a coherent 
procedure that completely controls every data request and 
every inference; so there is no back chaining of rules at all. 

The main part of the knowledge base is a taxonomy 
of diseases or, more generally, a classification of abnormal 
processes. Each disease describes a process, something 
that has happened to the patient in the past, accounting 
for the set of observed manifestations. In general, there 
can be many different taxonomies, orthogonal and tangled. 

As is apparent in Beckett’s generalizations, we can 
think of this procedure as “asking questions of the domain 
model.” The language of relations used in mctarules corre- 
sponds to the propositions in the knowledge base. These 
relations impose a classification on domain terms. This 
is what I called structural knowledge in the tetracycline 
analysis. 

How do we know that a given taxonomy is complete? 
This important question did not explicitly arise in MYCIN 
research because we didn’t isolate the disease taxonomy as 
a separate object of study. We now hypothesize that the 
physician’s diagnostic classification, particularly its level of 
specificity, depends on how it will be used. The physician 
is not involved in scientific research here; what goes into 
the taxonomy is based on distinctions useful for selecting 
therapy. For example, NEOMYCIN makes no attempt to 
determine precisely which type of viral meningitis the pa- 
tient has. The reason is that they’re all treated the same- 
with a lot of aspirin and orange juice-and it is irrelevant 
to resolve the cause any further. Thus, NEOMYCIN’s 

Given a hypothesis, the program asks, “What is a com- lMasculitle expressiorls in this article ate used as generic telms No 
mon cause of this disorder?” The program then looks up bias is intended 

this relation in the knowledge base. In this sense, the in- 
ference procedure is interpreting the domain model. If we 
compiled the procedure---instantiating and composing it 
with respect to a particular knowledge base-we would 
get something very similar to MYCIN’s rules. In making 
this abstraction, stating these general rules, I’m not claim- 
ing that people reason through general statements every 
time or even realize that these patterns exist. In partic- 
ular, reasoning categorically probably involves automatic 
processes of memory. Some distinctions, such as consider- 
ing causal prerequisites of diseases before effects, might be 
regularities that the physician does not consciously realize 
(Clancey 1984c). 

I now believe that these domain relations are in large 
part what we want to teach students, as generalizations, 
to help them learn about new diseases. In describing how 
to focus reasoning, we are indirectly saying how knowl- 
edge should be practically organized. For example, we 
say, “You should think in terms of common causes and se- 
rious causes.” That is much more informative than saying, 
“You should form a hypothesis” or “You should reason 
forward.” We hypothesize that the procedure is automatic 
once you have the knowledge. A medical student might 
not have to be told to refine hypotheses, but he1 has to be 
taught the subtypes of fungal meningitis. 

The Disease Taxonomy: 
Searching an Abnormal Process Classification 

There are several dimensions for describing NEOMYCIN’s 
reasoning: psychological aspects of memory and attention, 
AI rcprcscntation and control techniques, and aspects of 
medical causal reasoning. Figure 11 provides one perspec- 
tive in which these dimensions come together. 
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Figure 11. Looking Up and Looking Down in Di- 
agnostic Search. Disease knowledge is represented as a 
taxonomy of processes. At the highest level are internal aber- 
rations in structure building or maintenance (for example, con- 
genital diseases) and processes involving environmental interac- 
tion (for example, infection, trauma). Processes are specialized 
here by location, temporal extent, and specific agent. The tax- 
onomy is overprinted to show hypothetically how it might be 
searched. Initial information-chief complaints-triggers some 
hypothesis, shown arbitrarily here in the middle of the dis- 
ease taxonomy. Two operations follow: (1) looking up, think- 
ing of the high-level categories and discriminating among them 
(GROUP-AND-DIFFERENTIATE) and (2) looking down to 
refine hypotheses when distinctions are important for selecting 
therapy (EXPLORE-AND-REFINE). This is to be contrasted 
with an exhaustive, top-down search, which a large knowledge 
base makes impractical. 

disease taxonomy deliberately remains a partial model of 
abnormal processes within this area of medicine. 

Another part of the knowledge base, the causal 
network, is discussed in the context of CASTER (See 
CASTER: From Disease to Abnormal Substances aud Pro- 
cesses.) 

The Diagnostic Procedure: 
Search Operators and Constraints 

The overall diagnostic strategy or inference procedure is a 
program consisting of a set of subprocedures as shown in 
Figure 12. 

Each procedure is represented as a set of ordered and 
controlled conditional statements called metarules. Rules 
provide a uniform, well-structured language. Although ex- 
perienced programmers can read a LISP encoding of the 
diagnostic procedure easily enough, it is difficult to write 

a program that can understand arbitrary LISP code. Too 
much of the design is implicit and not available for expla- 
nation. Therefore, we devised a highly structured repre- 
sentation, organized around the idea of rule sets, with ev- 
ery “loop” encoded as a separate task (subprocedure) and 
the control of rules stated declaratively (simple vs. itera- 
tive, try-all versus stop-on-success). Each task has a typed 
focus (argument), local variables, and an explicit “end con- 
dition” (equivalent to the “while” or “until” condition of a 
loop). Making every program statement a rule facilitates 
interpreted control, annotation, and record keeping. 

The overall design is similar to LOOPS, which 
evolved at the same time as NEOMYCIN. However, 
NEOMYCIN’s metarules use variables, rather than do- 
main terms. Also, the end condition, inherited by task 
invocation, enables a procedure anywhere on the current 
stack to regain control, either because its goal is completed 
or there is reason to reconsider how its subgoals are being 
accomplished. Figure 13 shows the flow of control in terms 
of focus changes. 

