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Abstract 

The basic thesis put forth in this article is that a problem solver is 
essentially an interpreter that carries out computations implicit in the 
problem formulation A good problem formulation gives rise to what 
is conventionally called a strong problem solver; poor formulations co*- 
respond to weak problem solvers Knowledge-based systems are dis- 
cussed in the context of this thesis We also make some observations 
about the relationship between search strategy and problem formula- 
tion 

DURING THE LAST DECADE the distinction between strong 
and weak problem solvers has been emphasized in the AI 
literature. Weak problem solvers are those that are rela- 
tively easy. Strong problem solvers, on the other hand, can 
solve relatively difficult problems but are specialized to a 
particular application domain. The usual explanation for the 
performance of strong problem solvers is that they can bring 
specialized knowledge from the application domain to bear 
on the problem. This distinction between problem solvers 
dates back to Newell (1969). 

The question addressed in this article is “what is the 
relationship between weak and strong problem solvers?” One 
possible answer is that there are two different theories of 
problem solving: one for weak problem solving, the other for 
strong problem solving. We do not subscribe to this answer. 
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However, if it is incorrect, there must be some relationship 
between the two that allows them to live harmoniously within 
a single theory. The nature of this relationship is the focus 
of this article. In passing we note that the theory of weak 
problem solvers has been well-developed for over a decade; 
see Kilsson (1971) for example. 

MYCIN as a Weak Problem Solver 

To start off the discussion, let us make a statement just 
to make a point: many expert systems can naturally be 
viewed as weak problem solvers As a concrete example, 
consider MYCIN (Shortliffe, 1976). Its state space is the set 
of atomic formulae of the form 

< predicate function > 

(< object >, < attribute >, < value >) 

Each MYCIN production can be viewed as an operator in the 
problem reduction paradigm (Nilsson, 1971). For example, 
the production “if A & B then C” corresponds to the operator 
whose input state is C and whose output is the AND of the 
two states A, B. The goal states are patient data such as the 
results of lab tests. 
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production whose action part is a conjunction of atomic for- 
mulae corresponds to a separate operator for each atomic for- 
mula in the conjunction. MYCIN’s search strategy effectively 
applies such operators in a group. Certainty factors are best 
viewed as an extension of the problem reduction paradigm 
described in Nilsson (1971). 

MYCIN’s search strategy is a variation of the depth-first 
exhaustive search of AND / OR graphs described in Nilsson 
(1971). Descendents of “unsolvable nodes” are pruned, 
but descendents of “solved nodes” are not because MYCIN 
searches for multiple solutions. 

Many knowledge-based systems have a similar transla- 
tion into the problem reduction paradigm, particularly if it 
is extended by the addition of certainty factors. The thing 
that makes the translation so natural is that the knowledge 
base is often represented as a set of productions. 

The above exercise shows that MYCIN is basically a weak 
problem solver, ignoring all of the human engineering that 
it possesses. That is, if we had a problem solver for the 
problem reduction paradigm which used a depth-first search 
and we formulated the MYCIN problem for it as described 
above, it should exhibit essentially the same problem solving 
capability as MYCIN. A similar analysis applies to many 
other knowledge-based systems. Why is it, then, that they 
are classified, and correctly so, as strong problem solvers? 

Problem Formulation 

The answer to this question is no surprise; it is the 
same explanation found in the literature. The productions 
contain lots of domain dependent knowledge to cope with 
special problem solving situations. However, we still have 
the apparent paradox that such problem solvers appear to 
be weak, according to the above analysis. 

Our thesis is that what really makes a problem solver 
strong or weak is the problem formulation given to it. In the 
case of MYCIN, a medical diagnosis / therapy problem has 
been very carefully formulated for problem solving purposes. 
This causes the depth-first search employed by MYCIN to 
appear strong. An explicit statement of our thesis is: 

It is the formulation of a problem that causes a problem 
solver to appear weak or strong. The problem solver 
itself is merely an interpreter which carries out the com- 
putations implicit in the problem formulation 

Hence, a good formulation of a problem gives rise to what 
is currently called a strong problem solver; weak problem 
solvers have poor problem formulations. It follows that a 
single problem solver can be weak for some problem formula- 
tions and strong for others. 

