
A Perspective on Automatic
Programming

David Barstow
Schlumberger-Doll Research

Old Quarry Road
Rzdgefield, Connecticut 06877

Abstract

Most work in automatic programming has focused primarily on the roles
of deduction and programming knowledge However, the role played
by knowledge of the task domain seems to be at least as important,
both for the usability of an automatic programming system and for the
feasibility of building one which works on non-trivial problems This
perspective has evolved during the course of a variety of studies over the
last several years, including detailed examination of existing software for
a particular domain (quantitative interpretation of oil well logs) and the
implementation of an experimental automatic programming system for
that domain The importance of domain knowledge has two important
implications: a primary goal of automatic programming research should
be to characterize the programming process for specific domains; and a
crucial issue to be addressed in these characterizations is the interaction
of domain and programming knowledge during program synthesis

Used by permission of the International Joint Conferences on Artificial
Intelligence; copies of the Proceedings are available from William Kauf-
mann, Inc , 95 First St., Los Altos, CA 94022 USA.

The perspective described here has resulted from the work of many
people Steve Smoliar, Stan Vestal, and especially Roger Duffey have
been heavily involved in the design, implementation, and retrospective
analysis of @o Steve Smoliar and Roger Duffey have done detailed
analyses of existing quantitative log interpretation software as well as
several hypothetical syntheses Paul Barth has been actively involved
in the development of the model of programming for quantitative log
interpretation described here; Steve Smoliar and Roger Duffey have
contributed several key insights duringrr the process Several of the in-
terpretation developers at SDR have patiently and repeatedly explained
the intricacies of log interpretation to us Bruce Buchanan, Randy
Davis, Elaine Kant, Tom Mitchell, and Reid Smith provided valuable
feedback on earlier drafts of this paper

MOST PREVIOUS WORK in automatic programming has
focused on the roles played by deduction and programming
knowledge in the programming process. For example, the
work of Green (1969) and Waldinger and Lee (1969) in the
late 1960s was concerned with the use of a theorem-prover
to produce programs. This deductive paradigm continues
to be the basis for much research in automatic program-
ming (e.g., Manna & Waldinger 1980, Smith 1983). In the
mid 1970’s, work on the PSI project (Barstow 1979, Green
1977, Kant 1981) and on the Programmer’s Apprentice (Rich
1981) was fundamentally concerned with the codification of
knowledge about programming techniques and the use of
that knowledge in program synthesis and analysis Work
within the knowledge-based paradigm is also continuing
(e.g., Barstow 1982, Waters 1981).

This article is concerned with the role played by know-
ledge of the task domain, a role which seems to be at least
as important. One of the reasons for this importance derives
from the basic motivating assumption for work on automatic
programming: there are many computer users who would
prefer not to do their own programming and who would
benefit from a facility that could quickly and accurately
produce programs for them. The primary concern of these
users is not computation - they generally are not interested
in the idiosyncrasies of the programming process and cer-
tainly don’t want to learn the strange notations computer
scientists have developed. Rather, they are interested in
some application domain - they have problems they wish

THE AI MAGAZINE Spring 1984 5

AI Magazine Volume 5 Number 1 (1984) (© AAAI)

solved and questions they wish answered. Computation is
merely a tool to help solve the problems and answer the ques-
tions. Conventional programming is a hindrance to their use
of that tool. It would be much more useful to them if they
could communicate in the natural terms, concepts, and styles
of their domain. For such interaction to be effective: the
automatic programming systems must understand a great
deal about the domain. Another reason for the importance
of domain knowledge is that the problems to be solved and
the questions to be answered are generally so complex that
straightforward techniques are inadequate to write programs
to solve them. Knowledge of the task domain can play a
major role in helping a machine to cope with this complexity.

This perspective on the role of domain knowledge in
automatic programming has evolved over the last two years
during the course of a variety of studies by members of
the Software Research group at Schlumberger-Doll Research
[SDR]. These studies will be reviewed briefly, followed by a
more detailed discussion of the perspective. An experimen-
tal research methodology will be illustrated by a project cur-
rently underway at SDR

Logging an Oil Well.

Figure 1.

The Task Domain: Quantitative Log Interpretation

The task domain is the interpretation of well logs, an ac-
tivity central to exploration for hydrocarbons. As illustrated
in Figure 1, oil well logs are made by lowering instruments
(called tools) into the borehole and recording the measure-
ments made by the tools as they are raised to the surface.
The resulting logs are sequences of values indexed by depth.
(See Figure 2.) Logging tools measure a variety of basic
petrophysical properties (e.g., the resistivity of the rock sur-
rounding the borehole). Petroleum engineers, geophysicists
and geologists are typically interested in other kinds of in-
formation which cannot be measured directly (e.g., water
saturation - the fraction of the rock’s pore space occupied
by water rather than hydrocarbons). Log interpretation is
the process of deriving the desired information from the
measured data.

Log interpretation can be divided into two broad catego-
ries: qualitative interpretation is concerned with identifying
geological attributes (e.g., lithology - the set of minerals
which make up the rock around the borehole), while quan-
titative interpretation is concerned with numeric properties
(e.g., the relative volumes of the minerals). Figure 2b shows
a volumetric analysis based on the logs of Figure 2a The
studies described here have focused primarily on quantitative
log interpretation.

Quantitative interpretation relies on models - state-
ments of relationships between the measured data and the
desired information. These statements may take many
forms: such as graphs and equations. For example, the fol-
lowing equation relates water saturation (SW), porosity (4),
the resistivity of the water (R,), and the resistivity of the
formation (Et):

a.R,
SE = @TX. &

where a, m and n are parameters that describe certain for-
mation characteristics (Archie 1942). Since the pore spaces
must be occupied by either water or hydrocarbons, a low
water saturation indicates the presence of oil or gas.

Although the interpretation models themselves are rela-
tively simple, applying them to a particular problem involves
a great deal of uncertainty. There are over one hundred
qualitatively different lithologies. It’s been estimated that it
would require over four hundred numeric parameters, such
as a, m and n, to fully characterize a formation. Since there
are only about a dozen measurements, the situation is hope-
lessly underdetermined. Consequently, quantitative log in-
terpretaion is a highly expert activity, based not only on
a knowledge of a variety of relationships, but also of when
and how to use them. This knowledge is the basic task
domain knowledge for our automatic programming studies.

6 THE AI MAGAZINE Spring 1984

(A)MEAbRED (6)COhiPUTED
Figure 2 Oil Well Logs.

Initial Studies

Examination of Existing Software. The first study in-
volved characterizing the nature of existing quantitative log
interpretation software. The study was performed by ex-
amining, at various levels of detail, several programs in com-
mon use by Schlumberger. The programs all shared certain
characteristics. They were moderate in size, ranging from 50
to 200 pages of FORTRAN, and had been written primarily
by experienced log interpreters who had received some train-
ing in programming. They had gone through many major
revisions as the result of testing and of growth in knowledge
about log interpretation They were intended for relatively
wide use on a large number of wells with varying sets of
tool readings as inputs Since each was based on specific
models, each program typically embodied significant assump-
tions about the geological nature of the formation around the
well (e.g., that the lithology consists of a sequence of sand
and shale layers). The programs were heavily parameterized
to enable their application to individual wells with unique
characteristics.