In writing down the diagnostic procedure as rules, we 
are following the same methodology used in developing 
MYCIN and GUIDON. With the knowledge expressed in a 
disciplined way, it now becomes possible to study patterns 
and to consider how the knowledge could be derived. Such 
implications are too numerous to recapitulate here. The 
interested reader will find the metarules listed in (Clancey 
1984c), with a discussion of the procedure in terms of op- 
erators and the cognitive, social, mathematical, and case 
population constraints implicit in the rules. The next sec- 
tion considers the procedure as a grammar. 

Image and Odysseus: 
Parsing the diagnostic process 

Given the abstract nature of the tasks and metarules, they 
can be viewed as a kind of grammar for parsing a problem 
solver’s sequence of requests for data. Such an analysis is 
shown in Figure 14, the picture I had in the back of my 
mind in about 1980 when I wanted some way for GUIDON 
to reason about what a student was doing. An interpreta- 
tion of a student’s partial solution provides a good basis for 
assisting him when he doesn’t know what do next. Such 
an interpretation is also a source of information for relat- 
ing a student’s explicitly stated diagnosis to a model of his 
domain knowledge. As a contextual analysis, it potentially 
shortens the interactive dialogue that might be necessary 
to confirm the student’s understanding. 

Bob London, David Wilkins, and I have been devel- 
oping student-modeling programs with the common goal 
of using NEOMYCIN’s diagnostic procedure to interpret 
a sequence of student requests for data. London has fol- 
lowed a top-down approach in the IMAGE program (Lon- 
don & Clancey, 1982); Wilkins’s ODYSSEUS program uses 
exhaustive, bottom-up reasoning (Wilkins, Buchanan, & 
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Figure 12. Invocation of Diagnostic Tasks, Shown as a Lattice. Each task is represented in NEOMYCIN as a stylized 
procedure, shown here as a node, with the subprocedures it calls below it. For example, pursuing a hypothesis involves testing 
and refining the hypothesis. To relate new findings and hypotheses, all tasks eventually call FORWARD-REASON, which invokes 
additional tasks not shown here GENERATE-QUESTIONS is invoked when there is insufficient information to proceed; it chases 
down leads in different ways, thus explaining its central position. Not,e also t,hat FINDOUT calls TEST-HYPOTHESIS so that 
domain rules will be selected deliberately, replacing the back chaining of EMYCIN Using this representation for explanation 
and student modeling requires additional knowledge about task preconditions and postconditions and how metarules controlling 
task invocation are ordered. 

Clancey 1984). Evaluation of these alternative approaches 
is in progress. 

Figure 14 shows a parse of reasoning produced by the 
ODYSSEUS program. We’re testing this program with 
“synthetic” students, systematically varying NEOMYCIN 
and comparing ODYSSEUS’s interpretation to the known 
variations in the knowledge base. Another application is 
to give ODYSSEUS a sequence of data requests and to 
have it determine what knowledge base changes would be 
required to produce this sequence, consistent with the in- 
ference procedure. We believe that the simple classifica- 
tion nature of the inference procedure makes this approach 
plausible. We’re developing this capability for a tutoring 
program called GUIDON-DEBUG (Clancey, et al. 1986). 
The same program could be used for knowledge acquisi- 
tion. 

Neoxpl: Strategic Explanation 

Using NEOMYCIN’s well-structured representation, Di- 
ane Hasling, Glenn Rennels, and I (1983) reformulated 
MYCIN’s WHY/HOW explanations in terms of metarules 
and tasks. Figure 15 shows how procedural information 

is available prosaically (by asking WHY) or through the 
task stack. 

Although our WHY/HOW system goes up the goal 
stack in a way similar to MYCIN’s explanation program, 
this new program takes advantage of the structured rep- 
resentation to be more selective about what it says. In 
particular, it looks at the focus of a task to determine 
whether to mention the task as it goes up the stack. A 
focus can be one of three basic terms-a finding, a hy- 
pothesis, or a domain rule-or a list of these. If the focus 
is a rule or list of rules, the explanation program skips over 
the task (for example, APPLYRULES). The task is men- 
tioned if its metarule establishes a new focus, such as going 
from a list of hypotheses to a single hypothesis (GROUP- 
AND-DIFFERENTIATE) or from a hypothesis to a rule 
(TEST-HYPOTHESIS). This turns out to be a good ex- 
planation heuristic. A new explanation system under de- 
velopment uses the propositional encoding of the metarules 
(described later) to select particular rule-premise clauses 
to mention. 
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Figure 13. Predominant Focus Shifts in Diagno- 
sis. This diagram simplifies the dynamic flow of control be- 
tween tasks, revealing how findings and hypotheses are related. 
New findings suggest new hypotheses and support existing hy- 
potheses (FORWARD-REASON); a decision is made to focus 
on a particular HYPOTHESIS (ESTABLISH-HYPOTHESIS- 
SPACE); a decision is made to focus on a particular finding 
(TEST-HYPOTHESIS); the implications of the new informa- 
tion are considered, and so on. In contrast, MYCIN does not 
change its goals on the basis of new data or deliberately or- 
der the goals and data it will pursue. Accomplishing this by 
abstract metarules (not specifying domain terms) requires ex- 
plicitly representing relations between findings and hypotheses, 
on the basis of which they will be selectively considered. 

