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Abstract 
The classical approach to the acquisition of knowledge and 

reason in artificial intelligence is to program the facts and rules 
into the machine. Unfortunately, the amount of time required 
to program the equivalent of human intelligence is prohibitively 
large. An alternative approach allows an automaton to learn 
to solve problems through iterative trial-and-error interaction 
with its environment, much as humans do. To solve a problem 
posed by the environment, the automaton generates a sequence 
or collection of responses based on its experience. The environ- 
ment evaluates the effectiveness of this collection, and reports 
its evaluation to the automaton. The automaton modifies its 
strategy accordingly, and then generates a new collection of 
responses. This process is repeated until the automaton con- 
verges to the correct collection of responses. The principles 
underlying this paradigm, known as collective learning systems 
theory, are explained and applied to a simple game, demon- 
strating robust learning and dynamic adaptivity. 

Foreword 

As an AI researcher, I am impressed by the many recent 
specialized advances in the simulation of intelligence, par- 
ticularly in the area of expert systems: impressed, but 
unsatisfied. I am still tantalized by the prospect of build- 
ing a machine that exhibits general artificial intelligence- 
one capable of recognizing and solving a wide and ever- 
expanding variety of problems in diverse application do- 
mains, capable of rising to the new problem of the mo- 
ment by adapting existing expertise to the solution of a 
new problem through analogy, of subordinating long-term 
goals to sets of shorter term goals that must be achieved 
first in order to tackle the long-term goals successfully- 
and even capable of creating something new and beautiful 
just for its own sake. 

All of these capabilities are ones that we associate, in 
part, with human intelligence. If we accept the premise 
that the human brain is the seat of these capabilities, and 
if we accept the notion that the human brain is a finite 
machine, albeit extremely complex, then we arrive at the 
inescapable conclusion that we ought to be able to repli- 
cate such a machine with a finite number of components 
in a finite amount of time. 

Even if we insist that the capacity of the brain is in- 
finite (though somehow contained in a finite volume), and 
that its operation is magical and mystical and, therefore, 
unfathomable, then perhaps we may at least accept the 
proposition that we can build a machine that will approach 
our cognitive capabilities asymptotically, so that the be- 
tween difference its intelligence and ours will be indistin- 
guishable. 

Many insist that even this compromise is not possible- 
that it is arrogant and naive to assume that “we limited 
humans can duplicate the infinite magic of our brains.” 
Which is it now? Are our human abilities limited, or are 
they infinite? Personally, I find it rather more arrogant 
to assert that our intelligence capacity is infinite than to 
accept its finite limitations. 

This topic is very controversial. When discussing ar- 
tificial intelligence, people who are otherwise calm often 
become very emotional, and will go to absurd lengths to 
convince me that the endowment of machines with rational 
and emotional intelligence as rich and complex as ours is 
fundamentally impossible. When I was abroad a few years 
ago, I had just this kind of lively discussion with a profes- 
sor of philosophy at a prestigious university. I proposed to 
him a classic gedankenexperiment. 

Me: Suppose we build a machine that is capable of mak- 
ing an exact copy of an object. Now suppose we put you 
in this machine while you are unconscious, and make a du- 
plicate of you. Then we take you and your duplicate and 
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place you in a room together. Both of you are awakened 
simultaneously, and presented with the task of determin- 
ing which of you is the original, which of you is the copy. 
How would you accomplish this? 
Him: Oh! That’s easy. I’d know that I was the original! 
Me: But your counterpart would say the same thing! 
Him: Yes. But he’d be wrong. 

QED. Well, everyone is entitled to his or her view. My 
view is that out intelligence is finite, realizable, and can 
be replicated in computer hardware and software. 

My efforts to simulate human intelligence begin with 
a careful examination of the size and nature of our intel- 
ligence capacity and processes. Research in neurophysiol- 
ogy has revealed that the brain and central nervous system 
consist of about 1011 individual parallel processors, called 
neurons. Each neuron is capable of storing about lo4 bits 
of information. The information capacity of the brain is 
thus about 1015 bits (Sagan, 1977). Much of this infor- 
mation is probably redundant, but let us use this high 
value as a conservative estimate of the memory require- 
ments for a computer that can store all this information. 
Furthermore, for the sake of rapid response (which is cer- 
tainly part of intelligence) we will require that high-speed 
random-access memory be used to store this vast amount 
of information. When can we expect to have high-speed 
memories of 1Or5 bits? 