In a typical program the code which performs the cal-
culations can be divided into two categories. About one
fourth is related to the central calculations of the model.
About three fourths deal with the wide variety of special
situations that can arise when running the programs (e.g.,
adjust,ing inputs and outputs that seem unreasonable ac-
cording to the assumed model, such as saturation greater
than 100%). This division reflects certain characteristics of
the domain. Given that one is willing to make assumptions
about the formation, the appropriate mathematical models

can usually be translated in a straightforward manner into
code; thus, the software for the central computation is rela-
tively compact. However, since there is a great deal of un-
certainty in selecting from among possible assumptions and
models, the software must do extensive testing and adjust-
ment to determine the best possible fit between the data
and the assumptions. In a way, the special situations are the
qualitative side of quantitative log interpretation

The results of this study can be summarized in two
observations.

1. The complexity of writing log interpretation software
arises from the wealth of knowledge zt draws upon, not
the algorithms employed. That is, algorithm design,
the primary focus of most automatic programming
research (e.g , Barstow 1982, Bibel 1980, Smith 1980,
Manna & Waldinger 1980), is not the hard part of
programming in this domain. This is probably true
of many other domains

2 The state of knowledge about log interpretation is con-
stantly changing. New experiments are performed, new
data is gathered, new theories are developed, new tech-
niques are tested That is, evolution is an inherent
feature of quantitative log interpretation, and hence
a major problem for software developers As with
size complexity, this is an area which has not received
a great deal of attention in automatic programming
research Of course, it could be argued that with
fully automatic programming, there is no need to
worry about evolution. For each change, the program
can simply be rewritten. A counterargument is that,
if the automatic programming system knows what
it is doing, it should be able to document the pro-
gram enough that it can make many changes easily.

THE AI MAGAZINE Spring 1984 7

SOLID 0

- DOLOMITE CALCITE #

1.0 = vso,+O

V SOI q Vdol +%tl

0N = 0 Ndol ‘Vdol +@Ncal’vca, +@Npor ‘0

= Pdol ‘Vdol +&al %a, +Ppor ‘0

~$0 Interface.

Figure 3.

An Experimental System. The second study involved INTERLISP-D which runs the XEROX 1100 series worksta-
the development of an experimental automatic program-
ming system for a restricted class of quantitative log inter-
pretation software, namely those programs written to test
hypothesized models against real data during the trial-and-
error process of developing new models. Such models are
generally expressed in purely equational terms, and cor-
respond roughly to the central computations of the software
studied initially. This class was chosen for several reasons.
First, it offered a chance to experiment with some simple
kinds of interpretation knowledge (equations) without the
need to consider more complex kinds such as heuristics.
Second, in-house colleagues might be interested in using it,
providing opportunities for testing with “real” users. Third,
since the intended users typically spend from hours to days
developing test programs, a system which produces pro-
grams in seconds or minutes would have immediate benefit.
The system, called ~$0 (“phi-naught”), was implemented in

tions. ~$0 is described in more detail elsewhere (Barstow et
al 1982a, 198213)) so the major features will be discussed only
briefly here.

The target user of ~$0 is a log analyst concerned with de-
veloping a new equational model for use in log interpretation.
Such a user may be neither experienced in nor comfortable
with traditional computer interfaces. An explicit goal was
that ~$0 be easy for such people to use. Toward this end, 40
includes an icon- and menu-oriented interface incorporating
the standard notations and concepts of the domain. Figure
3 shows the 40 interface during the process of developing a
simple model. In this case, the model describes the responses
of the neutron (denoted by 4~) and density (~b) tools in a
formation consisting of calcite, dolomite, and porosity (The
fractional volumes of the three materials are denoted by Vial,
V&l and 4, respectively. Vsol denotes the fractional volume
of solid. ~~~~~~ 4~d~l and 4Npor denote the characteristic

8 THE AI MAGAZINE Spring 1984

responses of the 4~ tool in the three materials; similarly,
pcalr P&l, ,oP07 denote the Pb responses.) Since the charac-
teristic responses of the tools in the materials are known
geophysical constants, this model is a system of four equa-
tions in six unknowns Hence, it can be used to compute
any four of the unknowns given values for the other two.
Typically, the tool measurements at some depth in the well
are known, and the equation system would be used to com-
pute the fractional volumes of the different materials. Such
equation systems consistitute the specifications given to 40’s
synthesizer.

At various times in its development ~$0 has written pro-
grams in several different target languages. For LISP and
FORTRAN, the basic technique was to use an algebraic
manipulation system to turn the implicit system into an ex-
plicit one. At each step, the size of the system is reduced

by solving one equation for one term and substituting the
result into the remaining equations. Figure 4 shows both the
initial system and the solved system.’ If the equations are
considered in order, the terms on the right of each equation
are either inputs or appear on the left of an earlier equation.
In other words, they may be considered to be a sequence of
assignment statements.’

Not all systems of equations can be solved explicitly. 40
used PRO SE (1979), a mathematical package which uses
numeric techniques to solve implicit systems of equations, as

‘Appropriate values have been substituted for the geophysical con-
stants, except that the responses of the tools in porosity (4~~~~ and
ppor) have been left as run-time parameters which the user may adjust
to reflect the nature of the fluid in the pore spaces

2MACSYMA [Bogen et al 19751 has a similar facility for producing
FORTRAN statements

q 2.87=vd,,+2.71~v,,,+~~~~=0

-(.2566981~0,+-.369OO37~pb+-.2566981~~,,,,+.369OO37a~~~,~
=

.256698 1 dNpor + -.3690037d’p,, + 1

.2566981~0N+-.3690037+&+V,,,

.2566981=0Npor+-.3690037+por

= 4.347826~~0,+-l.0g0.0Npor)

q .3690037~~Pb+-l.0~~d’por+-2.87Wdo,)

Algebraic Solution of an Equation System.

Figure 4.

THE AI MAGAZINE Spring 1984 9

DRYCLAY MATRIX

= Vdrycla +Vma +vsil

%,I = @Ndrycla ‘Vdrycla+@Nrna +‘ma +@Nsil ‘Vsil+@Nwf ‘@wf +@Nwb ‘@wb

@I, = 0Odrycla’Vdrycla+0Dma.Vma+0Osil’Vsil+0Owf’0wf+0Owb’0wb

GR = GRdpycla ‘vdrycla +GRma l V,, +GR sil ‘Vsil +GR wf ‘@,f +GR wb ‘8,b

-:

Hypothetical Synthesis: Initial Statement.

Figure 5.

a target language for those cases which could not be handled
algebraically.

