
An Approach to Verifying
Completeness and Consistency in a

Rule-Based Expert System

Motoi Suwa*

A. Carlisle Scott**

Edward H. Shortliffe

Heurastac Programmzng ProJect
Departments of Computer Sczence and Medrczne

Stanford [Jnzverszty
Stanford, Culzfornza 94305

Abstract,

We describe a program for verifying that a set of rules in an expert
system comprehensively spans the knowledge of a specialized domain.
The program has been devised and tested within the context of the
ONCOCIN System, a rule-based consultant for clinical oncology The
stylized format of ONCOCIN ‘s I ules has allowed the automatic detec-
tion of a number of common errors as the knowledge base has been
developed This capability suggests a general mechanism for correct-
ing many problems with knowledge base completeness and consistency
before they can cause pel fol mancc errors

THI? BUILDERS~FAKNOWI,EDGE-BASED cxpertsys-
tern must ensure t,hat, t.he system will give its users accurate
advice or correct solutions to t,heir problems. The process of
verifying that a system is accurate and reliable has two dis-
tinct components: checking t,hat the knowledge base contains
all necessary information and verifying that the program can
interpret, and apply this information correctly. The first of

This walk was supported in part by the National Library of Medicine
(Program PI eject, Grant LM-~XSXY and Research career Development
Award LM 00048) and the National Science Foundation (Grant MC%
7903753) It was callied out on the SUMEX-AIM computer facility
(NIII grant. RI<-00785)

*Present addless: Computer Vision Section, Electrotechnical Labora-
tory, l-l-4 LJmezono, Sakura-mm-a, Niihari-gun, Ibaraki-ken 305,
Japan

**Present address: Teknowlcdge Inc , 525 University Ave , Palo Alto,
CIA 94301

these components has been the focus of the current research;
the second corresponds to t,he fatniliar problem of progratn
“debugging” and will not be discussed in this paper.

Knowledge-base debuggzng, t,he process of checking t,hat
a knowledge base is correct and complet,e, is one component.

of t,he larger problem of knowledge acquisition. This process
involves testing and refining the system’s knowledge in order
t,o discover and correct a variet.y of errors that, can arise dur-
ing the process of transferring expertise from a human expert,
to a computer syst,em. In this paper, we discuss some com-
mon problems in knowledge acquisition and debugging, and
describe an aut,omxt,ed assistant for checking t,he complete-
ness and consistency of the knowledge base in the ONCOCIN
system (ShortJiffc, 1981).

Knowledge Acquisition

Before knowledge can be embodied in a computer sys-
tem, it, tnust undergo a number of transformations. First,,
a human acquires expertise in some domain through study,
research, and experience. Next,, the expert att,empts t,o for-
tnalize this expertise and to express it in the internal repre-
sentation of an expert, syst.em, e g , production rltles, frames,
or setnantic nets. Finally, t,he knowledge, in a machinc-
readable fortn such as LISP expressions, is added to the con-
puter system’s knowledge base

16 TIE ,\I h4iZC;AZINE Fall 1982

AI Magazine Volume 3 Number 4 (1982) (© AAAI)

Prohlcms can arise at any stage in this process: the
expert’s knowledge may he incomplete, inconsistent, or
even partly erroneous. Alternatively, accurate and com-
plete knowledge may not, bc adequately transferred to the
computer-based representation. The latter problem typically
occurs when an expert who does not, understand computers
works with a knowledge engineer who is unfamiliar with the
problem domain; misunderstandings that arise are often un-
recognized until performance errors occur. Finally, spelling
or syntax mistakes that are made when the knowledge-base
is entered into the computer arc a frequent source of errors.

Why an Automated Assistant for
Knowledge-base Debugging?

The knowledge base of an expert system is generally con-
struct,etl through collaboration between experts in the prob-
lcm domain and knowledge engineers. The domain experts
formulate their knowledge and the knowledge engineers en-
code this knowledge for use by the system This difficult and
time-consuming task can be facilitated by a program which:

1 checks for inconsistencies and gaps in t,he knowledge
bnsc;

2. helps the experts and knowledge engineers to com-
municate with each other;

3 provides a clear and understandable display of the
knowledge as the system will use it

An automated assistant for the system builders could rapidly
identify problems in the system’s knowledge basa and pos-
sibly allow the experts to discover gaps in their knowledge
or errors in their reasoning.

