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Abstract 

Most work in automatic programming has focused primarily on the roles 
of deduction and programming knowledge However, the role played 
by knowledge of the task domain seems to be at least as important, 
both for the usability of an automatic programming system and for the 
feasibility of building one which works on non-trivial problems This 
perspective has evolved during the course of a variety of studies over the 
last several years, including detailed examination of existing software for 
a particular domain (quantitative interpretation of oil well logs) and the 
implementation of an experimental automatic programming system for 
that domain The importance of domain knowledge has two important 
implications: a primary goal of automatic programming research should 
be to characterize the programming process for specific domains; and a 
crucial issue to be addressed in these characterizations is the interaction 
of domain and programming knowledge during program synthesis 
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The perspective described here has resulted from the work of many 
people Steve Smoliar, Stan Vestal, and especially Roger Duffey have 
been heavily involved in the design, implementation, and retrospective 
analysis of @o Steve Smoliar and Roger Duffey have done detailed 
analyses of existing quantitative log interpretation software as well as 
several hypothetical syntheses Paul Barth has been actively involved 
in the development of the model of programming for quantitative log 
interpretation described here; Steve Smoliar and Roger Duffey have 
contributed several key insights duringrr the process Several of the in- 
terpretation developers at SDR have patiently and repeatedly explained 
the intricacies of log interpretation to us Bruce Buchanan, Randy 
Davis, Elaine Kant, Tom Mitchell, and Reid Smith provided valuable 
feedback on earlier drafts of this paper 

MOST PREVIOUS WORK in automatic programming has 
focused on the roles played by deduction and programming 
knowledge in the programming process. For example, the 
work of Green (1969) and Waldinger and Lee (1969) in the 
late 1960s was concerned with the use of a theorem-prover 
to produce programs. This deductive paradigm continues 
to be the basis for much research in automatic program- 
ming (e.g., Manna & Waldinger 1980, Smith 1983). In the 
mid 1970’s, work on the PSI project (Barstow 1979, Green 
1977, Kant 1981) and on the Programmer’s Apprentice (Rich 
1981) was fundamentally concerned with the codification of 
knowledge about programming techniques and the use of 
that knowledge in program synthesis and analysis Work 
within the knowledge-based paradigm is also continuing 
(e.g., Barstow 1982, Waters 1981). 

This article is concerned with the role played by know- 
ledge of the task domain, a role which seems to be at least 
as important. One of the reasons for this importance derives 
from the basic motivating assumption for work on automatic 
programming: there are many computer users who would 
prefer not to do their own programming and who would 
benefit from a facility that could quickly and accurately 
produce programs for them. The primary concern of these 
users is not computation - they generally are not interested 
in the idiosyncrasies of the programming process and cer- 
tainly don’t want to learn the strange notations computer 
scientists have developed. Rather, they are interested in 
some application domain - they have problems they wish 

THE AI MAGAZINE Spring 1984 5 

AI Magazine Volume 5 Number 1 (1984) (© AAAI)



solved and questions they wish answered. Computation is 
merely a tool to help solve the problems and answer the ques- 
tions. Conventional programming is a hindrance to their use 
of that tool. It would be much more useful to them if they 
could communicate in the natural terms, concepts, and styles 
of their domain. For such interaction to be effective: the 
automatic programming systems must understand a great 
deal about the domain. Another reason for the importance 
of domain knowledge is that the problems to be solved and 
the questions to be answered are generally so complex that 
straightforward techniques are inadequate to write programs 
to solve them. Knowledge of the task domain can play a 
major role in helping a machine to cope with this complexity. 

This perspective on the role of domain knowledge in 
automatic programming has evolved over the last two years 
during the course of a variety of studies by members of 
the Software Research group at Schlumberger-Doll Research 
[SDR]. These studies will be reviewed briefly, followed by a 
more detailed discussion of the perspective. An experimen- 
tal research methodology will be illustrated by a project cur- 
rently underway at SDR 

Logging an Oil Well. 

Figure 1. 

The Task Domain: Quantitative Log Interpretation 

The task domain is the interpretation of well logs, an ac- 
tivity central to exploration for hydrocarbons. As illustrated 
in Figure 1, oil well logs are made by lowering instruments 
(called tools) into the borehole and recording the measure- 
ments made by the tools as they are raised to the surface. 
The resulting logs are sequences of values indexed by depth. 
(See Figure 2.) Logging tools measure a variety of basic 
petrophysical properties (e.g., the resistivity of the rock sur- 
rounding the borehole). Petroleum engineers, geophysicists 
and geologists are typically interested in other kinds of in- 
formation which cannot be measured directly (e.g., water 
saturation - the fraction of the rock’s pore space occupied 
by water rather than hydrocarbons). Log interpretation is 
the process of deriving the desired information from the 
measured data. 

Log interpretation can be divided into two broad catego- 
ries: qualitative interpretation is concerned with identifying 
geological attributes (e.g., lithology - the set of minerals 
which make up the rock around the borehole), while quan- 
titative interpretation is concerned with numeric properties 
(e.g., the relative volumes of the minerals). Figure 2b shows 
a volumetric analysis based on the logs of Figure 2a The 
studies described here have focused primarily on quantitative 
log interpretation. 

Quantitative interpretation relies on models - state- 
ments of relationships between the measured data and the 
desired information. These statements may take many 
forms: such as graphs and equations. For example, the fol- 
lowing equation relates water saturation (SW), porosity (4), 
the resistivity of the water (R,), and the resistivity of the 
formation (Et): 

a.R, 
SE = @TX. & 

where a, m and n are parameters that describe certain for- 
mation characteristics (Archie 1942). Since the pore spaces 
must be occupied by either water or hydrocarbons, a low 
water saturation indicates the presence of oil or gas. 

Although the interpretation models themselves are rela- 
tively simple, applying them to a particular problem involves 
a great deal of uncertainty. There are over one hundred 
qualitatively different lithologies. It’s been estimated that it 
would require over four hundred numeric parameters, such 
as a, m and n, to fully characterize a formation. Since there 
are only about a dozen measurements, the situation is hope- 
lessly underdetermined. Consequently, quantitative log in- 
terpretaion is a highly expert activity, based not only on 
a knowledge of a variety of relationships, but also of when 
and how to use them. This knowledge is the basic task 
domain knowledge for our automatic programming studies. 
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Figure 2 Oil Well Logs. 