Given this perspective let us look at the typical develop- 
ment of a knowledge- based system. After talking to an ex- 
pert for some period of time, the knowledge engineer comes 
up with a formulation of the problem that looks reasonable 
to the expert. Actual use of this problem formulation gives 
results that the expert considers incorrect. The source of the 

difficulty is that the initial problem formulation is incorrect 
/ incomplete. This is remedied by modifying some existing 
productions and adding some new productions. 

Note that each production corresponds t,o a different 
operator in the problem formulation (see previous section). 
The operators of a problem or game correspond to our in- 
tuitive notion of the “rules of the game.” Hence, what is 
happening is that the knowledge engineer is playing a game 
for which he doesn’t know that rules. The expert knows 
the rules but he cannot tell them to the knowledge engineer, 
probably because some of the rules are in the right half of the 
expert’s brain. So the knowledge engineer continues playing 
the game, making up the rules as he goes based on the advice 
of the expert. To be explicit each modification of a produc- 
tion modifies a rule of the game; adding a production adds a 
new rule to the game. The end result is an explicit statement 
of all of the rules of the game which is usually referred to as 
the system’s knowledge base. 

The above picture is consistent with Simon’s (1973) con- 
tention that real world problem solving involves a lot of prob- 
lem reformulation. In his model there are two basic kinds of 
activity: conventional problem solving (of the type described 
in Nilsson, 1971) and continual reformulation of the problem 
being solved, based on new information generated by the 
problem solving process. 

The difference between Simon’s model and the hWCIN 
effort is that the latter is attempting to generate a correct 
/ complete formulation of the “medical game” once and for 
all This is probably a good deal of what, is happening in 
medical school; students are trying to assimilate the rules of 
the “medical game.” Note that when a person sees chess for 
the first time, it takes him a considerable amount of time to 
assimilate the rules of the game even though they are stated 
precisely. Of course, chess only has a few dozen rules as 
compared to the hundreds of rules in MYCIN. 

Problem Formulations and Search Strategies 

In what has gone above we have emphasized only one 
aspect of expertise / acquisition, i.e , that of getting a good 
formulation of the “rules of the game.” This is not the 
only kind of problem dependent knowledge used by a prob- 
lem solver. Often its search strategy also contains prob- 
lem dependent knowledge There is a strong interaction be- 
tween these two kinds of knowledge because, for example, a 
particular problem formulation may be appropriate for one 
search strategy and not for another. 

hflCIN not only uses a problem formulation which is 
similar to that of a medical expert, it also uses a search 
strategy which is similar to that of the expert. Hence its 
problem formulat,ion is appropriate for its search strategy 
The point is that one not only needs a good problem formula- 
tion, but a search strategy which fits the problem formula- 
tion must also be found. Using the problem formulation and 
search strategy of an expert is a very practical way to develop 
expert, limited domain problem solvers. Although this is an 
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important and very useful part of the AI, an equally impor- 
tant part is to understand the nature of intelligent processes. 
This section will emphasize the latter - how to find a prob- 
lem formulation and a search strategy which fit one another. 

Often we are given a problem formulation that is precise, 
correct and complete, but yet it is not appropriate for any 
reasonable search strategy. (We are ruling out strategies 
such as a table of all possible states together with their 
(optimal) solutions.) An example is Rubik’s cube, a puzzle 
which is widely available, commercially. The difficulty is that 
the search space implicit in the given problem formulation 
seems to be too large and unstructured. 

A typical strategy for solving Rubik’s cube is 

1 get the top plane correct; 

2 get the middle plane correct; 

3. get the corner cubes in the bottom plane in the cor- 
rect position but not necessarily correct orientation; 

4 get the remaining cubes in the bottom plane in the 
correct position but not necessarily correct orienta- 
tion; 

5 get the corner cubes on the bottom plane correct; 

6 get the remaining cubes correct. 