Several observations can be made as a result of the 40
experience:

. Good user interfaces are cruczal to automatic program-
ming systems They must provade both an appropriate
set of concepts and convenient ways to describe prob-
lems using those concepts. This statement .may be
obvious, but is worth making quite explicit

0 Speczal-purpose automatic programming systems of-
ten have tzght boundaries and are almost useless out-
side of these boundaries If a system is going to be
useful, it must either have wide boundaries or con-
venient ways to mix machine- and hand-written code.
40 never came into widespread use, primarily be-
cause its boundaries were too narrow The tar-

get class, equational interpretation models, was too
restricted In particular, certain procedural concepts
(such as sequencing and conditionality) seem to be
natural for some aspects of quantitative log inter-
pretation; these concepts were outside the bounds of
40’s capabilities

l Algebraac manipulation zs quite powerful, but has ob-
vious lzmztation Not all systems can be solved ex-
plicitly, and there are some questions about the
numeric precision and stability of the computations
resulting from the explicit solution of large systems
Domain knowledge may enable some of these limita-
tions to be overcome. As a simple example, knowing
the plausible range of values for terms in a quadratic
equation may enable the selection of one of the two
possible roots. This is an area ripe for further re-
search

10 THE AI MAGAZINE Spring 1984

Hypothetical Syntheses. The third (and on-going) study
involves the construction of detailed, step-by-step descrip-
tions of the process of writing particular programs This
methodology has provided useful insights in the past (e.g.,
the classical work by Floyd (1971), Manna and Waldinger
(1975), and the preliminary work on PSI (Green & Barstow
1977) and the Programmer’s Apprentice (Rich & Shrobe
1978).) The key to the methodology is to pick good ex-
amples to work on. In our case, we are working on complete
log interpretation programs, not just the central computa-
tions which 40 could deal with. For each such synthesis,
the primary goal is to characterize the types of knowledge
involved. In this section, a few steps from one hypothetical
synthesis will be discussed.3

materials (dry clay, silt, and matrix consisting of quartz)
and that the fluid consists of two types of water (free water
(4wf) which flows freely in the pore spaces; and bound water
(&,b) which is chemically attracted to clay). Measurements
from four tools are available: neutron (do), density porosity
(4~)) gamma ray (GR), The problem and the associated set
of seven equations in seven unknowlis are shown in Figure 5.

From a mathematical point of view, the system could
be solved algebraically and translated directly into code.
However, log analysts know that the GR and Rt equations
are only rough approximations - they’re not very reliable.
A better way to write this program is to use a traditional in-
terpretation heuristic - separate out the solid analysis from

The problem under consideration is to perform a volu- 3Results for other syntheses are available elsewhere (Duffey & Smoliar
metric analysis assuming that the rock is composed of three

DRYCLAY MATRIX

= Vdrycla +Vma +vsii

%l ’ hldrycla ‘Vdrycla +%lma ‘vrna +ONsil ‘vsil +ONpor ‘0

%I ’ ~Ddrycla~~drycla+OOma~vma+OOsil’vsil+OOpor~O

Hypothetical Synthesis: Solid Analysis.

Figure 6

THE AI MAGAZINE Spring 1984 11

the fluid analysis, using whichever measurements are most
appropriate for each. The resulting solid analysis part in-
volves three materials but only two measurements, as shown
in Figure 6.

We now have a system of reliable equations but it is
underdetermined (four equations in five unknowns). Once
again, knowledge of log interpretation resolves the problem.
Since the matrix is made up of quartz, and silt is essentially
ground up quartz, the responses of the two tools in matrix
and silt are identical. Given only these two measurements, it
would be impossible to distinguish between matrix and silt.
Thus, the solution is to break the problem into two parts: one
is concerned with porosity, quartz, and dry clay; the other is
concerned with somehow distinguishing between matrix and
silt. The first of these is a system with four equations and
four unknowns, as shown in Figure 7

At this point, the problem might seem to be one of
straightforward algebraic manipulation. Recall, however,
that explicitly solving a system of equations involves several
choices: each step involves selecting a term and equation to
solve. Such choices can be influenced by a variety of factors.
For example, if the target architecture has several processors,
it may be possible to take advantage of natural parallelism
in the computation. Figure 8 shows a flow chart of the major
data paths in the problem. Note that porosity (4) is com-
puted in one block and used in another. The second block
could be computed on a second processor as soon as porosity
is available. Thus: the equation system should be solved in
such a way that porosity is computed first

As these few steps suggest, many different types of
knowledge play important roles in the development of log in-
terpretation software. These include extensive knowledge of

/ \
DRYCLAY QUARTZ I A A

1.0 = ho,+0

V sol = Vdrycla +Vqua

@N = ONdryclamVdrycla +ONqua +qua +ONpor -0

@II = 00 dry& ‘Vdrycla + 0O qua ‘Vqua +ODpor ’ 0

Hypothetical Synthesis: Simplified Solid Analysis.

Figure 7.

12 THE AI MAGAZINE Spring 1984

QN D

v V

A

ROCK

SOLID 0

A
DRYCLAY QUARTZ

GR R

/

V V

0

0
A

0 wf 0 wb

QUARTZ

A
MATRIX SILT

Vdrycla

V

V ma

V

0 @wb wf

V V

Hypothetical Synthesis: Data Flow Diagram.

Figure 8.

the domain, knowledge of various mathematical formalisms,
knowledge of a variety of programming concepts, knowledge
of the target language, and even knowledge of the target
machine. In fact, this is what makes programming such a
fascinating process to study - a wide variety of knowledge
is used in a wide variety of ways.

The Role of Domain Knowledge

Perhaps the most consistent and important result of
these studies has been the realization that knowledge of the
domain plays several roles in the activities of an automatic
programming system, during both interaction with the user
and synthesis of the program.

User Interaction. Since a user may not be knowledgeable

about, or comfortable with, the intricacies of programming
systems, he or she must be able to describe problems in a
natural way. The system must be able to deal effectively
with the terms and notations of the domain. In the case
of quantitative log interpretation, the user should be able
to use concepts like “porosity,” “water,” and “shale,” and
notations like “&b”. The system should be able to deal with
subtle nuances of the domain, for example, that most “shale
indicators” are somewhat unreliable. In other words, the
user must be able to interact with an automatic program-
ming system in the same way that he or she would interact
with another log interpreter.

One crucial part of the interaction between log inter-
preters is that they share more than just terminology and
notations. They also share a great deal of detailed knowledge

THE AI MAGAZINE Spring 1984 13

about log interpretation. They know the responses of the
various tools in different materials, they know many mathe-
matical relationships, they are intimately familiar with the
interpretation charts which describe relationships diagram-
matically, and they have had experience in using common
interpretation techniques. When one interpreter describes a
technique to another, there is no need to fill in all the details;
because of their shared knowledge, the listener will be able
to do that. The lesson for automatic programming systems
is that they must also be able to fill in the missing pieces.4

In summary, the usability of an automatic program-
ming system will depend largely on the nature of the
specification process; the process must be both somewhat
informal and highly interactive. These attributes can only
be achieved if the system has access to a large and evolving
base of knowledge about the domain. This role for domain
knowledge might be considered a nice extra that could be
ignored - simply provide a sufficiently high-level language
for the user. The problem is that “No matter how high the
level, it’s still programming” (Smoliar & Barstow 1983). Un-
less that fundamental fact is changed, a wide class of users
would still have to learn programming in order to benefit
from such systems. Access to a body of domain knowledge
is one way to bring about such a change.

