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Abstract 

While some proposals for supercomputers increase the powers of exist- 
ing machines like the CDC and Cray supercomputers, others suggest 
radical changes of architecture to speed up non-traditional operations 
such as logical inference in PROLOG, recognition/action in production 
systems, or message passing We examine the case of parallel PROLOG 
to identify several related computations which subsume those of paral- 
lel PROLOG, but which have much wider interest, and which may 
have roughly the same difficulty of mechanization Similar considera- 
tions apply to some other proposed architectures as well, raising the 
possibility that current efforts may be limiting their aims unnecessarily 

EXCITEMENT HAS BEEN GROWING over computers big- 
ger, faster, and more capable than ever before, the so-called 
supercomputers. Some of the proposals for new machines 
amplify the strengths of existing supercomputers like the 
CUBER 205 and the CRAY-1, while other proposals depart 
more radically from traditional architectures by organizing 
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their parallelism and speed around operations different from 
the traditional fetch and store. For example, Hillis’ con- 
nection machine and Fahlman’s NETL machine focus on 
message passing and semantic network computations; the 
CMU and Columbia production system machines speed up 
recognize/act cycles; and the Japanese Fifth Generation 
Computer (FGC) focusses on logical inferences in PROLOG. 
In many of these efforts, the functionality of the proposed 
system is gotten by “parallelizing” the structure of exist- 
ing sequential programmed systems. I hope to show below 
that in at least one case, that of the FGC, experience with 
the serial predecessor has provided supercomputer design- 
ers with unnecessary blinders limiting their vision, and that 
a significantly more interesting functionality may be pos- 
sible with relatively minor changes in organization. In fact, 
similar potential exists in some of the other proposals as well, 
but the FGC offers the simplest statement of the possibilities. 

Before proposing changes, it is worth recalling just what 
is the functionality of the FGC, and why it was chosen The 
FGC is intended to use parallelism to enhance the speed 
of serial PROLOG, a programming language based on logic. 
Considered abstractly, PROLOG is a system for determining 
the deductive consequences of a set of sentences in a logical 
language. PROLOG accepts a set of input sentences S, a 
goal sentence p, and subject to computability limitations, 
answers the question of deducibility, Does S t-- p? This is 
not of interest to logicians alone, for PROLOG can compute 

THE AI MAGAZINE Winter, 1983 33 

AI Magazine Volume 4 Number 4 (1983) (© AAAI)



quantities as answers by extract,ing values from the variable 
bindings imroduced in the proof of p from S, and so serves as 
a general purpose programming language. Logical program- 
ming languages attract many people in artificial intelligence 
because of the relative ease of stating declarative informa- 
tion in them, as compared with traditional programming 
languages Since most knowledge-based, expert systems con- 
tain large numbers of essentially declarative statements, the 
designers of the FGC expect their choice of PROLOG to 
facilitate the construction and operation of knowledge-based 
systems 

Parallelism enters the picture because traditional PRO- 
LOG requires that all sentences be expressed in clausal form, 
searches for proofs of its goal by examining the input clauses 
in a fixed linear order, and within clauses, examining literals 
in left-to-right order Many of these imposed orderings 
have no purely logical basis, so that, as far as questions of 
deducibility are concerned, greater efficiency may be possible 
with separat,e deduction searches conducted concurrently. 
In such a reorganization of PROLOG, time of execution is 
ideally proportional to the depth of the proof found (the 
size of the answer), rather than proportional to the number 
of alternative proofs (the size of the search space). Ideally 
(though practically, only in small cases), parallel PROLOG 
might, ameliorate some current computational limitations 
like the present practical inequality P f NP, since by 
definition problems in NP have “short” proofs. On the other 
hand, even an ideal parallel PROLOG need have no impor- 
tant impact on the provably intractable problems like real 
arithmetic decision procedures, since in these theories, prob- 
lems may have hopelessly long shortest proofs. Nevertheless, 
the potential speedups are sufficiently important to make the 
whole project very attractive as a technological advance on 
current computers. 