Examination of historical data reveals that the amount 
of high-speed random-access memory that may be conve- 
niently accessed by a large computer has increased by an 
order of magnitude every six years. This growth is de- 
picted in Figure 1, in which I have dubbed each six-year 
period a “generation.” 

If we can trust this simple extrapolation, in generation 
thirteen, (AD 2024-2030), the average high-speed memory 
capacity of a large computer will reach the 1015 bit infor- 
mation capacity of the human brain. Note that an order of 
magnitude error in the estimate of brain capacity results 
in an error of just six years in my prediction. 

So much for the hardware. Now we have to fill this 
capacious memory with software. Of course, even adult 
brains are not filled to capacity. So we will assume that 
10% of the total capacity, or 1014 bits, is the extent of the 
intelligence base of an adult human brain. How long will 
it take to write the programs to fill 1014 bits (production 
rules, knowledge bases, etc.)? The currently accepted rate 
for production of software, from conception to installation, 
is about one line of code per hour. Assuming, generously, 
that an average line of code contains approximately 60 
characters, or 500 bits, we discover that the project will 
require 100 million person-years!!! (One of my students 
suggested that we put ten programmers on the project.) 
Now we can fiddle with these numbers all we want, cut the 
brain capacity estimate drastically, increase programmer 
productivity, use huge programming teams, etc., and we 
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still come up with impossible times. We’ll never get any- 
where by trying to program human intelligence into our 
machine. 

What other options are available to us? One is di- 
rect transfer. It goes something like this: I put clcctrodes 
all over your head, read out the contents of your brain 
(nondestructively, I hope), and transfer these data over a 
high-speed bus to our machine. Without belaboring the 
calculations, this task would require about twelve days. 
Only one problem remains: I haven’t the faintest, foggiest 
notion of how to build such a device, let alone what prin- 
ciples it would employ, or even how to propose a research 
project to investigate its feasibility. If someone does, more 
power to him. 

What’s left? There must be another alternative, be- 
cause intelligence is acquired every day. Every day babies 
are born, grow up, and in the process acquire a full spec- 
trum of intelligence. How do they do it? The answer, of 
course, is that they learn. 

If we assume that the eyes, our major source of sensory 
input, receive information at the rate of about 250,000 
bits per second, we can fill the 1014 bits of our machine’s 
memory capacity in about twenty years. Now we’re getting 
somewhere. 

Maybe what we must do is connect our machine brain 
to a large number of high-data-rate sensors, endow it with 
a comparatively simple algorithm for self-organization, pro- 
vide it with a continuous and varied stream of stimuli and 
evaluations for its responses, and let it learn. 

Of course the task is not that simple, but I believe 
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that the suggestion is on the right track-and perhaps the 
only track. 

Introduction 

Consistent with my professed mechanistic view of human 
intelligence, and my profound admiration for the ingenious 
and efficient design and function of the brain, I offer the 
following definition of artificial intelligence. 

Artificial Intellzgence is the ability of a human- 
made machine (an automaton) to emulate or 
simulate human methods for the deductive and 
inductive acquisition and application of knowl- 
edge and reason. 

An emulation of cognition requires building an au- 
tomaton that uses the same algorithm to solve a prob- 
lem as does the emulated living organism. This approach 
is often called brain-modeling. Emulation of the cogni- 
tive processes of members of the higher phyla of the an- 
imal kingdom requires the design and implementation of 
functional equivalents of neurons, which combine into net- 
works. The biochemistry of the neuron is largely ignored, 
and the neuron is treated as a black box. 

Simulation allows the use of a method of solution that 
is different from, although functionally equivalent to the 
method actually employed by the brain. This approach is 
often called problem-solving. Simulation of the complex 
dynamics of an arm or leg in goal-directed motion (e.g., 
kicking a soccer ball) can be accomplished using a Jacobian 
transform, yet there appears to be no hard-wired algo- 
rithm for such a transform in the brain. The human brain 
does not have a shift-and-add multiplier in its wired-up 
repertoire. Yet the human brain can multiply. Some pro- 
gramming languages, especially as implemented on small 
machines, often do emulate the human brain’s method of 
multiplication by using a look-up table. 