Program Synthesis. One role for domain knowledge
during synthesis is to reduce the complexity of the overall
task. In the case of log interpretation, a typical FORTRAN
program is over fifty pages long; the space of possible pro-
grams is enormous. Domain-specific problem-solving heuris-
tics seem to be valuable aids in reducing the space to a
more manageable size. As an example, consider the problem
of determining the amount of hydrocarbon in a formation.
Since hydrocarbons are not uniform (the density of gas varies
considerably depending on such factors as temperature and
depth), the effect of hydrocarbons on tool measurements is
difficult to model precisely, and the models are difficult to
deal with mathematically. Log interpreters doing hand cal-
culations have developed a simple heuristic:

“Since light hydrocarbons are relatively uncommon, do
all of the calculations assuming there are no light hydrocar-
bons; if the results are implausible, consider the pos-
sibility that light hydrocarbons may be present.”

This heuristic is reflected in code in the form of “porosity
analysis” and “hydrocarbon correction” routines. During
program synthesis, this domain-specific heuristic enables a
complex problem to be reduced to two simpler problems.

Domain knowledge is also needed during synthesis to
assist in selecting among alternative implementation tech-
niques. This is perhaps best explained by example. Consider
first the problem of representing real numbers: a variety of
techniques are possible and selecting an appropriate alterna-
tive depends on knowing the range of values and the needed
accuracy. As another example, consider the problem of solv-

ing a complex system of non-linear polynomial equations
From a mathematical viewpoint, this may not be tractable,
since an equation may have multiple solutions for the same
unknown. However, there may be only one solution with
a physically plausible range of values. Finally, consider an
equation system which is still too complex to be solved al-
gebraically, even given knowledge of ranges for the terms
In such cases some numeric t,echnique must be employed,
usually some form of successive approximation. It is some-
times possible to predict in advance the number of iterations
necessary to achieve the accuracy desired. In such cases the
loop can be coded with a counter or even open-coded as a
sequence rather than a loop. This latter choice was taken
in a case in which it was known that the tool readings were
only reliable in the first two digits and that two applications
of the loop body would achieve four-digit accuracy

In summary, just as domain knowledge is crucial for the
usability of an automatic programming system, it is crucial
for the ability of a system to deal with realistic problems.
It is needed both for writing large programs and for making
appropriate choices among implementation alternatives.

Implications. In one sense, these observations are
simply restatements of generally accepted maxims for build-
ing artificial intelligence systems: knowledge is crucial for
natural interaction; knowledge can be used to reduce search.
The important point is that the observations are concerned
with domain knowledge rather than programming knowledge.
Automatic programming systems will require large amounts
of both kinds of knowledge - it isn’t sufficient to build sys-
tems which only know about programming.

Of course, if this is true for automatic programming
systems, it is probably also true for human programming
systems. Among the implications for software engineering,
two seem especially important:

1 Compilers for general purpose very high level lan-
guages may not be able to produce efficient code un-
less they have some sort of access to knowledge of the
domain.

2 The traditional separation of software development
into specification and implementation may not be
feasible unless both specifiers and implementors are
knowledgeable about the domain 5

The Perspective

These investigations have led to a particular perspec-
tive on automatic programming systems, especially those in-
tended for use in real-world situations. This perspective may
be summarized by a definition, an assertion, and a conclusion
about research goals

l Definition: An automatic programming system al-
lows a computationally naive user to describe prob-
lems using the natural terms and concepts of a

4This argument is not new; Balzer et al (1977) made a similar argument
several years ago

51n a recent paper, Swartout and Baker discuss this issue at length
(Swartout and Balzer 1982)

14 THE AI MAGAZINE Spring 1984

domain, with informality, and imprecision and omis-
sion of details. An automatic programming system
produces programs which run on real data to effect
useful computations.

. Assertion: Such an automatic programming system
is clearly specific to a particular domain. Knowledge
of the domain is crucial to both the usability and the
feasibility of such a system

l Research goals: Therefore, a primary goal of automatic
programming research should be the development
of models of domain-specific programming and tech-
niques for building domain-specific automatic pro-
gramming systems.

Based on this perspective, several issues seem open for
investigation. Some have been addressed, at least in part,
in previous research efforts; however, no solid answers have
been determined:

l How can domaan knowledge be structured for use by an
automatic programmzng system? A great deal of work
on representing domain knowledge has been done in
the context of expert systems. It would be a satis-
fying result if the same knowledge structured in the
same way could be used by an automatic program-
ming system The idea is reminiscent of Green’s early
work (1969), in which the same axioms were used
both to solve problems and to write programs, but it
has yet to be tested in a complex domain.

l How can programming knowledge be structured for use

by an automatic programmzng system? Work on this
issue has been proceeding on two fronts One is
the relationship between abstract and concrete pro-
gramming concepts. Notable work here includes
the PSI project (Barstow 1979, Green 1977) and
the Programmer’s Apprentice project (Rich 1981).
The other front involves techniques for constructing
complex data structures. The work of Low (1978)
and Katz and Zimmerman (1981) fit into this cat-
egory Overall, the groundwork for this issue has
been laid What is now required is rather methodi-
cal codification of many specific programming tech-
niques.

l What knowledge zs required to choose an appropriate
implementation from a variety of alternatives? Here
the question is essentially one of efficiency in the tar-
get program It is interesting to note that Simon,
in his description of the Heuristic Compiler in the
early 1960’s, explicitly recognized that the efficiency
of the target code was an issue and also explicitly
chose to ignore it (1963). There was her reference
to the issue in the automatic programming litera-
ture for over a decade Finally, Low (1978) con-
sidered it in his work on data structure selection
More recently, Katz and Zimmerman (1981) looked
at it in the context of a data structure advisor and
Kant (1981) considered the question in the context
of the PSI project. This work is a good start, but
the issue deserves much more attention than it has
gotten. Our studies suggest that the use of domain
knowledge will prove crucial to addressing it well

.

In fact, Kant’s work actually characterized one kind
of domain knowledge that’s needed for selecting the
right alternative - knowledge of the plausible values
and typical set sizes.

How can the interactzon between an automatic pro-
gramming system and the user be modeled? In one
sense, this is just a special case of human-computer
interfaces, a topic which has been receiving a con-
siderable amount of attention lately. With respect to
the interface, there’s probably nothing special about
automatic programming systems. In another sense,
however, this gets right to one of the core questions
of artificial intelligence - how can two knowledgable
agents communicate? Automatic programming sys-
tems provide a fruitful context in which to explore
this question.

Unfortunately, the central issue suggested by the perspec-
tive, and the key to significant progress in automatic pro-
gramming, has not been addressed in any substantial way:

How can the interaction between domain and programming
knowledge during program synthesis be modeled?

An Experimental Approach

Given the importance of domain knowledge, the best
way to address these issues is through experimentation in
the context of specific domains. That is, we must develop
models of programming for these domains and implement
automatic programming systems which test these models.
Based on such experiments, we can develop broader models
and characterize the utility of different system-building tech-
niques. The validity of this approach as a research methodol-
ogy clearly depends on characteristics of the individual ex-
periments. It is not sufficient simply to build a variety of
application program generators. Unless the domains are
suitable and the underlying models of programming are for-
mulated well, it will not be possible to generalize to broader
models or to characterize the techniques in a useful way.