Initial Studies 

Examination of Existing Software. The first study in- 
volved characterizing the nature of existing quantitative log 
interpretation software. The study was performed by ex- 
amining, at various levels of detail, several programs in com- 
mon use by Schlumberger. The programs all shared certain 
characteristics. They were moderate in size, ranging from 50 
to 200 pages of FORTRAN, and had been written primarily 
by experienced log interpreters who had received some train- 
ing in programming. They had gone through many major 
revisions as the result of testing and of growth in knowledge 
about log interpretation They were intended for relatively 
wide use on a large number of wells with varying sets of 
tool readings as inputs Since each was based on specific 
models, each program typically embodied significant assump- 
tions about the geological nature of the formation around the 
well (e.g., that the lithology consists of a sequence of sand 
and shale layers). The programs were heavily parameterized 
to enable their application to individual wells with unique 
characteristics. 

In a typical program the code which performs the cal- 
culations can be divided into two categories. About one 
fourth is related to the central calculations of the model. 
About three fourths deal with the wide variety of special 
situations that can arise when running the programs (e.g., 
adjust,ing inputs and outputs that seem unreasonable ac- 
cording to the assumed model, such as saturation greater 
than 100%). This division reflects certain characteristics of 
the domain. Given that one is willing to make assumptions 
about the formation, the appropriate mathematical models 

can usually be translated in a straightforward manner into 
code; thus, the software for the central computation is rela- 
tively compact. However, since there is a great deal of un- 
certainty in selecting from among possible assumptions and 
models, the software must do extensive testing and adjust- 
ment to determine the best possible fit between the data 
and the assumptions. In a way, the special situations are the 
qualitative side of quantitative log interpretation 

The results of this study can be summarized in two 
observations. 

1. The complexity of writing log interpretation software 
arises from the wealth of knowledge zt draws upon, not 
the algorithms employed. That is, algorithm design, 
the primary focus of most automatic programming 
research (e.g , Barstow 1982, Bibel 1980, Smith 1980, 
Manna & Waldinger 1980), is not the hard part of 
programming in this domain. This is probably true 
of many other domains 

2 The state of knowledge about log interpretation is con- 
stantly changing. New experiments are performed, new 
data is gathered, new theories are developed, new tech- 
niques are tested That is, evolution is an inherent 
feature of quantitative log interpretation, and hence 
a major problem for software developers As with 
size complexity, this is an area which has not received 
a great deal of attention in automatic programming 
research Of course, it could be argued that with 
fully automatic programming, there is no need to 
worry about evolution. For each change, the program 
can simply be rewritten. A counterargument is that, 
if the automatic programming system knows what 
it is doing, it should be able to document the pro- 
gram enough that it can make many changes easily. 
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Figure 3. 

An Experimental System. The second study involved INTERLISP-D which runs the XEROX 1100 series worksta- 
the development of an experimental automatic program- 
ming system for a restricted class of quantitative log inter- 
pretation software, namely those programs written to test 
hypothesized models against real data during the trial-and- 
error process of developing new models. Such models are 
generally expressed in purely equational terms, and cor- 
respond roughly to the central computations of the software 
studied initially. This class was chosen for several reasons. 
First, it offered a chance to experiment with some simple 
kinds of interpretation knowledge (equations) without the 
need to consider more complex kinds such as heuristics. 
Second, in-house colleagues might be interested in using it, 
providing opportunities for testing with “real” users. Third, 
since the intended users typically spend from hours to days 
developing test programs, a system which produces pro- 
grams in seconds or minutes would have immediate benefit. 
The system, called ~$0 (“phi-naught”), was implemented in 

tions. ~$0 is described in more detail elsewhere (Barstow et 
al 1982a, 198213)) so the major features will be discussed only 
briefly here. 

The target user of ~$0 is a log analyst concerned with de- 
veloping a new equational model for use in log interpretation. 
Such a user may be neither experienced in nor comfortable 
with traditional computer interfaces. An explicit goal was 
that ~$0 be easy for such people to use. Toward this end, 40 
includes an icon- and menu-oriented interface incorporating 
the standard notations and concepts of the domain. Figure 
3 shows the 40 interface during the process of developing a 
simple model. In this case, the model describes the responses 
of the neutron (denoted by 4~) and density (~b) tools in a 
formation consisting of calcite, dolomite, and porosity (The 
fractional volumes of the three materials are denoted by Vial, 
V&l and 4, respectively. Vsol denotes the fractional volume 
of solid. ~~~~~~ 4~d~l and 4Npor denote the characteristic 
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responses of the 4~ tool in the three materials; similarly, 
pcalr P&l, ,oP07 denote the Pb responses.) Since the charac- 
teristic responses of the tools in the materials are known 
geophysical constants, this model is a system of four equa- 
tions in six unknowns Hence, it can be used to compute 
any four of the unknowns given values for the other two. 
Typically, the tool measurements at some depth in the well 
are known, and the equation system would be used to com- 
pute the fractional volumes of the different materials. Such 
equation systems consistitute the specifications given to 40’s 
synthesizer. 

At various times in its development ~$0 has written pro- 
grams in several different target languages. For LISP and 
FORTRAN, the basic technique was to use an algebraic 
manipulation system to turn the implicit system into an ex- 
plicit one. At each step, the size of the system is reduced 

by solving one equation for one term and substituting the 
result into the remaining equations. Figure 4 shows both the 
initial system and the solved system.’ If the equations are 
considered in order, the terms on the right of each equation 
are either inputs or appear on the left of an earlier equation. 
In other words, they may be considered to be a sequence of 
assignment statements.’ 

Not all systems of equations can be solved explicitly. 40 
used PRO SE (1979), a mathematical package which uses 
numeric techniques to solve implicit systems of equations, as 

‘Appropriate values have been substituted for the geophysical con- 
stants, except that the responses of the tools in porosity (4~~~~ and 
ppor) have been left as run-time parameters which the user may adjust 
to reflect the nature of the fluid in the pore spaces 

2MACSYMA [Bogen et al 19751 has a similar facility for producing 
FORTRAN statements 

q 2.87=vd,,+2.71~v,,,+~~~~=0 

-(.2566981~0,+-.369OO37~pb+-.2566981~~,,,,+.369OO37a~~~,~ 
= 

.256698 1 dNpor + -.3690037d’p,, + 1 

.2566981~0N+-.3690037+&+V,,, 

.2566981=0Npor+-.3690037+por 

= 4.347826~~0,+-l.0g0.0Npor) 

q .3690037~~Pb+-l.0~~d’por+-2.87Wdo,) 

Algebraic Solution of an Equation System. 