Both the simulation and emulation of intelligence are 
truly artificial because neither attempts to copy the bio- 
chemical functions of the organism. Work of this kind 
uses biological experiments directed toward the creation 
and replication of living organisms in the laboratory us- 
ing the same biochemical processes employed in nature. It 
may indeed be genetic engineers who will provide us with 
the components necessary to build our computer brain. 
In the same way that we specify the logic diagram for an 
integrated circuit today, we may in the future specify a 
useful sequence of nucleotides for a DNA molecule, grow- 
ing our memory and associated logic in vitro. This kind of 
hardware already has a name: the biochip-and the infor- 
mation placed onto the biochip might be called wetware. 

Returning once more to our definition of artificial in- 
telligence, let us carefully distinguish between deductive 
and inductive processes. An automaton behaves accord- 
ing to the following equation: 

S[t+&] =T S[t] 

where S[t] is the state of the automaton at time t, 
S[t + St] is the state of the automaton at the time t, and 
T is the transformation that, when applied to S[t], yields 
S[t+&]. In a deductive process, the transform T is known. 
Thus, if S[t] is known (subject to limits of uncertainty, of 
course) we may calculate S[t + St] and thus determine the 
progressive behavior of the automaton. 

The transform may be a function that is continuous 
throughout the state space. For example, the formula 
P[t + St] = (1 + r). P[t] t ransforms an old principal, P[t], 
to a new principal, P[t+&], by the application if the trans- 
form (1 + r). Repeated application results in exponential 
growth of the principal, the familiar compound interest 
phenomenon. 

Certainly we can envision much more complex contin- 
uous transforms, but it is doubtful whether we can pos- 
tulate a single continuous transform or even a set of con- 
tinuous transforms to account for and simulate the almost 
unfathomable, highly differentiated, nonhomogeneous, ap- 
parently erratic behavior of Homo sapiens. 

Moving the transform from continuous to discrete space 
helps somewhat. By allowing the transform to be a ma- 
trix, we can allow our deductive automaton to leap great 
discontinuities in a single bound. To illustrate this point, 
consider the classical brain-teaser: 

You have a fox, a chicken, and a bag of grain. You 
come to a river that you must cross. There is a 
small boat available that can carry only yourself 
and one of your possessions across the river per 
trip. What is your optimal strategy for crossing 
the river with all of your possessions intact? 

It is impossible to imagine the application of a con- 
tinuous transform to this problem. However, it is easily 
approached using a set of discrete transforms represent- 
ing the well-understood principles of classical deduction. 
Such problems have been successfully solved by automa- 
tons using discrete deductive problem-solving techniques 
(Michalski et al., 1983). 

However, it is fortunate that the state-space of this 
problem is very limited, the rules of the game simple and 
fixed, and the set of applicable deductive transforms well- 
understood. Consider a similar word problem, which I 
posed to some colleagues in Berlin a few years ago. 

You live in a geographical region that is com- 
pletely surrounded by the enemy. The enemy’s 
territory is in turn surrounded both by your friends 
and by allies of your enemy. In terms of your al- 
lies’ and your enemies’ economic, political, and 
cultural situations, what is your optimal strategy 
for survival. 
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The ability to solve this problem, in which the situa- 
tion is not so simple, is obviously a much more critically 
needed ingredient of intelligence. However, needless to say, 
the application of deductive methods in this case will not 
yield satisfactory results. The transforms are simply not 
known, except perhaps in obvious and often critical phases, 
such as open warfare. 

