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The emergence of expert systems as one of the major ar- 
eas of activity within AI has resulted in a rapid growth of 
interest within the AI community in issues relating to the 
management of uncertainty and evidential reasoning. Dur- 
ing the past two years, in particular, the Dempster-Shafer 
theory of evidence has att,ract,ed considerable attention as 
a promising method of dealing with some of the basic prob- 
lems arising in combination of evidence and data fusion. 
To develop an adequate understanding of this theory re- 
quires considerable effort and a good background in proba- 
bility theory. There is, however, a simple way of approach- 
ing the Dempster-Shafer theory that only requires a min- 
imal familiarity with relational models of data. For some- 
one with a background in AI or database management, 
this approach has the advantage of relating in a natural 
way to the familiar framework of AI and databases. Fur- 
thermore, it clarifies some of the controversial issues in the 
Dempster-Shafer theory and points to ways in which it can 
be extended and made useful in AI-oriented app1ications.l 

The Basic Idea 
The basic idea underlying the approach in question is that 
in the context of relational databases the Dempster-Shafer 
theory can be viewed as an instance of inference from 
second-order relations, that is; relations in which the en- 
tries are first-order relations.’ To clarify this point, let 
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lThe approach described in this article is derived from the appli- 
cation of the concepts of possibility and certainty (or necessity) to 
information granularity and the Dempster-Shafer model of uncer- 
tainty (Zadeh, 1979a, 1981) Extensive treatments of the concepts 
of possibility and necessity and their application to retrieval from 
incomplete databases can be found in recent papers by Dubois and 
Prade (1982, 1984) 
‘In the terminology of relational databases, a first-order relation is 

us first consider a standard example of retrieval from a 
first-order relation, such as the relation EMPLOYEE1 (or 
EMPl, for short) that is tabulated in the following: 

EMPI Name Age 
23 

28 

21 

27 

30 

As a point of departure, consider a simple example 
of a range query: What fraction of employees are be- 
tween 20 and 25 years old, inclusively? In other words, 

During the past two years, the Dempster-Shafer theory of evi- 
Abstract 

dence has attracted considerable attention within the AI com- 
munity as a promising method of dealing with uncertainty in 
expert systems. As presented in the literature, the theory is 
hard to master. In a simple approach that is outlined in this 
paper, the Dempster-Shafer theory is viewed in the context 
of relational databases as the application of familiar retrieval 
techniques to second-order relations, that is, relations in which 
the data entries are relations in first normal form. The rela- 
tional viewpoint clarifies some of the controversial issues in the 
Dempster-Shafer theory and facilitates its use in AI-oriented 
applications 

a relation which is in first normal form, that is, a relation whose 
elements are atomic rather than set-valued. 
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what fraction of employees satisfy the condition Age(i) E 
Q: i = 1,. . . ,5, where Q is the query set Q = [20,25]. Count- 
ing those i’s which satisfy the condition, the answer is 2/5. 

Next, let us assume that the age of i is not known with 
certainty. For example, the age of 1 might be known to 
be in the interval [22,26]. In this case, the EMPl relation 
becomes a second-order relation, for example: 

EMP2 Name Age 

1 [2231 

2 P%q 
3 [30,351 
4 PO,221 

5 [28,301 

Thus, in the case of 1, for example, the interval-valued 
attribute [22, 261 means that the age of 1 is known to be 
an element of the set {22,23,24,25,26}. In effect, this 
set is the set of possible values of the variable Age(l) or, 
equivalently, the possibility distribution of Age(l). Viewed 
in this perspective, the data entries in the column labeled 
Age are the possibility distributions of the values of Age. 
Similarly, the query set Q can also be regarded as a possi- 
bility distribution. In this sense, the information resident 
in the database and the queries about it can be described 
as granular (Zadeh, 1979a, 1981), with the data and the 
queries playing the roles of granules. 