Figure 4. 
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Figure 5. 

a target language for those cases which could not be handled 
algebraically. 

Several observations can be made as a result of the 40 
experience: 

. Good user interfaces are cruczal to automatic program- 
ming systems They must provade both an appropriate 
set of concepts and convenient ways to describe prob- 
lems using those concepts. This statement .may be 
obvious, but is worth making quite explicit 

0 Speczal-purpose automatic programming systems of- 
ten have tzght boundaries and are almost useless out- 
side of these boundaries If a system is going to be 
useful, it must either have wide boundaries or con- 
venient ways to mix machine- and hand-written code. 
40 never came into widespread use, primarily be- 
cause its boundaries were too narrow The tar- 

get class, equational interpretation models, was too 
restricted In particular, certain procedural concepts 
(such as sequencing and conditionality) seem to be 
natural for some aspects of quantitative log inter- 
pretation; these concepts were outside the bounds of 
40’s capabilities 

l Algebraac manipulation zs quite powerful, but has ob- 
vious lzmztation Not all systems can be solved ex- 
plicitly, and there are some questions about the 
numeric precision and stability of the computations 
resulting from the explicit solution of large systems 
Domain knowledge may enable some of these limita- 
tions to be overcome. As a simple example, knowing 
the plausible range of values for terms in a quadratic 
equation may enable the selection of one of the two 
possible roots. This is an area ripe for further re- 
search 
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Hypothetical Syntheses. The third (and on-going) study 
involves the construction of detailed, step-by-step descrip- 
tions of the process of writing particular programs This 
methodology has provided useful insights in the past (e.g., 
the classical work by Floyd (1971), Manna and Waldinger 
(1975), and the preliminary work on PSI (Green & Barstow 
1977) and the Programmer’s Apprentice (Rich & Shrobe 
1978).) The key to the methodology is to pick good ex- 
amples to work on. In our case, we are working on complete 
log interpretation programs, not just the central computa- 
tions which 40 could deal with. For each such synthesis, 
the primary goal is to characterize the types of knowledge 
involved. In this section, a few steps from one hypothetical 
synthesis will be discussed.3 

materials (dry clay, silt, and matrix consisting of quartz) 
and that the fluid consists of two types of water (free water 
(4wf) which flows freely in the pore spaces; and bound water 
(&,b) which is chemically attracted to clay). Measurements 
from four tools are available: neutron (do), density porosity 
(4~)) gamma ray (GR), The problem and the associated set 
of seven equations in seven unknowlis are shown in Figure 5. 

From a mathematical point of view, the system could 
be solved algebraically and translated directly into code. 
However, log analysts know that the GR and Rt equations 
are only rough approximations - they’re not very reliable. 
A better way to write this program is to use a traditional in- 
terpretation heuristic - separate out the solid analysis from 

The problem under consideration is to perform a volu- 3Results for other syntheses are available elsewhere (Duffey & Smoliar 
metric analysis assuming that the rock is composed of three 

DRYCLAY MATRIX 

= Vdrycla +Vma +vsii 
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Hypothetical Synthesis: Solid Analysis. 

Figure 6 
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the fluid analysis, using whichever measurements are most 
appropriate for each. The resulting solid analysis part in- 
volves three materials but only two measurements, as shown 
in Figure 6. 

We now have a system of reliable equations but it is 
underdetermined (four equations in five unknowns). Once 
again, knowledge of log interpretation resolves the problem. 
Since the matrix is made up of quartz, and silt is essentially 
ground up quartz, the responses of the two tools in matrix 
and silt are identical. Given only these two measurements, it 
would be impossible to distinguish between matrix and silt. 
Thus, the solution is to break the problem into two parts: one 
is concerned with porosity, quartz, and dry clay; the other is 
concerned with somehow distinguishing between matrix and 
silt. The first of these is a system with four equations and 
four unknowns, as shown in Figure 7 

At this point, the problem might seem to be one of 
straightforward algebraic manipulation. Recall, however, 
that explicitly solving a system of equations involves several 
choices: each step involves selecting a term and equation to 
solve. Such choices can be influenced by a variety of factors. 
For example, if the target architecture has several processors, 
it may be possible to take advantage of natural parallelism 
in the computation. Figure 8 shows a flow chart of the major 
data paths in the problem. Note that porosity (4) is com- 
puted in one block and used in another. The second block 
could be computed on a second processor as soon as porosity 
is available. Thus: the equation system should be solved in 
such a way that porosity is computed first 

As these few steps suggest, many different types of 
knowledge play important roles in the development of log in- 
terpretation software. These include extensive knowledge of 

/ \ 
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the domain, knowledge of various mathematical formalisms, 
knowledge of a variety of programming concepts, knowledge 
of the target language, and even knowledge of the target 
machine. In fact, this is what makes programming such a 
fascinating process to study - a wide variety of knowledge 
is used in a wide variety of ways. 

The Role of Domain Knowledge 

Perhaps the most consistent and important result of 
these studies has been the realization that knowledge of the 
domain plays several roles in the activities of an automatic 
programming system, during both interaction with the user 
and synthesis of the program. 

User Interaction. Since a user may not be knowledgeable 

about, or comfortable with, the intricacies of programming 
systems, he or she must be able to describe problems in a 
natural way. The system must be able to deal effectively 
with the terms and notations of the domain. In the case 
of quantitative log interpretation, the user should be able 
to use concepts like “porosity,” “water,” and “shale,” and 
notations like “&b”. The system should be able to deal with 
subtle nuances of the domain, for example, that most “shale 
indicators” are somewhat unreliable. In other words, the 
user must be able to interact with an automatic program- 
ming system in the same way that he or she would interact 
with another log interpreter. 