While selecting domains and developing models is an art,
it is possible to state some guidelines that may be helpful.
By considering ~$0 in light of these guidelines, we may see
why it is not particularly useful as a basis for more general
models:

l The domain must be non-trivial. There must be con-
siderable room for varzability in the class of target
problems, the posszbility of multzple target languages,
or the types of programming techniques whzch may
be employed. #Q’S domain, purely equational inter-
pretation models, was too simple Some extensions
which would have increased the complexity are: non-
equational concepts; computations over zones in a
well, rather than single levels; and some notion of the
reliability of the stated relationships. &J could write
programs in several target languages, although the
technique was essentially a “big switch.” 40’s reper-
toire of programming techniques was rather limited

THE AI MAGAZINE Spring 1984 15

l The model of programming for the domain must clearly
characterize the roles played by domain and program-
ming knowledge. 40 provides a clear characteriza-
tion of the roles played by domain and program-
ming knowledge: all of the domain knowledge is em-
bodied in the initial specification phase, with essen-
tially no role for domain knowledge during the syn-
thesis process itself. Unfortunately, it now seems that
this strict separation is the wrong characterization.

l The model must address the issue of choosing from
among several alternative zmplementations. For a
given target language, there was essentially only one
style of implementation.

l The model must be supported by an implemented sys-
tem intended for real users who need real programs to
perform real computations As noted earlier, although
~$0 was intended for real users and real programs, it
never came into widespread use, primarily because of
limitations on its target class.

#‘NIX

As an illustration of an experiment which seems to fit
the guidelines, we will consider some of the details of UNIX,
another project currently underway at Schlumberger-Doll
Research, the scope of which includes full-fledged quantita-
tive log interpretation programs.6 This class has considerably
more variability than 40% for three reasons. First, it in-
cludes non-equational relationships such as charts, tables,
and simple procedural concepts. Second, it includes com-
putations over entire wells, not just the single level computa-
tions which ~$0 dealt with. Third, the target language and
machine include simple kinds of parallelism.

To date, we have outlined a model of programming for
this target class. The model addresses the two issues noted
earlier: the interaction of domain knowledge and program-
ming knowledge; and the selection of an appropriate pro-
gram from a set of valid alternatives. However, the model
is only speculative - it is neither tested nor supported by
an implementation. Rather, it must be considered to be a
proposal. Nonetheless, the model provides a good example
- it suggests the kind of domain-specific model of program-
ming which may generalize to other domains. For example,
we hope that this model will generalize to other types of
scientific software.

Overview of the Model of Programming. According to
this model, programming for quantitative log interpretation
involves four activities:

l Informal problem solving: This activity is concerned
with informal problems involving inputs, outputs, as-
sumptions, and relations stated primarily in domain-
specific terms. The problems are informal in that
they may be incomplete (not enough information is

6An early report on 4~1~ provides additional background (Barstow et
al 1982b)

16 THE AI MAGAZINE Spring 1984

available to compute the outputs from the inputs)
and the input set may not be quite correct (some in-
puts may be missing, others extraneous) Such prob-
lems might be paraphrased in English as “Try to find
a way to compute X from Y using relationship 2 ”
The result of the informal problem solving activity
is a set of formal problems stated in terms of any of
several different formalisms.

Formal manipulation: This activity is concerned with
problems stated in terms of mathematical formalisms:
statistics, analytic geometry, and algebra The results
of these activities are algorithmic statements con-
nected by data flow links.

Implementation selection: This activity is concerned
with selecting from among a variety of implemen-
tation techniques for each entity in the algorithmic
descriptions produced by formal manipulation. The
result of this activity is a complete description of the
program in terms of concepts available in the target
language

Target language translatzon: The major concern of
this activity is the expression of the program in terms
of the syntax of the target language This is a fairly
direct translation from the results of the implemen-
tation selection activity.

Each of these activities involves applying transforma-
tions based on knowledge of quantitative log interpretation
and of programming. We will now consider each of the ac-
tivities and the kinds of transformations involved in them.

Informal Problem Solving. An informal problem con-
sists of a set of inputs, a set of outputs, a set of assumptions,
and a set of relationships, all expressed in domain terms. For
example, an English rendering of one such informal problem
is:

Assume the only fluids in the pore spaces in the rock
around the borehole are water which flows freely and
water which is bound to clay. Try to find a way to com-
pute bound water saturation (&,b) from the resistivity
(R) and gamma ray (GR) measurements.

The primary goal of the informal problem solving activity
is to determine a set of formal problems which can be put
together to solve the overall problem.

This activity has been named “informal” because the
problems and subproblems considered during the activity
are often incomplete. When inputs and outputs are stated,
the intention is that some way of computing the outputs
from the inputs is desired. In trying to find an appropriate
computation some inputs may be ignored and additional in-
puts may be considered. Similarly, when relationships or
assumptions are given, the intention is that the relation-
ships be used, but there is no requirement that all or
only these relationships be used. In other words, the
parts of a problem statement provide a focus for, but not
a restriction on, the informal problem solving activity.

r
I Compute S,, from GR and R,

I

a
Compute S,, from GR Compute S,, from R,

Compute s,, by consensus

Informal Problem Solving: Reduction to Informal Subproblems.

Figure 9.

There are five types of transformations used during in-
formal problem solving:

I Reduction to informal subproblems. These trans-
formations are often suggested by domain-specific
heuristics. For example, the transformation shown in
Figure 9 is based on the following heuristic: “If you
have only unreliable indicators for a quantity, con-
sider each indicator as a separate subproblem, and
use some kind of consensus technique to determine
a more reliable value.” The result is three simpler
informal problems

2 Danslation into formal problems. These transforma-
tions often involve definitions of domain concepts
in terms of domain-independent mathematical for-
malisms. For example, the transformation shown in
Figure 10 is based on the following rule (and the fact
that GR is a linear indicator for Swb): “If you have a
linear indicator for the desired output, the problem
may be expressed as a twopoint linear relationship
between indicator values for the minimum and max-
imum values of the output.” The result is a problem
stated in terms of formal concepts.

3. Addition of information The formal problem, as
stated, is underdetermined: it has one input (GR),
one output (Sub), and two other terms (GRs,+~,
GRs,,,,); since only the value of the input term
is known, it is a system with one equation and

Compute S,, from GR

a
Compute S,, from GR

-----v-------

s,, and G R are linearly related

Informal Problem Solving:
Translation into Formal Subproblems.

Figure 10.

THE AI MAGAZINE Spring 1984 17

t

compute SW, from GR

Swb and G R are linearly refa ted

a
compute SW, from GR

--e-mm- -v--

swb and G R are linearly related

wb=O
1

when GR is minimum over the zone

I S wb -1 when GR is maximum over the zone

Informal Problem Solving: Addition of Information.

Figure 11.

three unknowns, hence underdetermined To resolve
the difficulty, either additional relationships must be
found or more inputs provided In this case, a reason-
able solution is to add two relationships, as shown
in Figure 11 Additional information such as this
may come from known facts and relationships of the
domain or from assumptions the user is willing to
make

4. Elaboration of general concepts. Informal problems
are often stated in terms of general concepts which
do not have precise formal definitions Before a for-
mal problem can be stated, it is necessary to be more
explicit about the desired relationship For example,
the concept of “consensus” covers a broad range of
techniques for computing a single value from a set of
values, no one of which is especially reliable. Since
GR and Rt are equally unreliable as bound water
indicators, and no information about the direction
of their unreliability is available, the mean of their
values is a good choice This transformation is il-
lustrated in Figure 12

5. Introductzon of conditionals. Computed results must
often satisfy certain constraints. For example, vol-
umetric results are computed as fractional volumes
and must therefore be in the range [0, I]. Such
volumetric problems are often described in geometric
terms by identifying the points, in a coordinate
system whose axes are tool readings, representing
100% concentrations of the materials. Figure 13
shows the points for quartz, dry clay, and porosity
in a coordinate system determined by the neutron
(4~) and density-porosity (4~) logs Geometri-
cally, the [0, I] constraint corresponds to the con-
dition that the data point (i.e , specific values for
$6~ and 4~) fall within the triangle determined by
the 100% points Data points falling outside the tri-
angle represent anomolous situations; identification
of such anomalies leads to the introduction of a con-
ditional on the inputs, several new informal prob-
lems, and perhaps a request to the user about how
the anomolous situtation should be handled.