When the attribute values are not known with cer- 
tainty, tests of set membership such as Age(i) E Q cease to 
be applicable. In place of such tests then, it is natural to 
consider the possibility of Q given the possibility distribu- 
tion of Age(i). For example, if Q = [20, 251 and Age(l) E 
[22, 261, it is possibZe that Age(l) E Q; in the case of 3, it 
is not possible that Age(3) E Q; and in the case of 4, it is 
certain (or necessary) that Age(4) E Q; more generally: 

(a) &e(ikQ ’ P is ossible, if the possibility distribution of 
Age(i) intersects Q; that is, Di n Q # 0 where Di 
denotes the possibility distribution of Age(i) and 0 is 
the empty set. 

(b) Q is certain (or necessary) if the possibility distribu- 
tion of Age(i) is contained in Q, that is, Di c Q. 

(c) Q is not possible if the possibility distribution of Age(i) 
does not intersect Q or, equivalently, is contained in 
the complement of Q. This implies that-as in modal 
logic-possibility and necessity are related by 

necessity of Q = not (possibility of complement of Q). 

In the case of EMP2, the application of these tests 
to each row of the relation yields the following results for 
Q = [20,25] : 
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EMP2 Name Age 

1 [22,261 
2 PO,221 c 3 [30,351 
4 [20,221 
5 P3,301 

Test 

poss 

cert 

1 poss 

cert 

1 poss 

(In the Test column, pass, cert, and 1 poss, are ab- 
breviations for possible, certain, and not possible, respec- 
t ively. ) 

We are now in a position to construct a surrogate an- 
swer to the original question: What fraction of employees 
are between 20 and 25 years old, inclusively? Clearly, the 
answer will have to be in two parts, one relating to the cer- 
tainty (or necessity) of Q and the other to its possibility; 
in symbols: 

ResdQ) =(NQ); n(Q)), (1) 

where Rew(Q), N(Q), and II(Q) denote, respectively, 
the response to Q, the certainty (or necessity) of Q, and 
the possibility of Q. For the example under consideration, 
counting the test results in EMP2 leads to the response: 

Resp[20, 251 = (N([20, 251) = 2/5; II([20, 251) = 3/5), 

with the understanding that cert counts also as poss be- 
cause certainty implies possibility. Basically, a two-part 
response of this form, that is, certainly (u and possibly ,B, 
where ac and ,/3 are absolute or relative counts of objects 
with a specified property, is characteristic of responses 
based on incomplete information; for example, certainly 
10% and possibly 30% in response to: How many house- 
holds in Palo Alto own a VCR? 

The first constituent in Resp(Q) is what is referred to 
as the measure of belief in the Dempster-Shafer theory, and 
the second constituent is the measure of plausibility. Seen 
in this perspective then, the measures of belief and plausi- 
bility in the Dempster-Shafer theory are, respectively, the 
certainty (or necessity) and possibility of the query set Q 
in the context of retrieval from a second-order relation in 
which the data entries are possibility distributions. 

There are two important observations that can be 
made at this point. First, assume that EMP is a rela- 
tion in which the values of Age are singletons chosen from 
the possibility distributions in EMPZ. For such a relation, 
the response to Q would be a number, say, alpha. Then, it 
is evident that the values of N(Q) and II(Q) obtained for 
Q (that is, 215 and 3/5) are the lower and upper bounds, 
respectively, on the values of alpha. This explains why 
in the Dempster-Shafer theory the measures of belief and 
plausibility are interpreted, respectively, as the lower and 
upper probabilities of Q. 



Second, because the values of N(Q) and II(Q) repre- 
sent the result of averaging of test results in EMP2, what 
matters is the distribution of test results and not their 
association with particular employees. Viewing this dis- 
tribution as a summary of EMP2, this implies that N(Q) 
and II(Q) are computable from a summary of EMP2 which 
specifies the fraction of employees whose ages fall in each 
of the interval-valued entries in the Age column. 