One crucial part of the interaction between log inter- 
preters is that they share more than just terminology and 
notations. They also share a great deal of detailed knowledge 
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about log interpretation. They know the responses of the 
various tools in different materials, they know many mathe- 
matical relationships, they are intimately familiar with the 
interpretation charts which describe relationships diagram- 
matically, and they have had experience in using common 
interpretation techniques. When one interpreter describes a 
technique to another, there is no need to fill in all the details; 
because of their shared knowledge, the listener will be able 
to do that. The lesson for automatic programming systems 
is that they must also be able to fill in the missing pieces.4 

In summary, the usability of an automatic program- 
ming system will depend largely on the nature of the 
specification process; the process must be both somewhat 
informal and highly interactive. These attributes can only 
be achieved if the system has access to a large and evolving 
base of knowledge about the domain. This role for domain 
knowledge might be considered a nice extra that could be 
ignored - simply provide a sufficiently high-level language 
for the user. The problem is that “No matter how high the 
level, it’s still programming” (Smoliar & Barstow 1983). Un- 
less that fundamental fact is changed, a wide class of users 
would still have to learn programming in order to benefit 
from such systems. Access to a body of domain knowledge 
is one way to bring about such a change. 

Program Synthesis. One role for domain knowledge 
during synthesis is to reduce the complexity of the overall 
task. In the case of log interpretation, a typical FORTRAN 
program is over fifty pages long; the space of possible pro- 
grams is enormous. Domain-specific problem-solving heuris- 
tics seem to be valuable aids in reducing the space to a 
more manageable size. As an example, consider the problem 
of determining the amount of hydrocarbon in a formation. 
Since hydrocarbons are not uniform (the density of gas varies 
considerably depending on such factors as temperature and 
depth), the effect of hydrocarbons on tool measurements is 
difficult to model precisely, and the models are difficult to 
deal with mathematically. Log interpreters doing hand cal- 
culations have developed a simple heuristic: 

“Since light hydrocarbons are relatively uncommon, do 
all of the calculations assuming there are no light hydrocar- 
bons; if the results are implausible, consider the pos- 
sibility that light hydrocarbons may be present.” 

This heuristic is reflected in code in the form of “porosity 
analysis” and “hydrocarbon correction” routines. During 
program synthesis, this domain-specific heuristic enables a 
complex problem to be reduced to two simpler problems. 

Domain knowledge is also needed during synthesis to 
assist in selecting among alternative implementation tech- 
niques. This is perhaps best explained by example. Consider 
first the problem of representing real numbers: a variety of 
techniques are possible and selecting an appropriate alterna- 
tive depends on knowing the range of values and the needed 
accuracy. As another example, consider the problem of solv- 

ing a complex system of non-linear polynomial equations 
From a mathematical viewpoint, this may not be tractable, 
since an equation may have multiple solutions for the same 
unknown. However, there may be only one solution with 
a physically plausible range of values. Finally, consider an 
equation system which is still too complex to be solved al- 
gebraically, even given knowledge of ranges for the terms 
In such cases some numeric t,echnique must be employed, 
usually some form of successive approximation. It is some- 
times possible to predict in advance the number of iterations 
necessary to achieve the accuracy desired. In such cases the 
loop can be coded with a counter or even open-coded as a 
sequence rather than a loop. This latter choice was taken 
in a case in which it was known that the tool readings were 
only reliable in the first two digits and that two applications 
of the loop body would achieve four-digit accuracy 

In summary, just as domain knowledge is crucial for the 
usability of an automatic programming system, it is crucial 
for the ability of a system to deal with realistic problems. 
It is needed both for writing large programs and for making 
appropriate choices among implementation alternatives. 

Implications. In one sense, these observations are 
simply restatements of generally accepted maxims for build- 
ing artificial intelligence systems: knowledge is crucial for 
natural interaction; knowledge can be used to reduce search. 
The important point is that the observations are concerned 
with domain knowledge rather than programming knowledge. 
Automatic programming systems will require large amounts 
of both kinds of knowledge - it isn’t sufficient to build sys- 
tems which only know about programming. 

Of course, if this is true for automatic programming 
systems, it is probably also true for human programming 
systems. Among the implications for software engineering, 
two seem especially important: 

1 Compilers for general purpose very high level lan- 
guages may not be able to produce efficient code un- 
less they have some sort of access to knowledge of the 
domain. 

2 The traditional separation of software development 
into specification and implementation may not be 
feasible unless both specifiers and implementors are 
knowledgeable about the domain 5 

The Perspective 

These investigations have led to a particular perspec- 
tive on automatic programming systems, especially those in- 
tended for use in real-world situations. This perspective may 
be summarized by a definition, an assertion, and a conclusion 
about research goals 

l Definition: An automatic programming system al- 
lows a computationally naive user to describe prob- 
lems using the natural terms and concepts of a 

4This argument is not new; Balzer et al (1977) made a similar argument 
several years ago 

51n a recent paper, Swartout and Baker discuss this issue at length 
(Swartout and Balzer 1982) 
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domain, with informality, and imprecision and omis- 
sion of details. An automatic programming system 
produces programs which run on real data to effect 
useful computations. 

. Assertion: Such an automatic programming system 
is clearly specific to a particular domain. Knowledge 
of the domain is crucial to both the usability and the 
feasibility of such a system 

l Research goals: Therefore, a primary goal of automatic 
programming research should be the development 
of models of domain-specific programming and tech- 
niques for building domain-specific automatic pro- 
gramming systems. 

Based on this perspective, several issues seem open for 
investigation. Some have been addressed, at least in part, 
in previous research efforts; however, no solid answers have 
been determined: 

l How can domaan knowledge be structured for use by an 
automatic programmzng system? A great deal of work 
on representing domain knowledge has been done in 
the context of expert systems. It would be a satis- 
fying result if the same knowledge structured in the 
same way could be used by an automatic program- 
ming system The idea is reminiscent of Green’s early 
work (1969), in which the same axioms were used 
both to solve problems and to write programs, but it 
has yet to be tested in a complex domain. 

l How can programming knowledge be structured for use 

by an automatic programmzng system? Work on this 
issue has been proceeding on two fronts One is 
the relationship between abstract and concrete pro- 
gramming concepts. Notable work here includes 
the PSI project (Barstow 1979, Green 1977) and 
the Programmer’s Apprentice project (Rich 1981). 
The other front involves techniques for constructing 
complex data structures. The work of Low (1978) 
and Katz and Zimmerman (1981) fit into this cat- 
egory Overall, the groundwork for this issue has 
been laid What is now required is rather methodi- 
cal codification of many specific programming tech- 
niques. 

l What knowledge zs required to choose an appropriate 
implementation from a variety of alternatives? Here 
the question is essentially one of efficiency in the tar- 
get program It is interesting to note that Simon, 
in his description of the Heuristic Compiler in the 
early 1960’s, explicitly recognized that the efficiency 
of the target code was an issue and also explicitly 
chose to ignore it (1963). There was her reference 
to the issue in the automatic programming litera- 
ture for over a decade Finally, Low (1978) con- 
sidered it in his work on data structure selection 
More recently, Katz and Zimmerman (1981) looked 
at it in the context of a data structure advisor and 
Kant (1981) considered the question in the context 
of the PSI project. This work is a good start, but 
the issue deserves much more attention than it has 
gotten. Our studies suggest that the use of domain 
knowledge will prove crucial to addressing it well 

. 