Deduction and Statistical Constructs 

The FGC is a very powerful machine, and restricting 
its use to answering only Does S t- p? may be needlessly 
wasteful. In fact, there are three closely related questions 
subsuming the deductive question which, if mechanizable 
via analogous techniques, could be of enormous importance. 
These computations are those that appear in the founda- 
tions, but rarely in the practice, of statistical decision mak- 
ing, namely computation of probabilities, utilities, and best 
alternatives from non-numerical probabilities, preferences, 
and logical sentences To explain these, we must review 
the role of statist,ical decision theories in artificial intel- 
ligence. For simplicity we focus on subjective Bayesian deci- 
sion theory. 

Statistical decision making has played a limited role in 
artificial intelligence, largely because of the awkwardness of 
its direct use. To formulate an expert system in statistical 
terms, one must supply a mass of conditional probabilities, 
prior probabilities, and utilities. Often these are not easy 
to come by, and even when extracted from human experts 

or informants, do not appear to be very reliable indicators 
of solid expectations The awkwardness of the sheer amount 
of information needed is compounded by the awkwardness 
of modifyzng the formulation. If one decides that two values 
formerly close together (e.g. .7 and .8) should in fact be fur- 
ther apart to accommodate a larger spread of intermediate 
values, one must either laboriously modify every value in t,he 
system by hand, or sabotage the intuitions of one’s infor- 
mants by telling them “By the way, O-.7 really means O-.4, 
.7-.8 really means 4-.9, and 8-1 really means 9-1,” thus 
forcing them to write 7.2 instead of .5, and so on. Even then, 
one cannot be sure the informant supplies numbers with the 
same scale in mind on Tuesday as on Monday, so the problem 
is worse than simple translation of ranges. 

This awkwardness is almost a cruel joke played by statis- 
tical decision theorists on their adherents in artificial intel- 
ligence, since these practical difficulties are not necessary 
at all from the theoretical standpoint At the foundations 
of Bayesian statistics lies the notion of qualitative probabil- 
ities, “bets” or judgments that one event is more probable 
than another. The theory takes whatever qualitative prob- 
abilities the subject is willing to espouse, and then considers 
the class of numerical probability dist,ributions compatible 
with the original qualitative relations (Savage, 1972) for the 
details ) The current practical awkwardness of starting with 
numerical probabilities is easily seen in this light. If more 
events need to be accommodated between two previously re- 
lated points, they are just inserted in the partial order of 
qualitative probabilities. Since no metrical notions are in- 
volved, the simple change is effected simply, without requir- 
ing hand-revision of numerical values. If the informant sup- 
plies fewer judgments of relative likelihood, the only result, 
is a wider range of numerical distributions that fit them. 
By way of analogy, no one writes the physical addresses of 
procedures and data into their programs any more: one just 
describes their structure and relations, and lets the details 
up to linking loaders, garbage collectors, and virtual memory 
systems. Similarly, we might also save ourselves much un- 
necessary work by specifying only essential probabilistic rela- 
tions, and let the machine derive numbers whenever neces- 
sary. I suspect such derivations may be possible by adapting 
the techniques of backing up of values widely used in search 
procedures, where the stipulated qualitative order forms the 
tree or graph being “evaluated,” but currently have no con- 
crete algorithm to recommend. 