There are other strategies for Rubik’s cube but all that we 
know of have the same form: get one set of cubes correct. 
Then get another set of cubes correct without changing the 
first set. Next get a third set of cubes correct without chang- 
ing the first two, etc. Usually the first set is a face of the 
cube. 

There is a difficulty in using such search strategies: none 
of the sets are invariant over most of the moves (operators) 
of Rubik’s cube. The result is that in performing step z of 
the strategy, you undo the previous i - 1 steps, unless you 
are very careful. To deal with this difficulty one develops 
sequences of moves which leave some of the sets of cubes 
unchanged. For example, the top plane is invariant over some 
move sequences. In applying such a move sequence, some 
cubes in the top plane are actually moved. But whenever 
this happens they are moved back to their original position 
before the end of the sequence. 

At each step in the strategy, move sequences are used 
that leave the sets of cubes in the previous steps of the search 
strategy invariant. This implies that a sufficient number of 
such move sequences must be developed to allow an arbitrary 
initial state to be solved. Korf (1982) has written a program 
which generates such move sequences. 

One can view this development of move sequences as a 
reformulation of Rubik’s cube. In the new formulation each 
move sequence is a single operator. This formulation of the 
problem is good for the given search strategy if a sufficient 
number of new operators have been developed. At each step 
in applying the search strategy, the problem solver only uses 
those operators which leave the previous steps in the search 
strategy invariant. With the exception of the first step, 
most of the operators will be the new operators generated in 
reformulating the problem Different search strategies (e.g., 

different orders in which the cubes are fixed) may give rise 
to different reformulation because the search strategies may 
require different invariant properties for the operators. 

This kind of problem reformulation was studied over a 
decade ago by Amarel (1970); he called it “changing the 
representation of a problem.” His macro-moves are the move 
sequences described above. 

The kind of strategy discussed above is a GPS (Ernst 
and Newell, 1969) based strategy. Each GPS difference cor- 
responds to the set of cubes in a step of the strategy. The 
difference is present when one or more of the cubes in the set 
are incorrect. The differences are ordered by the steps in the 
strategy; i.e., the first difference to be removed corresponds 
to step 1; the second difference to be removed corresponds 
to step 2; etc. 

So we see that the basic ideas in the above approach to 
solving Rubik’s cube date back a long ways. Yet today we 
do not know how to automate such problem reformulations 
in a general way. Although Korf’s (1982) method does a 
beautiful job in reformulating Rubik’s cube, apparently it 
requires the differences to be state components such as the 
position of a cube. For some problems such simple differences 
are not sufficient. Goldstein has written a program (Ernst 
and Goldstein, 1982) which can discover more complicated 
differences that are appropriate for a given problem for- 
mulation. The limitation of Goldstein’s program is that the 
given problem formulation may need to be changed. Such 
difficulties can only be avoided by looking for a good problem 
formulation and good differences at the same time. 

Conclusion 

The basic thesis put forth in this article is that a prob- 
lem solver is essentially an interpreter that carries out com- 
putations implicit in the problem formulation. A good prob- 
lem formulation gives rise to what is conventionally called a 
strong problem solver; poor formulations correspond to weak 
problem solvers. Of course, there is a whole spectrum of 
strength corresponding to how good the problem formulation 
is. 

According to this view, much of what is conventionally 
called a system’s knowledge base is really part of its problem 
formulation. This implies that research on knowledge-based 
systems is a form of research on problem formulation as 
opposed to what is conventionally called problem solving. 
We like this view because problem formulation is a “higher” 
conceptual level than that of problem solving In fact, we 
believe that this is the philosophical reason for the success 
/ performance of knowledge-based systems - they focus on 
a higher conceptual level than previous work in AI. From a 
philosophical point of view it is very important to understand 
the basic nature of such research. 

Problem formulation is central to research other than 
knowledge-based systems. Rubik’s cube was used to ex- 
emplify the relationship between problem formulation and 
search strategy. This relationship must be taken into account 
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in looking for either a good problem formulation or a good 
search strategy. For this reason the mechanical discovery 
of either one should be done together with the mechanical 
discovery of the other. 
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