In fact, Kant’s work actually characterized one kind 
of domain knowledge that’s needed for selecting the 
right alternative - knowledge of the plausible values 
and typical set sizes. 

How can the interactzon between an automatic pro- 
gramming system and the user be modeled? In one 
sense, this is just a special case of human-computer 
interfaces, a topic which has been receiving a con- 
siderable amount of attention lately. With respect to 
the interface, there’s probably nothing special about 
automatic programming systems. In another sense, 
however, this gets right to one of the core questions 
of artificial intelligence - how can two knowledgable 
agents communicate? Automatic programming sys- 
tems provide a fruitful context in which to explore 
this question. 

Unfortunately, the central issue suggested by the perspec- 
tive, and the key to significant progress in automatic pro- 
gramming, has not been addressed in any substantial way: 

How can the interaction between domain and programming 
knowledge during program synthesis be modeled? 

An Experimental Approach 

Given the importance of domain knowledge, the best 
way to address these issues is through experimentation in 
the context of specific domains. That is, we must develop 
models of programming for these domains and implement 
automatic programming systems which test these models. 
Based on such experiments, we can develop broader models 
and characterize the utility of different system-building tech- 
niques. The validity of this approach as a research methodol- 
ogy clearly depends on characteristics of the individual ex- 
periments. It is not sufficient simply to build a variety of 
application program generators. Unless the domains are 
suitable and the underlying models of programming are for- 
mulated well, it will not be possible to generalize to broader 
models or to characterize the techniques in a useful way. 

While selecting domains and developing models is an art, 
it is possible to state some guidelines that may be helpful. 
By considering ~$0 in light of these guidelines, we may see 
why it is not particularly useful as a basis for more general 
models: 

l The domain must be non-trivial. There must be con- 
siderable room for varzability in the class of target 
problems, the posszbility of multzple target languages, 
or the types of programming techniques whzch may 
be employed. #Q’S domain, purely equational inter- 
pretation models, was too simple Some extensions 
which would have increased the complexity are: non- 
equational concepts; computations over zones in a 
well, rather than single levels; and some notion of the 
reliability of the stated relationships. &J could write 
programs in several target languages, although the 
technique was essentially a “big switch.” 40’s reper- 
toire of programming techniques was rather limited 
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l The model of programming for the domain must clearly 
characterize the roles played by domain and program- 
ming knowledge. 40 provides a clear characteriza- 
tion of the roles played by domain and program- 
ming knowledge: all of the domain knowledge is em- 
bodied in the initial specification phase, with essen- 
tially no role for domain knowledge during the syn- 
thesis process itself. Unfortunately, it now seems that 
this strict separation is the wrong characterization. 

l The model must address the issue of choosing from 
among several alternative zmplementations. For a 
given target language, there was essentially only one 
style of implementation. 

l The model must be supported by an implemented sys- 
tem intended for real users who need real programs to 
perform real computations As noted earlier, although 
~$0 was intended for real users and real programs, it 
never came into widespread use, primarily because of 
limitations on its target class. 

#‘NIX 

As an illustration of an experiment which seems to fit 
the guidelines, we will consider some of the details of UNIX, 
another project currently underway at Schlumberger-Doll 
Research, the scope of which includes full-fledged quantita- 
tive log interpretation programs.6 This class has considerably 
more variability than 40% for three reasons. First, it in- 
cludes non-equational relationships such as charts, tables, 
and simple procedural concepts. Second, it includes com- 
putations over entire wells, not just the single level computa- 
tions which ~$0 dealt with. Third, the target language and 
machine include simple kinds of parallelism. 

To date, we have outlined a model of programming for 
this target class. The model addresses the two issues noted 
earlier: the interaction of domain knowledge and program- 
ming knowledge; and the selection of an appropriate pro- 
gram from a set of valid alternatives. However, the model 
is only speculative - it is neither tested nor supported by 
an implementation. Rather, it must be considered to be a 
proposal. Nonetheless, the model provides a good example 
- it suggests the kind of domain-specific model of program- 
ming which may generalize to other domains. For example, 
we hope that this model will generalize to other types of 
scientific software. 

Overview of the Model of Programming. According to 
this model, programming for quantitative log interpretation 
involves four activities: 

l Informal problem solving: This activity is concerned 
with informal problems involving inputs, outputs, as- 
sumptions, and relations stated primarily in domain- 
specific terms. The problems are informal in that 
they may be incomplete (not enough information is 

6An early report on 4~1~ provides additional background (Barstow et 
al 1982b) 
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available to compute the outputs from the inputs) 
and the input set may not be quite correct (some in- 
puts may be missing, others extraneous) Such prob- 
lems might be paraphrased in English as “Try to find 
a way to compute X from Y using relationship 2 ” 
The result of the informal problem solving activity 
is a set of formal problems stated in terms of any of 
several different formalisms. 

Formal manipulation: This activity is concerned with 
problems stated in terms of mathematical formalisms: 
statistics, analytic geometry, and algebra The results 
of these activities are algorithmic statements con- 
nected by data flow links. 

Implementation selection: This activity is concerned 
with selecting from among a variety of implemen- 
tation techniques for each entity in the algorithmic 
descriptions produced by formal manipulation. The 
result of this activity is a complete description of the 
program in terms of concepts available in the target 
language 

Target language translatzon: The major concern of 
this activity is the expression of the program in terms 
of the syntax of the target language This is a fairly 
direct translation from the results of the implemen- 
tation selection activity. 

Each of these activities involves applying transforma- 
tions based on knowledge of quantitative log interpretation 
and of programming. We will now consider each of the ac- 
tivities and the kinds of transformations involved in them. 

Informal Problem Solving. An informal problem con- 
sists of a set of inputs, a set of outputs, a set of assumptions, 
and a set of relationships, all expressed in domain terms. For 
example, an English rendering of one such informal problem 
is: 

Assume the only fluids in the pore spaces in the rock 
around the borehole are water which flows freely and 
water which is bound to clay. Try to find a way to com- 
pute bound water saturation (&,b) from the resistivity 
(R) and gamma ray (GR) measurements. 