When the transform is not known, one may often use 
induction to find it. This procedure requires the knowl- 
edge of both the current state and the forthcoming state. 
The question immediately arises: “How can one know 
the forthcoming state until it happens?” One cannot, of 
course. The only approach is therefore to guess at the pos- 
sible transform, apply it, evaluate the effectiveness of the 
output, modify the transform accordingly, reapply it, eval- 
uate, and so forth, until one converges to a useful trans- 
form. This informal method of induction, when applied to 
problems on artificial intelligence, goes by several names: 
adaptive, self-organizing, or learning. The specific name 
for a machine that makes use of this trial-and-error ap- 
proach is a learning automaton, or “LA” (Narendra and 
Thathachar, 1974). 

r PROCESS OF A LEARNING AUTOMATON 

- .----.. 
RESPONSE j 

! EVALUATION I 

R 
c ,. 
; 1 1 COMPENSATION 

STIMULUS 

Figure 2. 

Learning 

The learning process is diagrammed in Figure 2. External 

to the learning automaton is an environment that cvalu- 
ates the responses of the automaton. The environment is 
assumed to be consistent and infallible and to always tell 
the truth. In learning systems nomenclature, it thus is 
said to be stationary, deterministic, and correct. The en- 
vironment poses the initial stimulus. The automaton then 
generates a trial response. The environment evaluates the 
response and reports its evaluation to the automaton. The 
automaton adjusts its strategy accordingly and generates 
a new trial response. This iterative process continues until 
the automaton converges to the correct response; that is, 
when the stimulus produced by the environment always 
(or as often as necessary) elicits the correct response form 
the automaton. 

With this type of environment, the process is exactly 
equivalent to an exhaustive search of the response space 
until the correct response is identified. This is because 
every response is always evaluated by the environment as 
either correct or incorrect; it is, in fact, a simple process 
of elimination. Linear algebra provides us with the same 
deductive method of solution. Quite obviously, this model 
is not useful for complex problem solving; real-life situa- 
tions generally do not allow us to evaluate each response 
in a complex task as it happens. 

Some years ago I learned to fly. Early in my train- 
ing, my instructor began the process of teaching me how 
to land-an essential skill indeed. One day, about 1000 
meters from the end of the runway, at an altitude of about 
300 meters, he turned the aircraft over to me. “Land it,” 
he said. 

I had read the books, studied the principles, and prop- 
erly prepared myself. Nevertheless, this was the real thing, 
and I was somewhat apprehensive. At any rate, I pulled 
myself together, took a deep breath, and began to make 
my approach. To make a long story short, I managed to 
get the aircraft down in one piece, although via a rather 
unorthodox trajectory. I felt rather pleased with myself. 

My instructor had said or done very little during this 
process except for taking control of the aircraft after the 
eighth bounce. When we rolled to a stop, I turned to him 
and asked matter-of-factly, “How was that?” He turned 
to me and said, equally matter-of-factly, “Terrible.” And 
then, “That’s all for today.” 

That was it. I received only one single word to use 
as an evaluation of the entire complex landing process. I 
had to apply this compensation collectively to the entire 
sequence of responses I had just generated: not one eval- 
uation for each response; rather, one evaluation for the 
entire set of responses. 

To be fair, I must hasten to add that my instructor 
did go into much greater detail during my next lesson, 
and I was able to apply a different and more correspondent 
evaluation to each of a large number of subsets of the entire 
response set. This debriefing was naturally much more 
valuable. 
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A TYPICAL CONTEST FOR THE GAME OF NIM 
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Figure 3. 

I suppose it would have been most valuable if my in- 
structor had been able to assess every component response 
of the process. This critique would, of course, have re- 
quired him to note and evaluate every muscle contrac- 
tion, resulting from every sensory input-perhaps every 
firing of every participating neuron. Obviously, this kind 
of resolution is impossible: in all complex life processes, 
it is unreasonable to expect the environment to provide 
an evaluation for every response. All evaluations are thus 
collective. 

We can now modify the procedure employed by the 
LA so that an evaluation is presented to the automaton 
only after it has synthesized a sequence of responses, rather 
than after every response. I call this type of learning au- 
tomaton a collective learning automaton or CLA (Bock, 
1976). The theory of the interaction of the CLA with its 
environment and the interface between them is called Col- 
lective Learning Systems Theory (Bock et al., 1985). 

lNlTlALl2llTlON OF THE NIM STRTE TRRNSITION MATRIH 

z= 1 1 1 1 .** 1 l .* 
* ----t ILLEGAL TRRNSITIONS 

Figure 4. 