18 THE AT MAGAZINE Spring I984

Compute s,, from s,, (GR) and Sw,,(R,) by cmensus

\

Compute s,, from s,,(GR) m.QJR,)

s,, is the mean of S,,(GR) and s,,(R,)

Figure 12. Informal Problem Solving: Elaboration of General Concepts.

QUARTZ = (0, 0) q

(0.3, -0.2) = DRY CLAY

(1, 1) = POROSITY

- %J

Figure 13. Geometric Representations of a Volumetric Analysis Problem.

THE AI MAGAZINE Spring 1984 19

Compute V, V,, $J from & &
--m--v----

Lz

Compute V, V,, (b from $3\ &
------- --

1 = v,, + v, + +

I 1 4N = .3+,, + 4

40 = -.24,, + 4

Figure 14. Formal Manipulation:
Reformulation into a Different Formalism.

1 r Compute V, V,, 4 from f#~ &
---e----m

1 = v,, + v, + (b

I I 4N = .3*v,, + 4

40 = -.2*v,, + 4

Compute V, V,, 4 from 4N 4.
-- ---m-m--

bc =
4N - 40

.5

4 = 40 + .24,,

V, = 1 - 4 - v,,

Figure 15. Formal Manipulation:
Reformulation within a Formalism.

The key ideas behind this formulation of the informal
problem solving activity are:

. The heuristics used by expert quantitative log inter-
preters can provide valuable guidance by suggesting
subproblems for consideration.

l There is a large body of quantitative log interpreta-
tion facts and relationships which are best expressed
in terms of simple statistics, analytic geometry, and
algebra.

. Inability to define formal problems suggests incom-
pleteness in the specification which can be resolved by
using additional information found in the repository
or suggested by the user.

. Analysis in terms of the mathematical formalisms
can help identify anomolous conditions as special
cases which a target program might encounter when
it is run on real data

Formal Manipulation. A formal problem consists of a set
of inputs, a set of outputs, and a set of relationships stated
in terms of mathematical formalisms: statistics, analytic
geometry, and algebra. The primary goal of the formal
manipulation activity is to transform each of the formal prob-
lems into an algorithmic form.

Three types of transformations are used during this ac-
tivity:

1 Reformulation into a different jormalzsm. The different
mathematical formalisms are used by the informal
problem solving activity primarily as a matter of con-
venience For example, many experimentally deter-
mined relationships are represented as charts much
more easily than as algebraic relationships. However,
unless the target language has mechanisms for deal-
ing directly with such concepts, they must be trans-
lated into other formalisms for which the appropriate
concepts are available. In the case of quantitative
log interpretation, these translations are usually from
statistics and analytic geometry into algebra For
example, the transformation shown in Figure 14 in-
volves the reformulation of the geometric problem
posed earlier into an algebraic one.

2. Reformulation within a formalism. Often a problem
may be formulated in several equivalent ways within
a single formalism. For example, there are many
equivalent systems of equations for representing nu-
meric relationships among several terms Some of
these systems may be easier to deal with than others.
As illustrated in Figure 15, the problem involving
three equations in three unknowns may be reformu-
lated as an equivalent upper-triangular system of
equations.

3. Translation into an algorithmic formalism The ul-
timate goal of the formal manipulation activity is to
transform the formal problems into an algorithmic

20 THE AI MAGAZINE Spring 1984

representation Once the appropriate formal mani-
pulations have been done, this is a relatively straight-
forward process For example, the transformation
shown in Figure 16 yields a sequence of assignment
statements

Implementation Selection The result of the formal
manipulation activities is a set of simple algorithms described
in terms of general computational concepts dealing with data
flow and operations on three data types: real numbers, se-
quences, and mappings. For each of these general concepts,
several implementation techniques are possible. The goal of
this activity is to select techniques for each general concept.7
These selections are guided by two considerations: whether
or not the technique is appropriate for the target language,
and the relative merit of alternative techniques given some
preference criteria (e.g., an efficiency measure).

Three types of transformations are applied during this
activity:

1 Data type refinement Since most programming lan-
guages cannot implement all three abstract data
types directly, techniques for representing instances
of the data types must be selected. For example,
the porosity log measured by the neutron tool is
abstractly viewed as a mapping of depths to porosity
values. Logs are typically implemented by estab-
lishing a correspondence between depths and integers
(in effect, a kind of discretization) and then indexing
the log by the integers This transformation is il-
lustrated in Figure 17 With several more steps, this
representation can be refined into two arrays, one for
depths and one for log values.

7More precisely, a technique must be chosen for each instance of each
general concept For example, there is no reason for all numbers to be
represented in the same way

Compute V, V,, 4 from & $Q
m-m----- --

+ N - hl
‘dc = -5

\
v, = 1 - 0 - v,,

r

t

compute v, vdc 4 from & $0

v -l-$-v,, 9

Figure 16. Translation into an Algorithmic Formalism.

I 4 N: DEPTHS -POROSITY VALUES
I

a
+,-DEPTHS: INTEGERS +-DEPTHS

@N-VALUES: INTEGERS -POROSITY VALUES

Figure 17. Implementation Selection: Data Type Refinement

THE Al MAGAZINE Spring 1984 21

‘I

Figure 18. Implementation Selection:
Data Flow Refinement.

J

2. Data fZow refinement. Most languages have a variety
of ways to pass data from one computation to another,
and a selection of particular techniques for each
of the data flow links must be made. This is an
area where different languages may vary significantly.
For example, FORTRAN can deal with multiple
return values more conveniently than most LISP
dialects. Although many of the data flow decisions
seem relatively mundane (e g., whether or not to use
a variable) there are also some rather exotic pos-
sibilities, such as the conversion of one representation
to another in the middle of a computation, as sug-
gested in Figure 18. For example, a set may be repre-
sented as a mapping of potential elements to Boolean
values while it is being built, and then changed to
a sequence to make enumerations easier This is a
rather powerful technique - one which both humans
and machines could profitably use.

3. Control flow refinement. Control flow techniques also

It

I ’
Figure 19. Implementation Selection:

Control Flow Refinement.

differ among target languages. Among the relevant
concepts are sequencing, iteration, recursion, con-
ditionality, and function invocation The dashed ar-
row in Figure 19 illustrates a simple sequencing of
computations which are only partially ordered by
data flow constraints.

Of course, these types of refinement may be closely
linked. For example, deciding to use an array processor to
perform similar computations on all elements of a vector has
implications for all three types of refinements.