A related computation is that of deriving utilities from 
stipulated preferences. A century ago, economics was in 
the same boat as modern expert systems, at least as con- 
cerns utilities. At that time, the foundations of economics 
assumed that each agent had a cardinal measure of utility, 
so that a potato might be valued at 5 “utils,” a haircut at 
20, etc. But while expert systems are still stuck with the 
problems of individual stipulation and manual revision of 
systems of utilities, economists went through two stages of 
re-foundation. In the first, cardinal utilities were abandoned 
for ordinal utilities, since the utility-maximizing behavior of 
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interest to economists is not affected by such a change. In 
the second, ordinal utilities were abandoned in, favor of sets 
of binary preferences among alternatives. With certain as- 
sumptions about the character of such preference sets, one 
can prove that each preference set may be represented by a 
family of cardinal utility functions (von Neumann and Mor- 
genstern, 1944.) Now artificial intelligence is accustomed 
to using both qualitative goals and numerical evaluation 
functions, but separately, and in different circumstances. 
There are even debates between proponents of “discrete” and 
“continuous” problem solving techniques But these debates 
may be irrelevant, since we can combine the two sorts of in- 
formation, stipulating and using whichever sort is more con- 
venient at the time. For example, as with qualitative prob- 
abilities, global changes to the character of utility functions 
have simple expression as changes of individual preferences, 
thus making them more attractive for stipulation even if the 
application demands continuous judgments. Can we in fact 
unify these two approaches by basing systems on qualita- 
tive preferences and constructing compatible utility func- 
tions whenever necessary? 

Of course, if both of the preceding const,ructions are 
amenable to direct architectural support in supercomputers, 
the next st.ep is their obvious combination into finding, 
among a set of alternatives, the subset of maximal expected 
utility. Here the maximum-finding computation should be 
susceptible to the already proposed parallel search tech- 
niques. 

While the preceding constructions would aid the con- 
struction of Bayesian agent,s, they make no special use of the 
logical character of PROLOG programs In fact, one alter- 
native construction may be equally interesting, given the use 
of PROLOG, that, of Carnap’s “logical” theory of probabil- 
ity 

While Bayesians like Savage view probabilities as con- 
structions from the choices of individuals, Carnap proposed 
an alternative notion in which probabilities are measures of 
the amount of ambiguity of a logical theory with respect to 
some question. That is, we need not simply say a theory S 
entails neither p nor 7~; we may interpret ambiguities like 
this so that in some cases the theory supports p more than 
up even though it strictly entails neither In Carnap’s idea 
of probability as degree of entailment, the probability of p 
given S is the relative “proportion” of models of p among a 
class of distinguished models of 5’. The probabilities so con- 
structed depend on both the range of models dist.inguished 
and on the way of measuring relative proportions. Carnap 
focused on two simple measures. In one, each model receives 
equal weight, a Laplacian assumption of sorts. In the other, 
the weight accorded a model is inversely proportional to the 
exponential of the size of its truth set. These measures can 
be viewed as very abstract qualitative probability relations, 
where in the first, all models are assigned equal likelihood, 
and in the second, simpler hypotheses are more likely than 
more complex ones (Carnap, 1950; Kyburg, 1970). There 
may even be interesting combinations of subjective prob- 

ability judgments and measures of logical ambiguity, for in- 
stance, using logical ambiguity measures to fill in the gaps 
between stipulated qualitative probabilities, that is, to refine 
the set of distributions compatible with the qualitative prob- 
abilities above. In terms of the search procedure sugges- 
tion above for the qualitative-quantitative construction, Car- 
napian measures might supply the evaluations of terminal 
nodes in the graph of qualitative probabilities, where the 
terminal nodes represent the events of minimal qualitative 
probability. Unfortunately, we cannot pursue such questions 
here see Doyle, 1982 for an initial treatment. A detailed 
reconstruction of decision theory is in preparation.) 

Neither Carnap’s nor Savage’s constructions have been 
pursued practically, since at the time of their introduction 
adequate computers and worked-out, economically impor- 
tant applications were scarce. But today, we have many 
narrow tasks formulated in Bayesian terms, a growing set 
of detailed applications in the form of inferentially-oriented 
expert systems, and even some computational explorations 
of Carnap-style constructions (Glymour et al 1983) These 
constructions may not be entirely feasible on serial com- 
puters. If not, can we use supercomputers to routinely com- 
pute degrees of entailment from PROLOG programs? This 
computation of course subsumes the ordinary PROLOG com- 
putation, since S entails p to degree 1 only if S + p, which 
by the completeness of first-order logic means that S t p. 
In fact, some ways of computing probabilities might rely on 
variants of the standard computations. For example, one 
might try to compute probabilities by comput.ing artificially 
disambiguated deductive closures, in which each actually 
ambiguous disjunctive or existential statement is forced into 
one of its cases. Different possibilities for algorithms include 
(1) the straightforward probabilistic procedure of choosing 
individual disambiguations randomly, where probabilit.ies of 
the conclusions are found by repeating the global computa- 
tion several times and measuring the frequency of appearance 
of the conclusion in question, and (2) computing a single dis- 
ambiguated closure, examining it to determine the size of 
each alternative, using these to compute conditional prob- 
abilities, and computing probabilities of conclusions using 
Bayes’s formula Even with parallelism, approximations may 
be necessary, but even mediocre approximations would ex- 
tend the power of currently proposed supercomputers. 