Knowledge-Base Debugging

Earlier work. One goal of the TEIRESIAS program
(Davis, 1976) was to automate knowledge-base debugging
in the context of the MYCIN infectious disease consultation
system (Shortliffc, 1976). TEIRESIAS allowed an expert to
judge whct,her MYCXN’s diagnosis was correct, to track down
the errors in the knowledge base that Icd to incorrect con-
clusions, and to alter, delete or add rules in order to fix
these errors. The knowledge transfer occurred in the set-
t,ing of a problem-solving session; no formal assessment of
rules occurred at the time they were initially entered into
the knowledge base

In the EMYCIN system for building knowledge-based
consultants (vanMelle, 1980), the knowledge-acquisition pro-
gram fixes spelling errors, checks that rules are semantically
an d syntactically correct, and points out potential erroneous
interactions among rules In addition, EMYCXN’s knowledgc-
base debugging facility includes the following options:

I a trace of the system’s “reasoning process” during a
consultation;

2. an interactive mechanism for reviewing and correct-
ing the system’s conclusions (a generalization of the
TEIRESIAS program);

3 an interface to the system’s explanation facility to
produce automatically, at, the end of a consultation,
explanations of how the system reached its result,s;

4 a verification mechanism which compares the sys-
tem’s results at, the end of a consult, with the stored
“correct” results for the case that were saved from
a previous interaction with the TEIRESIAS-like op-
tion. The comparison includes explanations of why
the system made its incorrect conclusions and why it
did not, make the correct ones.

Systematic checking of a knowledge base. The
knowledge-base debugging tools mentioned above allow a
system builder to identify problems with the system’s know-
ledge base by observing errors in its performance on test
cases. While thorough testing is an essential part, of verify-
ing the consistency and completeness of a knowledge base,
it is rarely possible to guarantee that a knowledge-base is
completely debugged, even after hundreds of test runs.

It is not always possible to test a growing knowledge base
by running sample cases. TEIRESIAS was developed aft,er
the MYCIN system was fully functional and had an extensive
rule set. EMYCXN is specifically designed for the incremcnt,al
growth of a knowledge base by allowing the systnm builder to
rmi consultations even when only a skeletal knowledge base
has been defined. The task of building an EMYCIN system is
simply to encode and add the knowledge. In contrast, build-
ing a new expert system typically starts with the selection
of knowledge representation formalisms and the design of a
program to use the knowledge. Only when this had hrcrl

done is it possible to encode the knowledge and to write
the program. The system may not be ready to run tests,
even on simple cases, until the entire knowledge base is en-
coded. When an expert system is developed in this manner,
it would be convenient if system builders could run a prelimi-
nary check on the knowledge base before the full reasoning
mechanism is functioning and without gathering a.ct,ual data
for a test run.

Knowledge-base testing tools, t,herefore, can be aug-
mented by a program which systematically chrcks a know-
ledge base for completeness and consist,cncy This checking
can he done during the system’s development, even without
a fully functioning reasoning mechanism.

Debugging a rule-based system

Logical Checks for Consistency. When knowledge
is represented in production rules, inconsistencies in the
knowledge base appear as:

conflict: t,wo rules succeed in the same situation but with
conflicting results.

redundancy: two rules succeed in the same situation and
have the same result,s.

THE Al MAGAZINE Fall 198‘2 17

subsumption: two rules have the same results, but one
contains additional r&rictions on the situations in which it
will succeed. Whenever the more restrictive rule succeeds,
the less restrictive rule also succeeds, resulting in redun-
dancy.

Rule-Checking in ONCOCIN

Description of ONCOCIN. ONCOCIN is a rule-based
consult,ation system to advise physicians at Stanford’s On-
cology Day Care C:enter on the management of patients who
are on experimental treatment protocols. These protocols
serve to ensure that data from patients on various treat-
ment regimens can be comparcd to eva.luate the success of
therapy and to assess the relative elrectiveness of alternativr
regimens. A protocol specifics when the patient should visit,
the clinic, what chemotherapy and/or radiation therapy the
patient should receive on each visit, when labora.tory tests
should be performed, and under what circumstances and in
what ways the recommended course of therapy should bc
modified.

Conflict, redundancy and subsumption are defined above
as logical conditions. These conditions can be detected if syn-
tax allows one to examine two rules and determine whether
situations exist in which both can succeed, and whether the
results of applying the two rules are the same, conflicting, or
unrelat,ed

Logical Checks for Completeness Incompleteness
of the knowledge base is the result of:

missing rules: a situation exists in which a particular
result is required, but no rule can succeed in that situation
to produce the desired result.