The primary goal of the informal problem solving activity 
is to determine a set of formal problems which can be put 
together to solve the overall problem. 

This activity has been named “informal” because the 
problems and subproblems considered during the activity 
are often incomplete. When inputs and outputs are stated, 
the intention is that some way of computing the outputs 
from the inputs is desired. In trying to find an appropriate 
computation some inputs may be ignored and additional in- 
puts may be considered. Similarly, when relationships or 
assumptions are given, the intention is that the relation- 
ships be used, but there is no requirement that all or 
only these relationships be used. In other words, the 
parts of a problem statement provide a focus for, but not 
a restriction on, the informal problem solving activity. 



r 
I Compute S,, from GR and R, 

I 

a 
Compute S,, from GR Compute S,, from R, 

Compute s,, by consensus 

Informal Problem Solving: Reduction to Informal Subproblems. 

Figure 9. 

There are five types of transformations used during in- 
formal problem solving: 

I Reduction to informal subproblems. These trans- 
formations are often suggested by domain-specific 
heuristics. For example, the transformation shown in 
Figure 9 is based on the following heuristic: “If you 
have only unreliable indicators for a quantity, con- 
sider each indicator as a separate subproblem, and 
use some kind of consensus technique to determine 
a more reliable value.” The result is three simpler 
informal problems 

2 Danslation into formal problems. These transforma- 
tions often involve definitions of domain concepts 
in terms of domain-independent mathematical for- 
malisms. For example, the transformation shown in 
Figure 10 is based on the following rule (and the fact 
that GR is a linear indicator for Swb): “If you have a 
linear indicator for the desired output, the problem 
may be expressed as a twopoint linear relationship 
between indicator values for the minimum and max- 
imum values of the output.” The result is a problem 
stated in terms of formal concepts. 

3. Addition of information The formal problem, as 
stated, is underdetermined: it has one input (GR), 
one output (Sub), and two other terms (GRs,+~, 
GRs,,,,); since only the value of the input term 
is known, it is a system with one equation and 

Compute S,, from GR 

a 
Compute S,, from GR 

-----v------- 

s,, and G R are linearly related 

Informal Problem Solving: 
Translation into Formal Subproblems. 

Figure 10. 
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compute SW, from GR 
----------- 

Swb and G R are linearly refa ted 

a 
compute SW, from GR 

--e-mm- -v-- 

swb and G R are linearly related 

wb=O 
1 

when GR is minimum over the zone 

I S wb -1 when GR is maximum over the zone 

Informal Problem Solving: Addition of Information. 

Figure 11. 

three unknowns, hence underdetermined To resolve 
the difficulty, either additional relationships must be 
found or more inputs provided In this case, a reason- 
able solution is to add two relationships, as shown 
in Figure 11 Additional information such as this 
may come from known facts and relationships of the 
domain or from assumptions the user is willing to 
make 

4. Elaboration of general concepts. Informal problems 
are often stated in terms of general concepts which 
do not have precise formal definitions Before a for- 
mal problem can be stated, it is necessary to be more 
explicit about the desired relationship For example, 
the concept of “consensus” covers a broad range of 
techniques for computing a single value from a set of 
values, no one of which is especially reliable. Since 
GR and Rt are equally unreliable as bound water 
indicators, and no information about the direction 
of their unreliability is available, the mean of their 
values is a good choice This transformation is il- 
lustrated in Figure 12 

5. Introductzon of conditionals. Computed results must 
often satisfy certain constraints. For example, vol- 
umetric results are computed as fractional volumes 
and must therefore be in the range [0, I]. Such 
volumetric problems are often described in geometric 
terms by identifying the points, in a coordinate 
system whose axes are tool readings, representing 
100% concentrations of the materials. Figure 13 
shows the points for quartz, dry clay, and porosity 
in a coordinate system determined by the neutron 
(4~) and density-porosity (4~) logs Geometri- 
cally, the [0, I] constraint corresponds to the con- 
dition that the data point (i.e , specific values for 
$6~ and 4~) fall within the triangle determined by 
the 100% points Data points falling outside the tri- 
angle represent anomolous situations; identification 
of such anomalies leads to the introduction of a con- 
ditional on the inputs, several new informal prob- 
lems, and perhaps a request to the user about how 
the anomolous situtation should be handled. 
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Compute s,, from s,, (GR) and Sw,,(R,) by cmensus 

\ 

Compute s,, from s,,(GR) m.QJR,) 

s,, is the mean of S,,(GR) and s,,(R,) 

Figure 12. Informal Problem Solving: Elaboration of General Concepts. 

QUARTZ = (0, 0) q 

(0.3, -0.2) = DRY CLAY 

(1, 1) = POROSITY 

- %J 

Figure 13. Geometric Representations of a Volumetric Analysis Problem. 
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Compute V, V,, $J from & & 
--m--v---- 

Lz 

Compute V, V,, (b from $3\ & 
------- -- 

1 = v,, + v, + + 

I 1 4N = .3+,, + 4 

40 = -.24,, + 4 

Figure 14. Formal Manipulation: 
Reformulation into a Different Formalism. 

1 r Compute V, V,, 4 from f#~ & 
---e----m 

1 = v,, + v, + (b 

I I 4N = .3*v,, + 4 

40 = -.2*v,, + 4 

Compute V, V,, 4 from 4N 4. 
-- ---m-m-- 

bc = 
4N - 40 

.5 

4 = 40 + .24,, 

V, = 1 - 4 - v,, 

Figure 15. Formal Manipulation: 
Reformulation within a Formalism. 

The key ideas behind this formulation of the informal 
problem solving activity are: 

. The heuristics used by expert quantitative log inter- 
preters can provide valuable guidance by suggesting 
subproblems for consideration. 

l There is a large body of quantitative log interpreta- 
tion facts and relationships which are best expressed 
in terms of simple statistics, analytic geometry, and 
algebra. 

. Inability to define formal problems suggests incom- 
pleteness in the specification which can be resolved by 
using additional information found in the repository 
or suggested by the user. 