Tasks (appearing in bold italics) can be related to Figure 
12, which shows the subtasks they invoke. In practice, 
ESTABLISH-HYPOTHESIS-SPACE is only invoked if there 
is reason to stop pursuing the current HYPOTHESIS. Criteria 
for applying domain rules in FORWARD-REASON are com- 
plex. For example, new findings are related to hypotheses “in 
focus”; if a new HYPOTHESIS “explains” the known findings 
at least as well as existing hypotheses, it is considered; new 
hypotheses are related to previously known findings, etc. The 
program stops when its differential, the list of most-specific hy- 
potheses under consideration, has been discriminated, tested, 
and refined. 

MRS/Neomycin: 
From Findings and Hypotheses to Relations 

Student modeling, debugging, and explanation require 
that our programs reason about the premises of metarules, 
particularly to determine which domain facts matched 
and why rules failed. Originally, metarule premises 
were encoded in LISP. In a hybrid system called 
MRS/NEOMYCIN, C onrad Bock and I rerepresented 
metarule premises in MRS, a logic-programming language 
that provides a framework for multiple representations of 
knowledge and control of reasoning (Genesereth & Smith 
1982). Bock also recoded the interpreter in MRS rules, 
and placed a simple deliberation-action loop at the top 

(Clancey & Bock 1982). Unfortunately, recoding the inter- 
preter slowed down the program by an order of magnitude 
and made the procedure too obscure to read or maintain. 
In the current version of the program, we retain the origi- 
nal interpreter and use a variant of MRS as a specification 
language for metarule premises, which are compiled into 
Lisp. This provides the well-structured, uniform language 
our modeling and explanation programs require without 
sacrificing runtime efficiency. Figure 16 illustrates how 
MRS is used in the metarules and definitional rules for 
relations. 

Primitive relations are compiled as direct LISP oper- 
ations, using explicit declarations about how propositions 
are represented in the LISP-encoded knowledge base. For 
example, a TYPE proposition is represented as a property 
list structure, so the compiler substitutes a GETPROP, an 
ASSOC, or more complex loop construction, depending on 
what terms are known when the proposition is encoun- 
tered in the metarule. In encoding propositions in stan- 
dardized LISP structures, distinguishing between the lan- 
guage for expressing knowledge and how it is stored in the 
computer, we are exploiting the multiple representation 
aspect of MRS, which is one interpretation of its name. 
A number of elegant patterns in the metarules made the 
compiler easy to write (Clancey, forthcoming). Figure 17 
summarizes how rules, tasks, and relations are encoded 
as EMYCIN rules and parameters and how these entities 
are related. Our success in building HERACLES on top 
of EMYCIN demonstrates the generality of the original 
parameter-rule representation language. It is closer to a 
typical frame language than is commonly realized. 

The most exciting result of this reformulation is what 
it reveals about the relational nature of the knowledge 
base. It is now evident that the metarules are selecting foci 
(findings, hypotheses, domain rules) on the basis of how 
they are related to one another. These relations can be 
either static (for example, red-flag finding, one that needs 
to be explained) or dynamic (for example, hypothesis in 
focus). The knowledge base can be viewed as a database, 
defined in terms of these three primitive terms and rela- 
tions among them. Writing a new metarule tends to re- 
quire defining a new preference relation for discriminating 
among findings, hypotheses, and domain rules. That is, 
each new relation further classifies the primitive terms in 
a way useful for controlling reasoning. For example, the 
metarule shown in Figure 16 required the new relation, 
“a finding that needs to be explained.” As this example 
shows, the meaning of a relation is tied to how the rela- 
tion is used. This is particularly clear for relations such as 
follow-up question and trigger rule. 

A detailed analysis shows that the metarules are col- 
lecting, sorting, and filtering domain terms and rules on 
the basis of their applicability as operands (foci) for the 
operators (subtasks) that will accomplish the current task. 
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Figure 14. ODYSSEUS’s Parse of a Student’s Data Requests. Given a sequence of requests for patient data, 
listed on the right side of the figure (Q5, QS, &7), the program indicates all of the alternative justifications for why a question 
might have been asked. For example, the student’s query about seizures (FINDOUT/S eizures, Q6) might have been asked to 
determine whether the disease is caused by an Intracranial Mass Lesion, Subarachnoid Hemorrhage, and so on. The program 
indicates in inverse video, combining its bottom-up analysis with a top-down parse, that this question relates to meningitis 
(TEST-HYPOTHESIS/Meningitis), as part of the process of discriminating hypotheses (GROUP-AND-DIFFERENTIATE). 
Thus, the problem state (hypotheses under consideration) and the tasks interact to explain finding requests in terms of a logic for 
focusing on hypotheses and findings. Note that by the same analysis the question about a fever (Febrile, Q5) has three consistent 
interpretations. This kind of analysis is not possible using MYCIN because, first, its reasoning did not involve “looking up” 
from “triggered hypotheses” and, second, its inference procedure is represented behaviorally as specific productions. .A functional 
representation, as diagnostic tasks, relates surface behavior to abstract goals, which can be accomplished in multiple ways. 

For example, metarules for TEST-HYPOTHESIS collect, 
sort, and filter potential findings to support a hypothesis. 
Refining a hypothesis means collecting, sorting, and filter- 
ing its causes and subtypes (for example, distinguishing 
between common and serious causes). Generally, the do- 
main relations classify NEOMYCIN’s experiential knowl- 
edge of predefined disease models (see Heracles: From Dis- 
eases to Stereotypes) according to how they are triggered, 
tested, discriminated, and refined by operators (tasks) 
for constructing a problem-specific, historical accounting 
of the disease process (see The Situation Specific Model: 
From a Diagnosis to an Explanation). 