An Experiment 

Does collective evaluation promote learning? We suspect 
that the answer is yes, because collective evaluation is the 
rule in life, rather than the exception, and we do learn. 
Moreover, the concept can be approached mathematically, 
and it can be proved, under certain conditions, that a 
learning automaton will converge to a desired goal state 
(Narendra and Thatcher, 1974). However, I shall not dwell 
on the mathematics at this point. Rather, I would like to 
demonstrate the viability of this approach via a simple 
experiment. 

There is an old game, sometimes called Nim, that 
lends itself well to demonstrate the utility of a CLA. The 
game begins with three rows of tokens: The first row has 
1 token; the second row has 3 tokens; the third row has 
5 tokens. Two players alternate turns, on each turn re- 
moving any number of tokens from any single row. The 
player who is forced to take the last remaining token loses. 
The order of the remaining tokens in any row at the end 
of a turn is not importantPonly the number of remaining 
tokens in each row. A typical contest is shown in Figure 
3. 
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A TVPICAL SEUUENCE OF PLBY FOR THE GAME OF NIM 
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Figure 5. 

Can we build a computer-based automaton that will 
learn how to play this game well, if not perfectly? Let 
us design one. First, we must count how many states the 
game can assume. The first row may assume two unique 
states (0 or 1 token); the second row may assume four 
states (0, 1, 2, or 3 tokens); and the third row may assume 
six states (0, 1, 2, 3, 4, or 5 tokens). In total, therefore, the 
game may assume 48 different states. Not all are unique, 
and some are trivial, but this is the worst case enumera- 
tion. 

Now let us construct a state transition matrix, as 
shown in Figure 4. The numbers describing the rows and 
columns of the matrix correspond to states of the game, 
beginning with 1, 3, 5, the original state of the contest 
(or stimulus), and ending with 0, 0, 0, the losing (termi- 
nal) state of the contest. The column identifiers repre- 
sent all possible current states of the contest, S[t], and 
the row identifiers represent all possible successor states 

of the contest, S[t + St], from which the player chooses its 
response. Each player keeps a separate matrix (memory) 
for its plays. Each element in the matrix represents the 
current probability, as estimated by the player based on 
its experience, that a transition from the current state to 
a particular state (a move) will help win the contest. 

How is a matrix initialized at the beginning of a match? 
Some transitions are illegal. For instance, changing from 
state {1,3,5} to state {1,2,4} is illegal, since it would re- 
quire removing tokens from more than one row on a single 
turn. Such illegal transitions are represented with aster- 
isks in Figure 4. All other elements are initialized to be 
equally likely. For instance, for state { 1,3,5} there are 
only nine possible successor states, so each is initialized to 
l/9; for state {1,3,4} there are only eight possible succes- 
sor states, so each is initialized to l/8; and so forth. 

CLA A (player A) begins by choosing a legal succes- 
sor state based on the current (initial) state {1,3,5}. All 
successor states are equally likely at this point. Suppose it 
chooses {1,2,5}. Now CLA B (player B), using its transi- 
tion matrix, chooses a legal successor state to the current 
state left by CLA A. All are still equally likely. Suppose 
it chooses { 1,2,3}. It is now CLA A’s turn again, and 
the contest proceeds in a similar manner until one player 
is forced to take the single remaining token, and so loses. 
Figure 5 shows the sequence of play corresponding to the 
contest depicted in Figure 3. 

CLA A takes the last token and loses; CLA B wins. 
Now CLA B accesses its transition matrix and rewards 
each specific transition it made, by raising the probability 
of that transition at the expense of all other possible tran- 
sition probabilities in that column of the matrix. Obvi- 
ously, CLA B rewards the transitions {1,2,5} to {1,2,3}, 
and {1,2,0} to {l,O,O}. Just because CLA B won does 
not imply that these transitions represent a perfect strat- 
egy; after all, CLA A was also playing randomly during 
this initial contest. For this reason the probabilities in 
CLA B’s transition matrix are raised only a bit, not set to 
unity. It obviously takes many games to converge to the 
optimal strategy. 

CLA A similarly lowers the probabilities of all transi- 
tions that it used in its loss: {1,3,5} to {1,2,5}, {1,2,3} 
to { 1,2,0}, and (1, 0, 0) to {O,O, O}. In the last move, of 
course, it had no alternative. 