More specifically, assume that in a general setting 
EMP2 has n rows, with the entry in row i, i = 1,. . . , n, 
under Age being Di. Furthermore, assume that the Di 
are comprised of Ic distinct sets Al,. . . .AK so that (a) 
each D is one of the A,, s = 1,. . . , k. For example, in the 
case of EMP2, 

n k 
Dl 1 ;22;26] Al 1 ;‘,2;26] 
D2 = [20,22] A2 = [20,22] 
D3 = [30,35] A3 = [30,35] 
D4 = [20,22] A4 = [28,30] 
D5 = W3,301 

Viewing EMP2 as a parent relation, its summary can 
be expressed as a granular distribution, A, of the form 

A = {(AI,PI), (A2,~2), . . . > (Alc,~rtz)), 

in which p,, s = 1, . . Ic:3is the fraction of D’s that are A, 
Thus, in the case of EMP2, we have 

A ={([22,261, I/5), 

([20,221,2/5), 

([30,351, I/5)> 

([28,301,1/5)1. (2) 

As is true of any summary, a granular distribution can 
have a multiplicity of parents, because A is invariant under 
permutations of the values of Name. At a later point, we 
see that this observation has an important bearing on the 
so-called Dempster-Shafer rule of combination of evidence. 

In summary, given a query set Q, the response to Q 
has two components, N(Q) and II(Q). In terms of the 
granular distribution A, N(Q) and II(Q) can be expressed 
as 

N(Q) = cp” such that (A, c Q, s = 1, . . . , k) 
s 

II(Q) = cp” such that (A, n Q # 0; s = 1, . . . , k.) 
s 

(3) 

3The relative counts pl , . .pk are referred to as the basic probability 
numbers in the Dempster-Shafer theory 

L d 

Figure 1 

These expressions for the necessity and possibility of Q 
are identical with the expressions for belief and plausibility 
in the Dempster-Shafer theory. 

The Ball-Box Analogy 

The relational model of the Dempster-Shafer theory has a 
simple interpretation in terms of what might be called the 
ball-box analogy. 

Specifically, assume that, as shown in Figure 1, we 
have n unmarked steel balls which are distributed among 
k boxes Al,. . . , Ak, with pi representing the fraction of 
balls put in Ai. The boxes are placed in a box U and are 
allowed to overlap. The position of each ball within the 
box in which it is placed is unspecified. In this model, the 
granular distribution A describes the distribution of the 
balls among the boxes. (Note that the number of balls put 
in Ai, is unrelated to that put in Aj. Thus, if Ai c Aj, the 
number of balls put in Ai can be larger than the number 
of balls put in Aj. It is important to differentiate between 
the number of balls put in Ai and the number of balls 
in Ai. The need for differentiation arises because the Ai 
might overlap, and the boundary of each box is penetrable, 
except that a ball put in Ai is constrained to stay in Ai.) 

Now, given a region Q in U, we can ask the question: 
How many balls are in Q? To simplify visualization, we 
assume that, as in Figure 1, the boxes as well as Q are 
rectangular. 
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Because the information regarding the position of each 
ball is incomplete, the answer to the question will, in gen- 
eral, be interval-valued. The upper bound can readily be 
found by visualizing Q as an attractor, for example, a mag- 
net. Under this assumption, it is evident that the propor- 
tion of balls drawn into Q is given by 

n(Q) = c, PS, A, nQ # 0, s = I,. . . ) k, 

which is the expression for plausibility in the Dempster- 
Shafer theory. Similarly, the lower bound results from vi- 
sualizing Q as a repeller. In this case, the lower bound is 
given by 

N(Q) = C, PSI A, c Q, s = 1;. . . ) k, 

which coincides with the expression for belief in the 
Dempster-Shafer theory. Note that making Q an attrac- 
tor is equivalent to making Q’ (the complement of Q) a 
repeller. From this it follows at once that 

HI(Q) = l- WQ’), 

which h d s already been cited as one of the basic identities 
in the Dlempster-Shafer theory. 

The ball-box analogy has the advantage of providing 
a pictorial-and, thus, easy to grasp-interpretation of the 
Dumpster-Shafer model. As a simple illustration of its use, 
consider the following problem. There are 20 employees in 
a department. Five are known to be under 20, 3 are known 
to be over 40 and the rest are known to be between 25 and 
45. How many are over 30? The answer that is yielded at 
once by the analogy is between 3 and 15. 

The Issue of Normalization 

A controversial issue in the Dempster-Shafer theory re- 
lates to the normalization of upper and lower probabilities 
and its role in the Dempster-Shafer rule of combination of 
evidence. 