NEOMYCIN has about 170 relations in its control 
vocabulary. They appear in the 75 metarules, grouped 
into 29 tasks. In HERACLES, the generalization of 
NEOMYCIN, the knowledge engineer can modify these 
metarules, defining new relations for describing his do- 
main. 

Guidon-Watch: Reifying the Process 

The availability of graphics has changed how we can illus- 
trate reasoning and is shaping our ideas of what we’d like 
to show. As a first step toward implementing a new in- 
structional program on top of NEOMYCIN, Mark Richer 
and I (1985) used the Interlisp-D window and menu fea- 
tures to construct a complex interactive system for brows- 
ing the knowledge base and watching reasoning. This in- 
cludes the dynamic task tree (similar to Figure 14) and the 
task stack (see Figure 15). Our work has been directly in- 
spired by Brown’s emphasis on reifying or making concrete 
the reasoning process (Brown 1983). 

Figure 18 shows how the disease taxonomy is over- 
printed to reveal the pattern of NEOMYCIN’s reasoning. 
In GUIDON-DEBUG, now under development, it is possi- 
ble to roll back the consultation display to show any win- 
dow at the time any given question was asked. This is a 
debugging facility we could hardly have imagined even five 
years ago. 

THE AI MAGAZINE August, 1986 51 



FINDOUT [ SEIZURES ] 

Figure 15. Multiple Views of the Diagnostic Process: Question, Evidence Relation, Task Stack, Metarules, 
and Prosaic Condensation. When NEOMYCIN asked about seizures (question 8), the user selected a subitem in the KB 
WINDOWS menu, which caused the task stack-the current line of reasoning-to be displayed. The rule above a task is the 
metarule that invoked it; thus, rule 400 selected meningitis as a focus, invoking TEST-HYPOTHESIS with it as an argument. 
Selecting meningitis in this window caused the table in the lower left, to be displayed. Here, boldface type indicates positive 
findings and successfully applied rules. Greyed areas correspond to negative findings and failed rules. Thus, the patient is not a 
neonate; rule 424 succeeded. Arrows preceding a finding indicate that the finding is in a triggering relation with the hypothesis. 
For example, the headache volunteered in the chief complaint caused the program to try to apply rule 424. When the user 
selected EXPLAIN in the menu adjacent to the consultation typescript, the program summarized the line of reasoning, skipping 
over “uninteresting” tasks 

Heracles: From Diseases to Stereotypes 

In late 1983 I began to consider how NEOMYCIN might be 
generalized. What kinds of problems can be conveniently 
solved by an architecture consisting of a classification net- 
work and a separate, abstract control strategy? In partic- 
ular, to what, problems can the same diagnostic strategy 
be applied? It was obvious from the start that the proce- 
dure had nothing specifically to do with medicine; was it 
more general than diagnosis? In attempting to teach the 

NEOMYCIN approach to AI students, I found that it was 
possible to redescribe other knowledge bases in its terms. 
For example, in terms of the mapping between models of 
situation descriptions and selected solutions, “people are 
to diseases” as “meals are to wines.” I had also recently 
reread Rich’s work on user modeling (Rich 1979), intend- 
ing to apply this to our explanation program. I recognized 
that it fit the same patterllPmodels of people related to a 
taxonomy of books. Finally, I recalled that Rubin (1975) 
and Aikins (1983) emphasized that diseases are described 
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T-ASK: PROCESS-FINQING 

=OCUS: $FINDING 

IF: (AND (OR (FINDINGTYPE $FlNDlNG REDFLAG) 
(NOT (DIFF.EXPLAlNED SFINDING))) 

(MAKESET (TRtGGERS? SFINDII\IG SRULE) 

RULELST)) 

THEN:(TASK APPLYRULES RULELST) 

If the finding must always be explained OT 
it is not currently expZained by the di$erentiai, 
then trigger hypotheses that ezplain it. 

Definitional relation rues 

IF: (AND (DIFFERENTIAL %HYP) 

(EXPLAINEDBY %FINDING WYP)) 

TH&N:(DIFF.EXPLAINED SFINDING) 

A finding is explained by the digerential 
ij it’s explained 6y some hypothesis in the diflerential. 

LF: (OR (CAUSED-BY SF 9-l) 
(AND (TYPE w SPARENT) 

(EXPLAINEDBY $F SPARENT))) 

THEN:(EXPLAINEDBY BF ?iH) 

.4 finding is explained by a hypothesis 
if it is caused by the hypothesis or 
by some more general category. 

Figure 16: Propositional Representation of a Metarule. 
This is one of six metarules for accomplishing the task 
PROCESS-FINDING, which is invoked whenever a new find- 
ing becomes known. The metarule detects that this finding 
is serious and has to be explained (a red-flag finding), or it’s 
something that’s not currently explained by the set of possibil- 
ities under consideration. The program gathers up the trigger 
rules-automatic inferences-and tries to apply them. The 
idea is that if the finding doesn’t always have to be explained 
and it’s explained by hypotheses that were already triggered, 
you shouldn’t trigger a new hypothesis. For example, if the 
patient has a headache, and other evidence suggests menin- 
gitis, which would explain the headache, there’s no need to 
consider other explanations of the headache. Intermediate re- 
lations, such as EXPLAINEDBY, are defined by other rules 
(simplified here). All pattern variables in these rules are instan- 
tiated as domain rules or terms. All expressions are implicitly 
universally quantified. 