. Analysis in terms of the mathematical formalisms 
can help identify anomolous conditions as special 
cases which a target program might encounter when 
it is run on real data 

Formal Manipulation. A formal problem consists of a set 
of inputs, a set of outputs, and a set of relationships stated 
in terms of mathematical formalisms: statistics, analytic 
geometry, and algebra. The primary goal of the formal 
manipulation activity is to transform each of the formal prob- 
lems into an algorithmic form. 

Three types of transformations are used during this ac- 
tivity: 

1 Reformulation into a different jormalzsm. The different 
mathematical formalisms are used by the informal 
problem solving activity primarily as a matter of con- 
venience For example, many experimentally deter- 
mined relationships are represented as charts much 
more easily than as algebraic relationships. However, 
unless the target language has mechanisms for deal- 
ing directly with such concepts, they must be trans- 
lated into other formalisms for which the appropriate 
concepts are available. In the case of quantitative 
log interpretation, these translations are usually from 
statistics and analytic geometry into algebra For 
example, the transformation shown in Figure 14 in- 
volves the reformulation of the geometric problem 
posed earlier into an algebraic one. 

2. Reformulation within a formalism. Often a problem 
may be formulated in several equivalent ways within 
a single formalism. For example, there are many 
equivalent systems of equations for representing nu- 
meric relationships among several terms Some of 
these systems may be easier to deal with than others. 
As illustrated in Figure 15, the problem involving 
three equations in three unknowns may be reformu- 
lated as an equivalent upper-triangular system of 
equations. 

3. Translation into an algorithmic formalism The ul- 
timate goal of the formal manipulation activity is to 
transform the formal problems into an algorithmic 
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representation Once the appropriate formal mani- 
pulations have been done, this is a relatively straight- 
forward process For example, the transformation 
shown in Figure 16 yields a sequence of assignment 
statements 

Implementation Selection The result of the formal 
manipulation activities is a set of simple algorithms described 
in terms of general computational concepts dealing with data 
flow and operations on three data types: real numbers, se- 
quences, and mappings. For each of these general concepts, 
several implementation techniques are possible. The goal of 
this activity is to select techniques for each general concept.7 
These selections are guided by two considerations: whether 
or not the technique is appropriate for the target language, 
and the relative merit of alternative techniques given some 
preference criteria (e.g., an efficiency measure). 

Three types of transformations are applied during this 
activity: 

1 Data type refinement Since most programming lan- 
guages cannot implement all three abstract data 
types directly, techniques for representing instances 
of the data types must be selected. For example, 
the porosity log measured by the neutron tool is 
abstractly viewed as a mapping of depths to porosity 
values. Logs are typically implemented by estab- 
lishing a correspondence between depths and integers 
(in effect, a kind of discretization) and then indexing 
the log by the integers This transformation is il- 
lustrated in Figure 17 With several more steps, this 
representation can be refined into two arrays, one for 
depths and one for log values. 

7More precisely, a technique must be chosen for each instance of each 
general concept For example, there is no reason for all numbers to be 
represented in the same way 

Compute V, V,, 4 from & $Q 
m-m----- -- 

+ N - hl 
‘dc = -5 

\ 
v, = 1 - 0 - v,, 

r 

t 

compute v, vdc 4 from & $0 
---------- 

v -l-$-v,, 9 

Figure 16. Translation into an Algorithmic Formalism. 

I 4 N: DEPTHS -POROSITY VALUES 
I 

a 
+,-DEPTHS: INTEGERS +-DEPTHS 

@N-VALUES: INTEGERS -POROSITY VALUES 

Figure 17. Implementation Selection: Data Type Refinement 

THE Al MAGAZINE Spring 1984 21 



‘I 

Figure 18. Implementation Selection: 
Data Flow Refinement. 

J 

2. Data fZow refinement. Most languages have a variety 
of ways to pass data from one computation to another, 
and a selection of particular techniques for each 
of the data flow links must be made. This is an 
area where different languages may vary significantly. 
For example, FORTRAN can deal with multiple 
return values more conveniently than most LISP 
dialects. Although many of the data flow decisions 
seem relatively mundane (e g., whether or not to use 
a variable) there are also some rather exotic pos- 
sibilities, such as the conversion of one representation 
to another in the middle of a computation, as sug- 
gested in Figure 18. For example, a set may be repre- 
sented as a mapping of potential elements to Boolean 
values while it is being built, and then changed to 
a sequence to make enumerations easier This is a 
rather powerful technique - one which both humans 
and machines could profitably use. 

3. Control flow refinement. Control flow techniques also 

It 

I ’ 
Figure 19. Implementation Selection: 

Control Flow Refinement. 

differ among target languages. Among the relevant 
concepts are sequencing, iteration, recursion, con- 
ditionality, and function invocation The dashed ar- 
row in Figure 19 illustrates a simple sequencing of 
computations which are only partially ordered by 
data flow constraints. 

Of course, these types of refinement may be closely 
linked. For example, deciding to use an array processor to 
perform similar computations on all elements of a vector has 
implications for all three types of refinements. 

Target Language Translation. The last activity is a 
translation from the final algorithmic form into the syntax 
of the target language. Since the final algorithmic form in- 
volves only concepts available in the target language, this 
is a fairly simple activity. The greatest complexities involve 
the selection of variable names and producing the program 
in a readable format. 
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MANIPULATION 

IMPLEM;NTATION 
SELECTION 

Figure 20. The Overall Synthesis Process. 

TAF;GET 
LANGUAGE 

TRANSLATION 

The Synthesis Process. Since each activity involves the of transformations can be completed; there may be dead-end 
paths. application of transformations, the overall process can be 

modeled as a sequence of transformations. In other words, 
the overall process is an instance of the transformational 
paradigm which has received considerable attention lately 
(e.g., Balzer 1981, Cheatham 19’79, and Kant & Barstow 
1981). 

Although the activities of the q5~rx model were described 
separately, the overall process cannot be broken into four dis- 
tinct stages corresponding. As suggested by Figure 20, there 
is a gradual shift in emphasis from informal problem solving 
through formal manipulation to implementation selection. 
To illustrate this mixing of activities, consider the use of an 
optimization strategy to deal with a complex system of equa- 
tions. The decision to use the strategy is made during formal 
manipulation, but the initial point determination involves a 
new informal problem (which may, for example, have less 
stringent accuracy requirements). 