Target Language Translation. The last activity is a
translation from the final algorithmic form into the syntax
of the target language. Since the final algorithmic form in-
volves only concepts available in the target language, this
is a fairly simple activity. The greatest complexities involve
the selection of variable names and producing the program
in a readable format.

22 THE Al MAGAZINE Spring 1984

FORMAL
MANIPULATION

IMPLEM;NTATION
SELECTION

Figure 20. The Overall Synthesis Process.

TAF;GET
LANGUAGE

TRANSLATION

The Synthesis Process. Since each activity involves the of transformations can be completed; there may be dead-end
paths. application of transformations, the overall process can be

modeled as a sequence of transformations. In other words,
the overall process is an instance of the transformational
paradigm which has received considerable attention lately
(e.g., Balzer 1981, Cheatham 19’79, and Kant & Barstow
1981).

Although the activities of the q5~rx model were described
separately, the overall process cannot be broken into four dis-
tinct stages corresponding. As suggested by Figure 20, there
is a gradual shift in emphasis from informal problem solving
through formal manipulation to implementation selection.
To illustrate this mixing of activities, consider the use of an
optimization strategy to deal with a complex system of equa-
tions. The decision to use the strategy is made during formal
manipulation, but the initial point determination involves a
new informal problem (which may, for example, have less
stringent accuracy requirements).

At each stage in a sequence there may be many transfor-
mations which could plausibly be applied. Thus, the trans-
formations of the different activities define a space of par-
tially implemented programs; the overall synthesis process
is one of exploring this space. (See Figure 21.) At the cur-
rent time, it is only possible to characterize this space in
general terms Any complete sequence leads to a implemen-
tation of the initial problem. Given the informality of the
specification, different implementations may have different
input/output behavior, although any such differences would
be within the accepted bounds of uncertainty in the domain
In addition, there may be considerable variability in terms
of efficiency. There is also no guarantee that every sequence

Characterizing the Activities. We may use this space to
characterize the different activities:

l Informal problem solvzng. Due to the informal na-
ture of informal problem solving, the transformations
may not preserve equivalence. As a simple example,
different elaborations of the consensus concept would
lead to programs which are not equivalent, but which
might all be plausible from the point of view of a
log interpreter Another aspect of informal problem
solving is that there are likely to be many alterna-
tives, of which only a small number don’t lead to
dead-ends Thus, the primary concern will be to
avoid dead-ends - almost any completable path is
acceptable. This suggests a highly exploratory and
opportunistic strategy.

l Formal manipulation. Formal manipulation seems to
be much more cleanly structured There are prob-
ably only a few transformations which produce algo-
rithms directly; the other transformations are used to
satisfy preconditions on these. For example, of the
three transformations given earlier, the first satisfies
preconditions of the second, which satisfies precon-
ditions of the third, which produces an algorithm.
Thus, simple backward-chaining is probably the right
strategy.

l Implementation selection. During implementation
selection, most paths will complete successfully and
more traditional search strategies are probably ap-
propriate, including quantitative evaluation func-
tions and explicit construction of much of the space.

THE AI MAGAZINE Spring 1984 23

0 0 ALTERNATIVE PATH

+
@ DEAD END

0

. PATHTO BEST PROGRAM

J J4

Figure 21. Search Space Defined by Transformations.

The refinement paradigm as developed in PSI’s syn-
thesis phase (Kant & Barstow 1981), seems to fit well
here.

l Target language translation. This activity is quite
straightforward, involvng little or no search.

Characterizing the Knowledge. Given this description
of the overall process, it can be seen that knowledge plays
two kinds of roles, as the transformations themselves and as
selectors of appropriate transformations.8 Figure 22 shows
the roles played by various types of knowledge during the
different activities.

-

0 Log interpretation

-Facts and relationships derived from theoretical or
empirzcal conszderatzons: These play a transfor-

-

*In terms of traditional search theory, knowledge is embodied both ini
operators and in heuristics

mational role during informal problem solving by
providing information which may be added to in-
formal problems (e g , the end points of the linear
GR-S,b relationship). They also play a selective
role during formal manipulation and implemen-
tation selection by providing the basic informa-
tion needed to make certain decisions (e.g , the
plausible range of a physical value).

-Mechanisms for expressing log interpretation con-
cepts in terms of mathematical formalisms: These
play a transformational role during informal prob-
lem solving by producing problems which can be
handled by formal manipulation (e.g., the expres-
sion of the linear GR-S,b relationship)

-Problem-solving heuristics: These are used dur-
ing informal problem solving to help reduce prob-
lems to simpler problems; in effect, they play both
a tranformational and a selective role (e g , the
reduction of the original bound water problem into
three simpler ones)

24 THE AI MAGAZINE Spring 1984

Taxonomy of concepts S s s
Surface Syntax T-

T - TRANSFORMED ROLE ---)I INTRODUCES CONCEPTS
S - SELECTIVE ROLE FOR NEXT ACTIVITY

Figure 22. Characterizing the Knowledge.

l Mathematical formalisms (simple statistics, analytic
geometry, algebra)

-Taxonomy of concepts: This plays a tranforma-
tional role during informal problem solving by in-
dicating specializations for general concepts (e.g.,
the use of the arithmetic mean as a consensus tech-
nique)

-Analytic mechanisms: These play a selective role
during informal problem solving (e.g , the identi-
fication of the implausible regions of the d&n
crossplot).

- Mechanasms for reformulation within a formalzsm
or znto a different formalism: These play a tranfor-
mational role during formal manipulation by trans-
forming problems into more convenient forms (e g ,
the reformulation of the geometric problem into an

algebraic one, and the solution of the system of
equations)

-Mechanisms for translating a formal problem state-
ment znto an algorithmic form: These play a trans-
formational role during formal manipulation by
producing algorithmic modules (e g., the transla-
tion of the solved system of equations into a se-
quence of assignment statements).

l Programming techniques

- Taxonomy of programming technaques (data flow,
control flow, data types): This plays a tranforma-
tional role during implementation selection, since
it embodies certain refinement relationships (e g.,
knowledge of alternative representations for map-
pings) This also plays a selective role during for-

THE AI MAGAZINE Spring 1984 25

ma1 manipulation, since it provides the target set
of concepts for the activity

-Mechanisms for analyzing the efficiency of specific
techniques: These play a selective role during im-
plementation selection. (E g., knowledge of the
efficiency characteristics of alternative mapping
representations). It also plays a selective role
during informal problem solving in that certain
transformations might be rejected on efficiency
grounds.

l Target language

- Taxonomy of computational concepts available 2n
the language: This is essentially a sub-taxonomy
of the mathematical and programming techniques.
It plays a selective role by acting as a filter dur-
ing formal manipulation and implementation selec-
tion For example, F 0 RT RAN does not establish
a new context for each subroutine call, so the use
of recursive subroutines would be filtered out.

-Mechanism for translating znto the syntax of the
language: As the essence of the target language
translation activity, this plays a transformational
role.

In looking at the overall picture, note that domain
knowledge is used during each of the activities, but in
different ways. During informal problem solving, it is the
source of many of the transformations. During later ac-
tivities, it is used primarily to select from among alternative
transformations. Note also that the domain knowledge is
not specifically related to the programming task, it is simply
used by it.