Figure 1’7. How Control Knowledge is Encoded in 
HERACLES. HERACLES is implemented as a specialization 
of EMYCIN. Above is shown the original conception of domain 
parameters and rules. In HERACLES parameters are special- 
ized as domain relations, control tasks, and domain terms, con- 
ditionally inferred and invoked by rules. We use “relation” in 
the mathematical sense to refer to both predicates and func- 
tions. “Finding” and “hypothesis” formally classify the domain 
terms (for example, meningitis), and informally are used to re- 
fer to propositions in a situation-specific model; so, we say that 
“the patient has meningitis” is a hypothesis. 
Tasks are accomplished by an interpreter that applies 
metarules. Propositions used by metarule premises (such as 
(EXPLAINED-BY $F $H) appearing in Figure 16), can be in- 
ferred definitionally by rules or can be inferred by procedural 
attachment (for example, accessing Lisp structures). These 
propositions are both static and dynamic. They classify do- 
main propositions and domain rules, as well as characterizing 
the problem-solving state (such as whether a hypothesis is in 
the differential or whether a task has been done yet). Addi- 
tional relations that classify tasks are used by the task inter- 
preter (not shown here). Metarule actions apply domain rules, 
request (from the user) or conclude domain propositions, or 
invoke other tasks. In particular, the task FINDOUT uses all 
of these methods to infer domain propositions. In HERACLES 
all domain rules are applied directly by metarules rather than 
by back chaining. Only domain rules mention domain terms 
directly; other rules use variables. 
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TERIAL-MENINGITIS 
CRANIAL-PRESSURE 

INTlWCR4NIALNW-LESION 
SUMRACHNOID-HEMORRH4GE 

ORMN-ANEURYSM 

Figure 18. Overprinting a Classification Network to Show How It Is Searched. Nodes blink and are boxed to 
make visible the “looking up” and “looking down” process of diagnosis. Numbers indicate the relative certainty of conclusions; 
the cumulative certainty factor (CUMCF) includes hierarchical propagation. Heavy-bordered boxes indicate the program’s 
&&-e&al&the most specific cut through the taxonomy and causal network. The differential is printed in the lower right 
window with indenting to show specialization by process subtype and cause. When a hypothesis is selected, the evidence window 
can be displayed, indicating which findings and rules have been considered and the outcome of each consideration. Dozens of 
other windows are available, including different views of causal networks and the history of task invocation. 

(in knowledge bases) as stereotypes. The general model of 
heuristic classification fell into place: Some problems can 
be solved by selection, heuristically relating a classifica- 
tion of problem data to a classification of known solutions 
(Clancey 1985a). 

To my chagrin, this new model required a reconceptu- 
alization of parts of NEOMYCIN. We began to consider 
the diseases as stereotypes, we introduced qualitative ab- 
straction of numeric data where it had been omitted in 
MYCIN, and we realized that our representation of dis- 

eases as classes is inadequate given what is required in 
general and what is evident in other programs (for exam- 
ple, allowing for multiple inheritance). We call the recon- 
ceptualized framework HERACLES. It is not a completed 
tool but an idea that continues to evolve. 

Figure 19 illustrates the heuristic classification analy- 
sis of SACON, a program that many of us knew about and 
talked about for five or six years, but that few understood 
until its knowledge base was portrayed in this way. The 
purpose of SACON is to select a configuration of programs 
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in a structural analysis software package developed by the 
Marc Corporation. These programs can analyze an object 
for structural failure in many ways, some of which are un- 
necessarily accurate and time consuming. An expert can 
tell you which of the programs should be run to analyze a 
particular structure, and that is SACON’s task. Imposing 
a type classification on SACON’s concepts, and labeling 
inferences as abstractions, heuristics, and refinements, we 
find a previously hidden secondary structure which helps 
us to understand what SACON does. 

Studying and generalizing knowledge-based programs, 
we can go quite a bit further. First, we can realize that as 
stereotypes the classifications are models of systems: spec- 
ifications or descriptions of systems and plans for assembly 
or modification of systems. Second, the classification se- 
quences, relating one model to another, are regular and 
limited in nature, constituting tasks. A model of system 
being monitored is related to a plan for controlling its be- 
havior. A diagnostic model of a faulty system is related 
to a repair plan. A specification is related to a design 
and then to an assembly plan. Finally, the idea of sys- 
tems, tasks, and common sequences is independent of how 
the solutions are computed each step along the way. Ei- 
ther heuristic classification or some constructive method 
(perhaps involving nonmonotonic reasoning, hypothetical 
worlds, and so on) might be used. It is important to re- 
member that this inference structure shows the pattern of 
inferences that map given information to final solutions, 
and makes no claims about the process or order in which 
the inferences are made. Further examples and extensive 
discussion appear in (Clancey 1985a, 1986). 

Caster: From Diseases to 
Abnormal Substances and Processes 

In addition to the disorder taxonomy (Figure ll), a knowl- 
edge base for diagnostic problems constructed in HERA- 
CLES might include a causal-associational network. Dis- 
orders in this network are descriptions of internal states in 
the system being diagnosed. Figure 20 shows such a net- 
work for CASTER, a knowledge system for sand-casting 
diagnosis. 

Tim Thompson and I (1986) developed this program 
in order to better understand the distinction between the 
pathophysiological states of the causal net and the etiolo- 
gies, or final causes, of the disorder taxonomy. This dis- 
tinction was emphasized in the CASNET program (Weiss 
et al. 1978); our interest was to apply the ideas to a non- 
medical problem. 