To view this issue in the context of relational 
databases, assume that the attribute tabulated in the 
EMP2 relation is not the employee’s age but the age of 
the employee’s car, Age(Car(i)), i = 1,. . . , 5, with the un- 
derstanding that Age(Car(i)) = 0 means the car is brand 
new and that Age(Car(i)) = 0, where 0 is the empty set 
(or, equivalently, a null value) means i does not have a 
car. For convenience in reference, an attribute is said to 
be definite if it cannot take a null value and indefinite if it 
can. In these examples, Age is definite, whereas Age (Car) 
is not. 

The question that arises is: How should the null values 
be counted? Questions of this type arise, generally, when 
the referent in a proposition does not exist. In the the- 
ory of presuppositions, for example, a case in point is the 

proposition “The King of France is bald,” with the ques- 
tion being: What is the truth-value of this proposition if 
the King of France does not exist? Closer to AI, similar 
issues arise in the literature on cooperative responses to 
database queries (Joshi, 1982; Joshi & Webber, 1982; Ka- 
plan, 1982) and the treatment of null values in relational 
models of data (Biskup, 1980). 

In the Dempster-Shafer theory, the null values are 
not counted, giving rise to what is referred to as 
normalization.4 However, it is easy to see that normal- 
ization can lead to a misleading response to a query. Con- 
sider, for example, the relation EMP3 shown in the follow- 
ing: 

EMP3 Name Age(Car) 

1 WI 
2 0 

3 [2,31 
4 0 

5 0 

For the query set Q! [2,4], normalization would lead 
to the unqualified conclusion that all employees have a car 
that is two to four years old. 

Such misleading responses can be avoided, of course, 
by not allowing normalization or, better, by providing a 
relative count of all the null values. As an illustration in 
the example under consideration, avoiding normalization 
would lead to the response N(Q) = II(Q) = 2/5. Adding 
the information about the null values would result in a 
response with three components: N(Q) = 2/5;II(Q) = 
2/5;RCO = 3/5, where RC denotes the relative count of 
the null values. 

As pointed out in Zadeh (1979b), normalization can 
lead to serious problems in the case of what has come 
to be known as the Dempster-Shafer rule of combination. 
As is seen in the following section, this rule has a simple 
interpretation in the context of retrieval from relational 
databases-an interpretation that serves to clarify the im- 
plications of normalization and points to ways in which 
the rule can be made useful. 

The Dempster-Shafer Rule 

In the examples considered so far, we have assumed that 
there is just one source of information concerning the at- 
tribute Age. What happens when there are two or more 
sources, as in the relation EMP4 tabulated below? 

41n Shafer’s theory (Shafer, 1976), null values are not allowed in 
the definition of belief functions but enter the picture in the rule of 
combination of evidence 
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Age 1 

[22,231 

WPI 
PO,211 
PL221 
[22,231 

Age 2 

[22,241 

PO,211 
P%201 
lwq 
P,2ll 

Because the entries in Age 1 and Age 2 are possibility 
distributions, it is natural to combine the sources of infor- 
mation by forming the intersection (or; equivalently, the 
conjunction) of the respective possibility distributions for 
each i, resulting in the relation EMP5 

in which the aggregation operator * has the meaning of 
intersection. 

Using the combined relation to compute the nonnor- 
malized response to the query set Q = [20. 251. leads to 

R-p(Q) = (N(Q) = 3/5; II(Q) = 3/5; RCO = a/5). 

With normalization, the response is given by 

Resp(Q) = (N(Q) = l;II(Q) = 1). (4) 

Note the normalized response suppresses the fact that 
in the case of 4 and 5 the two sources are flatly contradic- 
tory. 

Next, consider the case where we know the distribu- 
tion of the possibility distributions associated with the two 
sources but not their association with particular employ- 
ees. Thus, in the case of Age 1, the information conveyed 
by source 1 is that the possibility distributions of the Age 
variable and their relative counts in Age1 are given by the 
granular distribution 

Al = {(A: p1).. . (>4;..I)k:)} 

and in the case of Age 2, the corresponding granular dis- 
tribution is 

a2 = {(A;, d, . . . > (A%, qm)). 
Because we do not know the association of A’s with 

particular employees, to combine the two sources we have 
to form all possible intersections of Al’s and A2’s. As a 

result, in the combined column Age 1 * Age 2, the data 
entries will be of the form 

A,‘nAt,s=l,..., Ic,t=l,..., m, 

and the relative count of Ai n AZ’s will be p,qt. 
The result of the combination then is the following 

granular distribution: 

al,2 = {(A; n A;,p,qt); s = 1,. . . , k, t=l, . . , m}(5) 

Knowing Ar,z, we can compute the responses to Q 
using (3) and (4) with or without normalization. It is the 
first choice that leads to the Dempster-Shafer rule. 