Missing rules can be detected logica.lly if it is possible to
enumcratc all circumstances in which a given decision should
be made or a given action should be taken.

Pragmatic Considerations. It is oft,en pragmatic con-
ditions, not purely logical ones, that, determine whether there
are true inconsistencies in a knowledge base. The seman-
tics of the domain may modify syntactic analysis. Of the
three types of inconsistency described above, only conflict, is
guarant,eed to be a true error

In practice, logical redundancy may not cause problems.
In a system where the first successful rule is the only one to
succeed, a problem will arise only if one of two redundant
rules is revised or deleted while the other is left, uncha.ngcd.
On the other hand, in a system using a scoring mechanism
(such as certainty fact,ors in IXMYCIN systems), redundant
rules cause the same information t,o be counted twice, leading
to erroneous incrcascs in the weight of their conchlsion

A rule in ONCOCIN is a production with an n&on part
that concludes a &ue for some parameter on the basis ot
values of other parameters in t,he rule’s condztzon part. cur-
rently all parameter values can be determined with certainty;
there is no need to use weighted bclicf measures. When a rule
succeeds, its action parameter becomes known so no other
rules with the same action parameter will be tried.

Rules specify t,he context in which they apply Examples
of ONCOCIN contexts are drugs, chemotherapies (i.e., drug
combinations), and protocols. A rule which dctcrmines the
dose of a drug may he specific to the drug alone, or to
both the drug and the chemothera.py. In the latter case,
the context, of the rule would be the list of pairs of drug
and chemotherapy for which the rule is valid. At any t,ime
during a consultation, the current context reprcscnt,s the
particular drug, chemotherapy, and protocol currently under
consideration.

In order to determine the value of a parameter, the sys-
tem tries rules which conclude about, that parameter and
which apply in the current context. For example, Rule

In a set of rules that accumulate evidence for a particular
hypothesis, one rule which subsumes another may cause an
error by counting the same evidence twice Alternatively,
the expert might have purposely written t,he rules so that
the more restrictive one adds a little more weight to the
conclusion made by the less restrictive one.

75 shown below is invoked to determine the val;,e ‘of the
parameter “current attenuated dose” (point a), and when
the current context is a drug in the chemotherapy MOPP, or
a drug in the chemotherapy PAVe (point b).

RULE 75

An exhaustive syntactic approach for identifying missing
rules would assume that, there should be a rule which a.pplies
in each situation defined by all possible combinations of a
number of domain variables. Some of these combinations,
however, might not be meaningful. As with consistency,
checking for complct,eness generally requires some knowledge
of the problem domain.

Because of these pragmatic considerations, an automat,cd
rule-checker should display potent,ial errors and allow an ex-
pert t,o indicate which ones represent real problems. It should
prompt the expert for domain-specific information to explain
why apparent errors are, in fact, acceptable This informa-
tion should be represented so that it can be used to make
future checking more accurate.

[Action Parameter] (a) To determine the current. attenuated
dose

[Context] (b) for all drugs in MOW, or for all
drugs in PAVe:

[Condition] If: 1) This is the start, of the first. cycle
after a cycle was aborted, and

2) The blood colmts do not warrant
dose attenuation

[Action] Then: Conclude that the current
attenuated dose is 75 percent of
the previous dose

Certain rules for determining the value of a. parameter
serve special functions Some give a “definit,ional” value
in the specified context. These are called znrtzal rules and

18 THE AI MAGAZINE Fall 1982

are tried first. Other rules provide a (possibly context-
dependent) “default” or “usual” value in the event that no
other rule succeeded. These are called default rules and are
applied last. Rules which do not serve either of these special
functions are called normal rules. Concluding a parameter’s
value, then, consists of trying, in order, three groups of rules:
initial, then normal, then default. A rule’s classification tells
which of these three groups it belongs to.

A rule’s context, condition, action, and classification are
represented as properties of a LISP atom. The internal form
of rule 75 is shown below.

RULE 75

CONTEXT : ((MOPP DRUG) (PAVE DRUG))
CONDITION: (AND @IS POST.ABORT 1)

@IS NORMALCOUNTS YES))
ACTION: (CONCLUDEVALUE Amm~osE (PERCENTOF

75 (PREVIOUSDOSE))
CLASSIFICATION: NORMAL

The LISP functions that, are used in conditions or ac-
tions have templates indicating what role their arguments
play. For example, both $IS and CONCLTJDEVAL,UE take
a. parameter as their first argument and a value of that
parameter as t,heir second argument. Each function also
has a descrzptor representing its meaning. For example, the
descriptor of $IS shows that the function will succeed when
the parameter value of its first argument is equal to its second
argument.