What did we learn from the CASTER experiment? 
First, for diagnosing malfunctions in some manufactur- 
ing process, it is useful to organize the disorder taxon- 
omy according to each stage in the overall process (pat- 
tern design, melting, and so on). In contrast, the top level 
of NEOMYCIN’s taxonomy corresponds to defects in the 
neurological system, viewing it as an object, not a process: 

assembly flaw (congenital), environmental influence (infec- 
tion, toxicity, trauma, psychological load), or degeneration 
(vascular disorder, immunoresponse, muscular disorder). 
In both of these physical systems, externally observable 
manifestations are explained in terms of internal system 
behavior, tracked back to faulty structures and malfunc- 
tions of subsystems. These are in turn explained by the 
etiologies, processes in which the system interacted with its 
environment, bringing it to its current state. In medicine, 
these etiologies include congenital problems (caused by the 
mother’s lifestyle or her environment), psychogenic prob- 
lems (emotional overload), trauma (structurally damaging 
the body), toxic environment, and so on. In the human 
body, internal systems generate new subsystem structures, 
so developmental and degenerative processes are also im- 
portant etiologies. We believe that this analysis can be 
generalized to cover all physical systems. 

A second interesting result is the set of heuristics we 
discovered for constructing a well-formed causal network 
(Clancey 1984d). These heuristics include asking the ex- 
pert about categories of states; asking about unobserv- 
able states that track back to different etiologies; distin- 
guishing clearly between substances and processes, par- 
ticularly, never causally linking substances directly; and 
working backward from repairs to causes. This last point 
emphasizes that the purpose of the causal-associational 
and ctiologic taxonomy is to make choices about repair, a 
point I emphasized in The Disease Taxonomy: Searching 
an Abnormal Process Clarification. Uncertainty in diag- 
nostic reasoning need only be resolved to the extent that 
it makes a difference in distinguishing among repairs. 

Our heuristics can be viewed as criteria for critiquing 
a behavioral causal model. Can we formalize these con- 
straints so that they can be taught to a student? Viewing 
a diagnosis as a model is the first step. 

The Situation-Specific Model: 
From a Diagnosis to an Explanation 

This lesson might be the most important. It is the idea 
that a diagnosis is not the name of a disease but an argu- 
ment which causally relates the manifestations which need 
to be explained (because they are abnormal) to the pro- 
cesses that brought them about (See Figure 21). A number 
of ideas come together here: 

l Diseases are processes (see The Disease Taxonomy: 
Searching an Abnormal Process Classification and 
Caster: From Diseases to Abnormal Substances and 
Processes.) Thus, a diagnosis is a network causally 
linking manifestations and states to processes. 

l A causal explanation applies the general concepts and 
links in a knowledge base to construct a case-specific 
model (Patil, Szolovits, & Schwartz 1981). Thus, the 
network linking manifestations and diseases is a model 
of a particular sequence of events in the world (also 
called a situation-specific model). 
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Figure 19. Inference Structure of SACON. An ab- 
stract description of inference chains is shown above a par- 
ticular sequence of associations. SACON abstracts the given 
structure and relates this abstraction to half a dozen rules of 
thumb that make a quantitative prediction of the structure’s 
behavior under stress. Specifically, the fact that the structure 
is a beam is combined with information about its size, support, 
and load distribution in order to select a numeric equation, 
which computes stress and deflection. These predictions arc 
abstracted, and definitionally related to the structural analysis 
program. Specifically, the characterization of stress, combined 
with information about loading and error tolerance, is classi- 
fied as a particular kind of “analysis” for which the program 
is specialized. The SACON program selects from about 30 dif- 
ferent program combinations. This corresponds to the number 
of organisms in MYCIN, and is probably good to remember 
when considering whether the heuristic classification method is 
appropriate for solving a problem. 

l Diagnostic operators examine and modify the differ- 
ential (most specific diseases under consideration), 
linking and refining them. Thus, HERACLES tasks 
are operators for constructing a situation-specific 
model (similar to ABEL’s diagnostic operators [Patil, 

Szolovits, & Schwartz 19811). 

l A causal explanation has the structure of a geome- 
try proof: It must account for all of the findings and 
must be coherent and consistent. Thus, the situation- 
specific model must be a connected graph with one 
process at the root (assuming a single fault). 

The evolution of these ideas is intriguing, revealing 
how our computational tools and the use of the computer 
as a modeling medium changes how we think. Sometime in 
1985 it occurred to me that we could extend the windows 
offered by GUIDON-WATCH to include a graph show- 
ing how the final diagnosis related to the known findings. 
When I saw the way Anderson replaced a linear geome- 
try proof by a graph (using the same Interlisp-D graph- 
ics package), the analogy between a causal explanation 
and a proof became concrete (Anderson, Boyle, & Yost 
1985). Thus, the example from another domain showed 
how Patil’s idea of a patient-specific model could be useful 
in teaching, and the availability of the graphics package 
encouraged us to create the picture to see what it would 
look like. 

It is astounding to realize how many hundreds of ex- 
pert systems are cranking out diagnoses with neither the 
programs nor their designers ever explicitly considering a 
diagnosis as a coherent causal model. They don’t even 
check to see if all of the findings are covered by the final 
diagnosis. Our language is too loose: The program prints 
out the name of a disorder, and we say, “The program 
has made a diagnosis.” However, where is the explanation 
argument? 

For the purpose of teaching, this graph could perhaps 
be the best way to reify the process of diagnosis. For sev- 
eral years, inspired by Brown’s emphasis on LLprocess ver- 
sus product” (possibly derived from Dewey [1964]), I’ve 
been searching for some written notation that WC could 
use, something analogous to algebra, to make visible what 
the operators of diagnosis (NEOMYCIN’s tasks) are do- 
ing. The analogy with geometry turns out to be stronger 
than the analogy with algebra because each inference itself 
relies on a proof, analogous to the causal arguments be- 
hind each link of the situation-specific model. In algebra 
the inference rules are all axioms. 