Conclusions 

Some theoreticians have doubts about the sensibility of 
statistical decision making, in light of the philosophical, in- 
formational, and computational problems it, involves. Their 
doubts may be entirely justified. But even if so, having a 
constructive Bayesian machine of the sort outlined above 
would be a wonderful experimental tool, and may serve many 
limited applications extremely well. If such a machine could 
be constructed as a simple variant of proposed supercom- 
puters, we might as well build one instead, since its operat,ion 
subsumes that of the proposed machinc~s For the, current 
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It does. The problems that prompted Schank to write 
his article are important, and different views of the nature of 
AI suggest different solutions to these problems. We consider 
some of these problems and solutions below. 

“The field has always been somewhat fragmented,” with 
lack of agreement about its goals and methodology. Each 
of the five views above suggests different goals and different 
methodologies. Many researchers simultaneously hold a mix- 
ture of these views, which causes them confusion about what 
research to do and how to do it. Any success in clarifying the 
nature of AI should also help to sort out this confusion. The 
techniques answer advanced above suggests the goal of de- 
veloping and investigating techniques. This can be done not 
only by building programs, but also by teasing out neat tech- 
niques from scruffy programs, and by explicit comparison of 
techniques. 

There is wide disagreement about “what constitutes a 
reasonable piece of AI research.” This is witnessed by the 
large number (507) f o o conference and journal articles where 
one referee recommends acceptance and the other rejection. 
I explicitly addressed this problem in my AISBQ 40-41 ar- 
ticle, where I tried to show how the techniques answer sug- 
gests criteria for assessing AI research. One theme of that ar- 
ticle was that there was wide agreement on what constitutes 
bad research, and that one could extract criteria from these 
agreements by negating the reasons fo rejecting pieces of 
work. 

The discovery that AI can be applied commercially has 
created several problems: a shortage of people, the danger of 
neglecting fundamental research, the danger of a backlash if 
AI does not deliver. These are all aspects of a single prob- 
lem: ignorance-ignorance about how to do AI research,, ig- 
norance of the nature and need for fundamental research, 
and ignorance about what AI has to offer commerce. The 
applied mathematic analogy implies that fundamental re- 
search in AI is the development and investigation of AI tech- 
niques and that applied research is the application of these 
techniques. If these definitions were taken seriously then AI 
would be easier to teach and its contribution to commerce 
easier to appreciate. 

(continued from page 35 1 

crop of judgmental expert systems, a qualitative Bayesian 
machine may be the perfect tool. 

Unfortunately, as mentioned previously, algorithms and 
techniques (approximate, probabilistic, or otherwise) for 
mechanizing these computations have not yet been worked 
out, and there is some chance that these computations are 
provably infeasible even for supercomputers. Also requiring 
attention is adaptation of any success with logic-based sys- 
tems to the alternative non-logical production systems, for 
the same general ideas involved in Carnap’s constructions 
apply even when logical structure is not available-see Doyle, 
1982 for suggestions. 

There are also other functionalities one might desire of 
supercomputers in addition to those discussed above, such 
as the ability to supply proofs when answering deductive 
questions, and the ability to make non-monotonic, reasoned 
assumptions. The former are invaluable in explanations, the 
latter important in problem-solving and representation. But 
we cannot pursue these here, except to note that both fit 
well with the proposed constructional approach (Doyle, 1982, 
1983a, 1983b). 
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