Now the players begin a new contest using the updated 
matrices. No longer are all transitions equally likely, and 
the players’ choices are biased by their experience. On each 
turn, each player now chooses the action with the high- 
est probability of success. The contest is completed, the 
winner and the loser are determined, and once again the 
players update their transition matrices accordingly. This 
process repeats itself many times, until an entire match of 
games has been completed. Under the proper conditions, 
less than one hundred games is usually sufficient to cause 
one or the other player to converge to the optimal playing 
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;trategy, if convergence is, in fact, possible. 

Results 

Nim is a zero-sum game, which implies, among other things, 
that the outcome is either a win or a loss, never a draw. 
Moreover, there exists an exact deterministic algorithm for 
the solution of the game. Therefore, the outcome of a con- 
test by two perfect players using this algorithm must be a 
function of who goes first. 

Given this, it is interesting to pit a learning player (a 
CLA) against a perfect player, allowing the CLA the priv- 
ilege of always going first to measure the CLA’s ability 
to learn the game strategy while playing an expert. The 
results of a 300-contest match show that the CLA loses 
every contest until the 65th contest, and thereafter wins 
them all. It is at this point, obviously, that the CLA has 

assembled all the elements of the perfect strategy, and sub- 
sequently always capitalizes on the definitive advantage of 
always going first. 

Now let us initialize two learning players, CLA A and 
CLA B, and pit them against each other, alternating who 
goes first for each contest. Figure 6 shows the fraction 
of games won by CLA A and CLA B over a 300-contest 
match. As might be expected, their learning is symmetric 
about a line that represents winning half the time. How- 
ever there are interesting surges, declines and plateaus 
in their learning curves. Examination of their memories 
(state transition matrices) reveals that each surge is a 
sudden insight into a piece of overall strategy, allowing 
the player experiencing the insight to leap ahead of the 
other player, but only temporarily. Soon the other player 
learns the same sub-strategy, and the contest evens out 
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again. Eventually, after 300 contests, each knows the per- 
fect strategy and uses it to assure a win whenever it goes 
first, succumbing inevitably to defeat whenever it goes sec- 
ond. 

Now let us reinitialize our two CLAs and give both 
learning thresholds. A learning threshold is the probabil- 
ity value below which the successor state with the high- 
est transition probability will not be selected; instead, the 
CLA makes a completely random choice. The purpose of 
this strategy is to discourage the players (for various lev- 
els of discouragement) from choosing the move with the 
highest probability, when that probability is itself only 
marginally higher (for different margins) than those of all 
other legal moves. 

For instance, if a player is using a threshold of .07, and 
the highest transition probability is only 0.4, the player 
will select its successor state randomly from among all 
legal successor states. On the other hand , if the high- 
est transition probability is 0.75, the player will select the 
successor state corresponding to it. This policy encour- 
ages the player to range about a bit, experimenting with 
all legal moves until one move emerges as obviously better. 

It is also interesting to vary which player goes first in 
a contest: CLA A, the winner of the previous contest, or 
the loser of the previous contest. Figures 7, 8, and 9 show 

the performance of CLA A over nine 300-contest matches, 
varying which CLA goes first, and the learning threshold 
employed by CLA A (0.1, 0.4, and 0.7). The threshold for 
CLA B is held constant at 0.7. The graphs of the results 
for CLA B would simply be the complement, or mirror 
image, of those for CLA A. 

Figure 7 shows the results of three independent matches 
in which CLA A always goes first, using three different 
thresholds. The lowest threshold (0.1) yields the best 
long-term results by far, although early performance is 
poor. Apparently the immense advantage of always going 
first, and a low threshold to boot, encourages arrogant, 
high-powered play resulting in poor early performance but, 
eventually, total domination. When the threshold is in- 
creased to 0.4 early performance is better. However, the 
overall behavior of CLA A is necessarily more conserva- 
tive, and CLA B has time to learn the proper defense and 
hold CLA A to more moderate gains. Nevertheless, CLA 
B must contend with being the long-term loser, the in- 
evitable fate of never going first. Finally when the thresh- 
old is raised to 0.7, after 300 games the reactionary timid- 
ity of CLA A still prevents it from learning the perfect 
strategy and it cannot make use of the advantage of al- 
ways going first. 