At each stage in a sequence there may be many transfor- 
mations which could plausibly be applied. Thus, the trans- 
formations of the different activities define a space of par- 
tially implemented programs; the overall synthesis process 
is one of exploring this space. (See Figure 21.) At the cur- 
rent time, it is only possible to characterize this space in 
general terms Any complete sequence leads to a implemen- 
tation of the initial problem. Given the informality of the 
specification, different implementations may have different 
input/output behavior, although any such differences would 
be within the accepted bounds of uncertainty in the domain 
In addition, there may be considerable variability in terms 
of efficiency. There is also no guarantee that every sequence 

Characterizing the Activities. We may use this space to 
characterize the different activities: 

l Informal problem solvzng. Due to the informal na- 
ture of informal problem solving, the transformations 
may not preserve equivalence. As a simple example, 
different elaborations of the consensus concept would 
lead to programs which are not equivalent, but which 
might all be plausible from the point of view of a 
log interpreter Another aspect of informal problem 
solving is that there are likely to be many alterna- 
tives, of which only a small number don’t lead to 
dead-ends Thus, the primary concern will be to 
avoid dead-ends - almost any completable path is 
acceptable. This suggests a highly exploratory and 
opportunistic strategy. 

l Formal manipulation. Formal manipulation seems to 
be much more cleanly structured There are prob- 
ably only a few transformations which produce algo- 
rithms directly; the other transformations are used to 
satisfy preconditions on these. For example, of the 
three transformations given earlier, the first satisfies 
preconditions of the second, which satisfies precon- 
ditions of the third, which produces an algorithm. 
Thus, simple backward-chaining is probably the right 
strategy. 

l Implementation selection. During implementation 
selection, most paths will complete successfully and 
more traditional search strategies are probably ap- 
propriate, including quantitative evaluation func- 
tions and explicit construction of much of the space. 
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Figure 21. Search Space Defined by Transformations. 

The refinement paradigm as developed in PSI’s syn- 
thesis phase (Kant & Barstow 1981), seems to fit well 
here. 

l Target language translation. This activity is quite 
straightforward, involvng little or no search. 

Characterizing the Knowledge. Given this description 
of the overall process, it can be seen that knowledge plays 
two kinds of roles, as the transformations themselves and as 
selectors of appropriate transformations.8 Figure 22 shows 
the roles played by various types of knowledge during the 
different activities. 

- 

0 Log interpretation 

-Facts and relationships derived from theoretical or 
empirzcal conszderatzons: These play a transfor- 

- 

*In terms of traditional search theory, knowledge is embodied both ini 
operators and in heuristics 

mational role during informal problem solving by 
providing information which may be added to in- 
formal problems (e g , the end points of the linear 
GR-S,b relationship). They also play a selective 
role during formal manipulation and implemen- 
tation selection by providing the basic informa- 
tion needed to make certain decisions (e.g , the 
plausible range of a physical value). 

-Mechanisms for expressing log interpretation con- 
cepts in terms of mathematical formalisms: These 
play a transformational role during informal prob- 
lem solving by producing problems which can be 
handled by formal manipulation (e.g., the expres- 
sion of the linear GR-S,b relationship) 

-Problem-solving heuristics: These are used dur- 
ing informal problem solving to help reduce prob- 
lems to simpler problems; in effect, they play both 
a tranformational and a selective role (e g , the 
reduction of the original bound water problem into 
three simpler ones) 
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Figure 22. Characterizing the Knowledge. 

l Mathematical formalisms (simple statistics, analytic 
geometry, algebra) 

-Taxonomy of concepts: This plays a tranforma- 
tional role during informal problem solving by in- 
dicating specializations for general concepts (e.g., 
the use of the arithmetic mean as a consensus tech- 
nique) 

-Analytic mechanisms: These play a selective role 
during informal problem solving (e.g , the identi- 
fication of the implausible regions of the d&n 
crossplot). 

- Mechanasms for reformulation within a formalzsm 
or znto a different formalism: These play a tranfor- 
mational role during formal manipulation by trans- 
forming problems into more convenient forms (e g , 
the reformulation of the geometric problem into an 

algebraic one, and the solution of the system of 
equations) 

-Mechanisms for translating a formal problem state- 
ment znto an algorithmic form: These play a trans- 
formational role during formal manipulation by 
producing algorithmic modules (e g., the transla- 
tion of the solved system of equations into a se- 
quence of assignment statements). 

l Programming techniques 

- Taxonomy of programming technaques (data flow, 
control flow, data types): This plays a tranforma- 
tional role during implementation selection, since 
it embodies certain refinement relationships (e g., 
knowledge of alternative representations for map- 
pings) This also plays a selective role during for- 
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ma1 manipulation, since it provides the target set 
of concepts for the activity 

-Mechanisms for analyzing the efficiency of specific 
techniques: These play a selective role during im- 
plementation selection. (E g., knowledge of the 
efficiency characteristics of alternative mapping 
representations). It also plays a selective role 
during informal problem solving in that certain 
transformations might be rejected on efficiency 
grounds. 

l Target language 

- Taxonomy of computational concepts available 2n 
the language: This is essentially a sub-taxonomy 
of the mathematical and programming techniques. 
It plays a selective role by acting as a filter dur- 
ing formal manipulation and implementation selec- 
tion For example, F 0 RT RAN does not establish 
a new context for each subroutine call, so the use 
of recursive subroutines would be filtered out. 

-Mechanism for translating znto the syntax of the 
language: As the essence of the target language 
translation activity, this plays a transformational 
role. 

In looking at the overall picture, note that domain 
knowledge is used during each of the activities, but in 
different ways. During informal problem solving, it is the 
source of many of the transformations. During later ac- 
tivities, it is used primarily to select from among alternative 
transformations. Note also that the domain knowledge is 
not specifically related to the programming task, it is simply 
used by it. 

Summary 

Let us now review the basic theme of this paper, over- 
stating slightly for the sake of clarity: 

The primary conclusion of our initial studies is that 
domain knowledge plays a critical role in the programming 
process. This role is so important that automatic program- 
ming systems without considerable domain knowledge will 
be neither usable by non-computer scientists nor feasible for 
non-trivial domains. Therefore, a primary goal of automatic 
programming research should be to develop models of pro- 
gramming which characterize the interaction of domain 
knowledge and programming knowledge. The best way to 
achieve this goal is to develop models of programming for 
specific non-trivial domains, and to test these models by 
building systems for real users who want real programs that 
can be run on real data. If these models clearly separate and 
characterize the roles played by domain and programming 
knowledge, then we will have the foundation for developing 
broader models of programming. 
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