As a simple illustration, assume that we wish to com- 
bine the following granular distributions: 

Al = {([20,211,0.8), ([22,241,0.2)1 

A2 = {([19,20],0.6), ([20,23],0.4)}. 

In this case, (5) becomes 

Al,2 = {(20,0.48), ([20,21],0.32), ([22,23],0.08), (0,0.12)}, 

and if Q is assumed to be given by Q = [20,22]; the non- 
normalized and normalized responses can be expressed as 

Resp(Q) = (N(Q) = 0.8; II(Q) = 0.88; RCO = 0.12) 

Norm. Resp(Q) = (N(Q) = 0.8/0.88; II(Q) = 1). 

If we are dealing with a definite attribute, that is, an 
attribute which is not allowed to take null values, then 
it is reasonable to reject the null values in the combined 
distribution. However, if the attribute is indefinite, such 
rejection can lead to counterintuitive results. 

The relational point of view leads to an important 
conclusion regarding the validity of the Dempster-Shafer 
rule. Specifically, if we assume that the attribute is defi- 
nite, then the intersection of the attributes associated with 
any entry cannot be empty, that is, the relation must be 
conflict-free. Now, if we are given two granular distribu- 
tions A, and Az, then there must be at least one parent 
relation for A, and A2 that is conflict-free. In this case, 
we say that Ai and Az are combinable. 

What this implies is that in the case of a definite at- 
tribute one cannot, in general, combine two arbitrarily 
specified granular distributions. In more specific terms, 
this conclusion can be stated as the following conjecture: 
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In the case of definite attributes, the Dempster- 
Shafer rule of combination of evidence is not 
applicable unless the underlying granular dis- 
tributions are combinable, that is, have at 
least one parent relation which is conflict-free. 

An obvious corollary of this conjecture is the following: 

If there exists a granule A, in a, that is dis- 
joint from all granules At in a,, or vice-versa, 
then a, and a, are not combinable. 

An immediate consequence of this corollary is that 
distinct probability distributions are not combinable and, 
hence, that the Dempster-Shafer rule is not applicable to 
such distributions. This explains why the example given 
in Zadeh (1979b: 1984) leads to counterintuitive results. 

Concluding Remarks 

The relational view of the Dempster-Shafer theory that 
is outlined here exposes the basic ideas and assumptions 
underlying the theory and makes it much easier to under- 
stand. Furthermore, it points to extensions of the theory 
for use in various AI-oriented applications and, especially, 
in expert systems. Among such extensions, which are dis- 
cussed in Zadeh (1979a), is the extension tso second-order 
relations in which (1) the data ent,ries are not restricted 
to crisp sets and (2) the distributions of data entries are 
specified imprecisely. This extension provides a three-way 
link between the Dempster-Shafer theory, the theory of 
information granularity (Zadeh: 1979a, 1981) and the the- 
ory of fuzzy relational databases (Zemankova-Leech and 
Kandel, 1984) Another important extension relates to 
the combination of sources of information with unequal 
credibility indexes. Extension to such sources necessitates 
the use of graded possibility distributions in which possi- 
bility, like probability. is a matter of degree rather than 
a binary choice between perfect possibility and complete 
impossibility. 

As far as the validity of the Dempster-Shafer rule is 
concerned; the relational point of view leads to the con- 
jecture that it cannot be applied until it is ascertained 
that the bodies of evidence are not in conflict; that is, 
there exists at least one parent relation which is conflict- 
free. In particular, under this criterion, it is not permis- 
sible to combine distinct probability distributions-which 
is allowed in the current versions of the Dempster-Shafer 
theory. 
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