Giving this window to the student, we might have him 
carry out the diagnosis by posting his hypotheses and link- 
ing them to the known findings. Each step along the way, 
there are visible problems to be solved. The student can 
see that he is trying to construct a logically consistent 
network. Behind each request for data is an operation for 
making the network hang together-explaining the find- 
ings that need to be explained and refining the hypotheses 
that need to be made more specific. An instructional pro- 
gram is now being developed based on this idea. Called 
GUIDON-MANAGE, it has a student “manage” the diag- 
nosis by explicitly applying strategic operators. 
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Figure 20. CASTER’s Causal-Associational Network for Shrinking Defects in Cast Iron. This simplified network 
relates structural failures (for example, mold wall movement) to functional failures (for example, inadequate mold support). 
These are all internal to the system and often can’t be observed directly Reasoning proceeds as follows. Given some surface 
fault, such as shrinkage cavities in the cast iron, we reason backwards to possible causes: (1) feed of metal shut off, (2) a broken 
mold (leak), and (3) absence of metal to feed. Gates, risers, and fillets refer to structures for shunting metal and venting gases. 
Terminal nodes, on the right side, track the problem back to some problem in the iron-casting process (pattern design, mold 
formation, metal melting, and so on), thus relating system behaviors to external causes (the designer’s assumptions, previous 
treatment of the sand, contamination of the metal supply, and so on). We believe that analyzing such networks, relating them to 
the well-defined structure and function of the sand-casting system, will help us to redefine in a principled way the causal relations 
given to us by experts in other domains, such as medicine. Working in multiple domains proliferates metaphors and helps us to 
develop more general theories about expert knowledge. 

This is an amazing change. Ten years ago I thought 
I was trying to teach parameters and rules, and now I’m 
saying that I want to teach the student to be an efficient 
model builder. What can we tell the student that will 
help him critique the model that he’s constructing? For 
example, we’ll say, “All the important findings need to be 
explained.” Observing that he has failed to do something 
that needs to be done, we’ll tell him about the opera- 
tors, so he can step back and say, “Well, what knowledge 
might I be missing that prevented me from carrying out 
that task?” So debugging by explanation of failure-pro- 
ceeding from model constraints to operators to knowledge 
relations-is the approach we’re following. This leads to 
an interesting model of learning (Clancey et al. 1986). 

Methodological Lessons 

To summarize ongoing projects mentioned or alluded to 
here, we are currently doing the following: 

l Developing instructional programs based on NEOMY- 
CIN 

l Studying learning in the setting of debugging a knowl- 
edge base 

l Reimplementing the explanation program to use the 
logic encoding of the metarules (stating this program 
in the same task-metarule language so that it might 
reason about its own explanations) 

l Generalizing our graphics package using object- 
oriented techniques 

l Applying the student-modeling program, ODYSSEUS, 
to knowledge acquisition 

l Preparing HERACLES for use by other people 

I’m going to jump up a level here to consider some 
methodological lessons we can draw from this research. 

Figure 1 provides a simplified summary of how the 
various programs and research ideas are connected. We 
observe two examples of a specific expert system being 
generalized, with the resulting shell used to construct other 
specific systems and a tutoring shell. Is there any logic in 
this sequence that might reveal something about learning 
in general or at least about how we learn by constructing 
programs? 

In the section names in this article, I indicated the 
sequence of terminological changes (“from . . . to . , .“) that 
seem to mark each major change in my understanding. 
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Figure 21. Partial Diagnostic Model in NEOMYCIN. The process of diagnosis is the construction of a proof tree, 
relating the findings and disorders that could have caused these findings. At some intermediate state when solving the problem, 
the network is disconnected and partial. The patient has seizures; what could have caused that? There is some support for 
Acute Bacterial Meningitis and Increased Intracranial Pressure, but these two hypotheses haven’t been related. Is there some 
underlying cause (process) that could account for all of the manifestations ? Diagnostic operators can be viewed as graph 
construction operators, focusing on particular nodes and trying to grow the graph down to support possible explanations or 
refining it upward to more specific explanations. A final situation-specific model is a connected network, with some root process 
that we say explains the internal states (such as Increased Intracranial Pressure), which, in turn, explain the observed findings. 
This graph, as an argument having the structure of a proof, is the diagnosis, not the term Acute Bacterial Meningitis. 

The renaming that occurred in moving from “clinical 
parameter” to “model” is dramatic. None of the interme- 
diate concepts (hypothesis, relation, process, and so on) 
is new, but it is interesting to note how they are retained 
and how they build upon one another as the knowledge 
structures are reinterpreted from different perspectives. 

Thus, in HERACLES today, we have parameters, 
terms, hypotheses, diseases, processes, stereotypes, and 
models. All of these remain true descriptions of what’s 
in our program. The perspective changes, broadening 
from language terminology (parameters, terms) to reuson- 
ing phenomenology (hypotheses), domain ontology (disease 
process taxonomy); and, finally, epistemological distinc- 
tions (stereotypes, models). With the heuristic classifica- 
tion perspective at the top-couched in terms of systems, 
tasks, and models (Clancey 1986)-previous terminology 
is retained for describing the program at different levels. 