In Figure 8, when the advantage of always going first 
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is removed, and CLA A must win to go first, the lowest 
threshold (0.1) still turns out to be the best, although per- 
formance is not nearly as good as in the previous case. If 
we calculate the area under each of these curves (a measure 
of the long-term payoff), the conservative policy (threshold 
= 0.4) is the most successful. 

In Figure 9, the loser always goes first. This variation 
has an odd effect. In order to assure a win by going first, 
one must lose. Successful learning relegates a player to the 
unfortunate status of never being able to take advantage 
of its knowledge by going first and winning. Both play- 
ers struggle valiantly to win, and upon doing so, are “re- 
warded” with the disadvantage of having to go second in 
the next contest. The graphs reflect the results of this vi- 
cious circle. Our arrogant CLA A (threshold = 0.1) storms 
into the fray hoping for a lucky break. It allows itself to be 
drawn inexorably into incorrect absorbing states and be- 
comes totally neurotic, desperately learning to lose, just 
so that it can go first. Meanwhile, the reactionary policy 
of CLA B (threshold = 0.7) pays off. Calmly watching 
the frantic demise of CLA A, CLA B remains content to 
be a consistent,, unchanging, mediocre player against a to- 
tally inept opponent. Our conservative CLA A (thresh- 
old = 0.4) handles the inevitability of the paradox better, 
but still cannot do well enough to counter the reactionary 

policy of CLA B. Our reactionary CLA A (threshold = 
0.7), like CLA B, seems to catch on to the insoluble para- 
dox early on and contents itself with trading contests with 
CLA B-winning one contest to learn something, losing 
the next to go first. 

Conclusions 

Experiments of this sort are endless in their parametric 
variation. Bounding the effective operational domains of 
a collective learning automaton has proven over the years 
to be an enormous and elusive task. Only recently have we 
defined an orderly and comprehensive nomenclature, sym- 
bology. and set theoretic for collective learning systems 
(Weingard et al., 1985), as well as a set of performance 
metrics and behavioral norms (Bock et al., 1985). It is 
difficult to draw generalizations about learning from my 
research with CLAs, but I timorously offer a few tentative 
hypotheses that seem to be valid in many cases: 

(1) Collective learning is a broadband phenomenon. It 
is typically not necessary to fine-tune the learning pa- 
rameters just to achieve learning. Each parameter has 
a wide dynamic range that will promote learning. Op- 
timal learning, on the other hand, requires careful ad- 
justment of all parameters. 
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(2) Keep collection lengths as short as possible, so as to 
dilute learning information as little as possible. 

(3) Any policy of reward and punishment is more effective 
if it incorporates the learner’s expectation of himself 
at the time. 

(4) Make the range of the evaluation of the environment 
as large as possible, varying from excellent to poor 
with as many intermediate values as possible. 

(5) Punishment should be used as a last resort, and in very 
small measures. Reward is a much stronger learning 
motivation. 

The illustration of collective learning system theory 
for the Nim game is hardly an example of general arti- 
ficial intelligence. The CLA can play only this particular 
game, However, it is quite simple to change the rules of the 

game, and have it adapt quickly to the new required strate- 
gies. By the same token, its stimulus domain and response 
range can be enlarged, enabling it to accomplish complex 
tasks. We are currently studying methods by which these 
modifications themselves could be learned and subsumed 
by an evolving CLA or set of CLAs. Successful research 
(Sanchez-Aguilar, 1982) has already demonstrated that a 
hierarchy of CLAs can be generated that recursively de- 
composes tasks, solving the simpler tasks first, returning 
eventually to solve the tasks at the highest level of the task 
hierarchy. Additional research is being conducted to define 
a genetic system by which CLAs reproduce, mutate, and 
die, resulting in the evolution of more complex CLAs with 
new and improved capabilities (Kada and Bock, 1985). 

Recall for a moment my chart predicting the evolution 
of computer memory capacity up to generation thirteen. 
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What do you suppose is in store for us in generation 
fourteen? 
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