Summary

Let us now review the basic theme of this paper, over-
stating slightly for the sake of clarity:

The primary conclusion of our initial studies is that
domain knowledge plays a critical role in the programming
process. This role is so important that automatic program-
ming systems without considerable domain knowledge will
be neither usable by non-computer scientists nor feasible for
non-trivial domains. Therefore, a primary goal of automatic
programming research should be to develop models of pro-
gramming which characterize the interaction of domain
knowledge and programming knowledge. The best way to
achieve this goal is to develop models of programming for
specific non-trivial domains, and to test these models by
building systems for real users who want real programs that
can be run on real data. If these models clearly separate and
characterize the roles played by domain and programming
knowledge, then we will have the foundation for developing
broader models of programming.

References

Archie, G. (1942) The electrical resistivity log as an aid in deter-
mining some reservoir characteristics. Petroleum Technology,
5:1, January.

Balzer, R. Transformational implementation: An example (1981)
IEEE Transactions on Software Engineerzng, 7:1, January

Balzer, R , Goldman, N., & Wile, D. (1977) Informality in
program specification. IJCAI 5, Cambridge, Massachusetts,
August.

Barstow, D (1979) Knowledge-based Program Construction. Elsevier-
North Holland, New York

Barstow, D. (1982) The roles of knowledge and deduction in
algorithm design In J. E. Hayes, D Michie, Y-H. Pao (Eds),
Machine Intellzgence IO, Ellis Horwood Limited, Chichester

Barstow, D., Duffey, R , Smoliar, S., & Vestal, S. (1982) An
automatic programming system to support an experimental
science. Sixth International Conference on Software Engineering,
Tokyo, Japan, September.

Barstow, D., Duffey, R , Smoliar, S , & Vestal, S. (1982) An over-
view of @NIX. AAAI-82, Pittsburgh, Pennsylvania, August,
367-369.

Bibel, W (1980) Syntax-directed, semantics-supported program
synthesis. Artificial Intelligence, 12:3, October.

Bogen, R. et al, (1975) MACSYMA Reference Manual. Mas-
sachusetts Institute of Technology, Laboratory for Computer
Science

Cheatham, T., Townley, J , & Holloway, G. (1979) A system
for program refinement. Fourth International Conference on
Software Engineering, Munich, Germany, September. Reprinted
in D. Barstow, H. Shrobe, E. Sandewall (Eds.), Interactwe
Programming Environments, McGraw-Hill, New York, 1984

Duffey, R., & Smoliar, S. (1983) From geological knowledge to
computational relationships: A case study of the expertise of
programming Workshop on Program Transformation and Pro-
gramming Envaronments, September

Floyd, R (1971) Toward interactive design of correct programs
Stanford University, Computer Science Department, CS-235.

Green, C. (1969) Application of theorem proving to problem-
solving. IJCAI-X, Washington, D.C., May

Green, C (1977) A summary of the PSI program synthesis sys-
tem. Fajth International Conference on Artificial Intelligence,
Cambridge, Massachusetts, August.

Green, C , & Barstow, D. (1977) A hypothetical dialogue exhibit-
ing a knowledge base for a program understanding system In
E. Elcock & D. Michie (Eds.), Machine Intelligence 8, Ellis Hor-
wood Limited, Chichester.

Kant, E. (1981) Eficiency in Program Synthesis, UMI Research
Press, Ann Arbor

Kant, E. & Barstow, D. (1981) The refinement paradigm: The
interaction of coding and efficiency knowledge in program syn-
thesis. IEEE Transactions on Software Engineering, 7:5, Sep-
tember Reprinted in D Barstow, H Shrobe, & E. Sandewall
(Eds.), Interactive Programming Environments, McGraw-Hill,
New York, 1984.

Katz, S., & Zimmerman, R. (1981) An advisory system for devel-
oping data representations. Seventh International Conference
on Artificial Intelligence, Vancouver, British Columbia, August,
1030-1032.

Low, J. (1978) Automatic data structure selection: an example
and overview. Communicatzons of the ACM, 21:5, May

Manna, Z., & Waldinger, R (1980) A deductive approach to pro-
gram synthesis ACM Transactions on Programmzng Languages
and Systems, 2:1, January.

26 THE AI MAGAZINE Spring 1984

Manna, Z , & Waldinger, R. (1975) Knowledge and reasoning in
program synthesis. Artificial Intelligence, 6:2, Summer

PROSE General Informatzon Manual, (1979) PROSE, Inc , Pales
Verdes Estates, California

Rich, C (1981) Inspection methods in programming Mas-
sachusetts Institute of Technology: AI-TR-604, June

Rich, C., Shrobe, H (1978) Initial Report on the Programmer’s
Apprentice. IEEE Transactions on Software Engineering, 4:6,
November. Reprinted in D Barstow, H Shrobe, & E. San-
dewall (Eds.), Interactive Programmzng Envaronments, McGraw-
Hill, New York, 1984.

Simon, H (1963) Experiments with a heuristic compiler. Journal
of the Association for Computing Machinery, 10:4, October.
Reprinted in H. Simon, & L. Siklossy (Eds.), Representation
and Meaning, Prentice-Hall, Englewood Cliffs, 1972.

Smith, D. (1983) A problem reduction approach to program syn-
thesis. Eighth International Joint Conference on Artificzal Intel-
lzgence, Karlsruhe, Germany, August, 32-36.

Smith, D. (1980) A survey of the synthesis of LISP programs from
examples International Workshop on Program Construction,
Bonas, France, September.

Swartout, S. & Barstow, D. (1983) Who needs languages and why
do they need them? or no matter how high the level it’s still
programming. Symposium on Programming Language Issues in
Software Systems, San Francisco, California, June.

Swartout, W. & Balzer, R. (1982) An inevitable intertwining of
specification and implementation, Communications of the ACM,
25~7, July.

Waldinger, R & Lee, R (1969) PROW: a step toward automatic
programming WCAI Washington, D.C.

Waters, R. (1982) The Programmer’s Apprentice: Knowledge-
base program editing. IEEE Transactzons on Software En-
gineering, 8:1, January Reprinted in D. Barstow, H. Shrobe
& E. Sandewall (Eds.), Interactive Progmmmzng Environments,
McGraw-Hill, New York, 1984.

We’ve made it so easy to build expert
systems, all you need is a pair of scissors.

I
I
I
I
I
I
I
I
I
I

It’s true With TIMM” (The Intelligent Machrne Model), just about anyone can now build a powerful expert
system Quickly Easrly Without knowing a thing about computers Just send us the coupon, or call, and we’ll tell
you all about this exciting breakthrough in artificial intelligence Here are just some of TIMM’s features.

- Knowledge engrneerrng embedded In software - Checks for consistency and completeness
- Lets you quickly build prototype systems - Learns by example, generalizes knowledge

- Is “domain-independent”

SEND ME THE STORY OF TIMM”

Company Tltie

City State zip

Telephone
q Please call me q Send information on/y

Mad to: TIMM, PO Box 6770, Santa Barbara, CA 93160-6770 Or call, toll-free, I-800-235-6788 In California. call (805) 964-7724

The Software Worksho$B
Artificial Intelligence Laboratory - General Research Corporation

I

I
I
I
I
I
I
I
I
I
I I

THE AI MAGAZINE Spring 1984 27