Looking closely at the sequence of research itself, there 

are some clear patterns: 
l Abstracting or generalizing terminology to incorporate 

another specific domain (for example, moving from 
disease to disorder process) 

l Separating a domain model (what is “true”) from 
the inference process (what to do) by identifying and 
justifying procedural sequences (for example, defin- 
ing relations for ordering MYCIN’s rule clauses and, 
later, defining relations for ordering NEOMYCIN’s 
metarules) 

l Justifying domain relations in terms of underlying con- 
straints and patterns (for example, a theory for gener- 
ating appropriate follow-up questions or trigger rules 
or a theory for generating a causal network in terms 
of faulty structures and malfunctions) 

Figure 22 summarizes the overall pattern. The point 
of the analysis phase is to detect patterns that we want to 
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model explicitly and that have been mapped into the lan- 
guage in an implicit and perhaps undisciplined way. Thus, 
findings and hypotheses, causality and subtype, and dis- 
ease knowledge and procedures are not distinguished in 
MYCIN. Findings and hypotheses are both represented 
as parameters. Cause and subtype are represented by se- 
quences of clauses in rules, or in the relation between a 
parameter and its values (for example, parameter-‘“the 
kind of Meningitis” ; valueP“Bacterial”). Focusing proce- 
dures are also encoded by rule clause ordering. 

There is apparently no end to this criticism; the same 
game can be played with NEOMYCIN. For example, in 
attempting to improve the explanation program we find 
that the use of terms in NEOMYCIN’s original metarules 
is ludicrously undisciplined; they are used like arbitrary 
program variables, with no apparent connection between 
$HYP and $CURFOCUS. Interpreting this representation 
for diagnosis causes no difficulties, but the explanation 
program needs to know that the metarules refer to the 
same kind of entity, a hypothesis. 

This analysis suggests that detecting patterns of state- 
ments in some language, articulating a new classification 
model, and defining a new procedure by which the state- 
ments are to be interpreted are intricately related. Recall- 
ing the analysis of metarules (MRS/NEOMYCIN: From 
Findings and Hypotheses to Relations), we observe that 
each new purpose for interpreting a representation re- 
quires new distinctions-new relations-to classify exist- 
ing domain terms, rules, and relations among them. Thus, 
the compiler needs to know which domain relations are 
predicates and which are functions (in the mathematical 
sense). ODYSSEUS needs to know when metarules can 
be reordered. The teaching program needs to know why 
metarules are ordered a certain way. In classifying rela- 
tions and terms, we are constantly asking, “Which things 
can be procedurally operated upon in the same way?” 

Winograd reached the same conclusion in his analysis 
of how language arises. The need to take action reorients 
us to the world, forcing us to make new distinctions. The 
relevant properties attributed to an object are determined 
by the role the object plays in an action: “This grounding 
of description in action pervades all attempts to formalize 
the world into a linguistic structure of objects, properties, 
and events” (Winograd & Flores 1986). Indeed, by this 
analysis the world and its objects exist only in language, 
mediated by action. 

The expert system methodology of writing down 
knowledge in some structured way so that it can later 
be studied and better formalized is a remarkable, excit- 
ing turning point in epistemological practice. We try to 
understand why a relation holds by abstracting it and then 
trying to find similar relations in the knowledge base. If a 
pattern holds, we restate everything more abstractly. Why 
is it correct to say that “broken mold” causes “inadequate 
feeding”? What other causal links in the network connect 

METHODOLOGY FOR IMPROVING 
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GENERATIVE 

JUSTBFICATIONS 
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Figure 22. Methodology for Improving Computa- 
tional Models. In the process of knowledge representation, 
we write statements in some language; we organize what we 
have written down, describing and classifying patterns; we ex- 
plain the patterns in terms of primitive relations; and we define 
a new language that enables us to explicitly state these primi- 
tive relations and generate the original patterns. For example, 
clause correlations in in MYCIN’s rules are now reformulated in 
tasks, metarules, and domain relations. Another cycle occurs 
when we study these metarules and articulate the constraints 
behind their design. Similarly, patterns in NEOMYCIN’s dis- 
ease taxonomy and CASTER’s causal network are articulated 
by characterizing diseases as processes and states as abnor- 
mal structures and malfunctions. These new perspectives- 
the search for patterns and their articulation in a new lan- 
guage-all rise in an attempt to formulate some generative 
rationale for constructing similar structures in new domains as 
well as to evaluate existing networks for consistency and com- 
pleteness. A generative theory of a representation facilitates 
teaching people how to use the representation, reformulating 
it for efficiency, and constructing explanation programs and 
knowledge-acquisition tools. 

the same kind of concepts, leaving out the same kind of 
details? Do all links in the network connect structures to 
functions? Is there any reason why they should? 

Having written a model down, the most powerful tools 
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of language come into play: 
l It is possible to reflect on what was said, to ask why 

it is true, to develop a better understanding or theory. 
l An incremental critique and transformation process 

becomes possible-the best way to build anything so 
that it is reliable and useful (Petroski 1985). 

Computational languages provide a way of writing 
things down so that the model is executable, the very 
thing we need for modeling processes. AI research is ex- 
ploring how to model physical, inferential, communicative, 
motoric, and perceptual processes using qualitative (prin- 
cipally nonnumeric, relational) representations (Clancey 
1986). Graphics provide a medium for visualizing pro- 
cesses, so we can understand the complexity of the sys- 
tcms we construct (Hollan, Hutchins, & Weitzman 1984; 
Clancey 1983c, Richer & Clancey 1985) and even start to 
ask new questions as icons and graphs become part of our 
language for stating theories. The marriage of qualitative 
modeling and graphics in the 198Os, made available on 
cheaper, more powerful machines, provides a sharp stim- 
ulus to AI research and a good reason to be optimistic 
about the progress to come. 
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