Overview of the rule-checking program. A rule’s
context and condition together describe the situations in
which it applies. The templates and descriptors of rule func-
tions make it possible t,o determine the combination of values
of the condition parameters that, will allow a rule to succeed.
The rule’s context property shows the context(s) in which
the rule applies. The context and condition of two rules can
therefore be examined to determine if there are situations
in which both can succeed. If so, and the rules conclude
different values for the same parameter, they are in conflict.
If they conclude the same value for the same parameter, they
are redundant If they are the same except that one contains
extra condition clauses, then one subsumes the other.

These definitions of inconsistencies simplify the task of
checking the knowledge base. The rules can be partitioned
int,o disjoint sets, each of which concludes about the same
parameter in the same context. The resulting rule sets can be
checked independently. To check a set of rules, the program:

1. finds all parameters used in the conditions of these
rules;

a summary of any potential errors that were follnd
The rule checker assumes that there should be a rule
for each possible combination of values of condition
parameters; it hypothesizes missing rules based on
this assumption.’

ONCOCIN’s rule-checker dynamically examines a rule
set to determine which condition parameters are currently
used to conclude a given action parameter. These parameters
determine what columns should appear in the table for the
rule set. The program does not expect that each of the
parameters should be used in every rule in the set (as il-
lustrated in by rule 76 in the example below). In con-

trast, TEIRESLAS examined the “nearly complete” MYCIN
knowledge base and built static rule models showing (among
other things) which condition parameters were used (in
the existing knowledge base) to conclude a given action
parameter. When a new rule was added to MYCIN, it
was compared with the rule model for its action parameter.
TEIRESIAS proposed misszng clauses if some condition para-
meters in t,he model did not appear in the new rule

An example. ONCOCIN’s rule checking program can
check the entire rule base, or can interface with the system’s
knowledge acquisition program and check only those rules
affected by recent changes to the knowledge base. This
lat,ter mode is illustrated by the example in Fig.l; the system
builder is trying to determine whether the recent addition of
one rule and deletion of anot,her have introduced errors.

The rules checked in the example conclude the current
attenuated dose for the drug cytoxan in the chemotherapy
CIT. There are three condit,ion parameters commonly used
in those rules. Of t,hese, NORMALCOUNTS takes “YES” or “NO”
as its value. CYCLE and SIGXRT t,ake integer values. The only
value of CYCLE or SIGXRT which was mentioned cxplicit,ly in
any rule is “1”; therefore, the table has rows for values “1”
and “OTHER” (i.e., other than 1).

The table shows that rule 80 concludes that “attenuated
dose” should have the va.lue “250 milligrams per square
meter” when the blood counts do not warrant dose attcnua-
tion (NORMALCOUNTS=YES) , the chemotherapy cycle number
is 1 (CYCLE=i), and this is the first, cycle after significant
radiation (SIGXRT=I). This combination of values of the
condition parameters is labeled Cl.

Rule 76 can succeed in the same situation (Cl) as rule 80,
but it concludes a different dose. These rules do not conflict,
however, because rule 76 is a “default” rule which will be in-
voked only if all “normal” rules (including rule 80) fail. Note

‘Because a parameter’s valne is always known with certainty and the
possible values are rnllt,&ly exclusive, the different, combinations of
condit,ion parameter values are disjoint If a nlle corresponding t.0 one
combination succeeds, rules COI I esponding to other combinations in the

2 makes a t,able, displaying all possible combinations
of condition parameter values and the correspond-
ing values which will be concluded for the action

same table will fail This would not be true in an EMYClIN consllltation
system in which the values of some parameters can be concluded with
less than complete certainty In such cases, the combinations in a given
table wollld not necessarily be disioint

parameter I;
2We plan to add a mechanism to acquire additional information aboot

3 checks the tables for conflict, redundancy, subsump- constraint relationships among parameters and to use this information
tion, and missing rules; then displays the table with to omit semantically impossible combinations from subseqllent tables

TIIE AI MAGhZINlS Fall 1982 19

Rule set: 667 600 82 80 69 67 76
Context: the drug CYTOXAN in the chemotherapy CVP

Action Parameter: the current attenuated dose

Condition Parameters:
NORMALCOUNTS - “Yes” if the blood counts do not warrant dose attenuation
CYCLE - the current chemotherapy cycle number
SIGXRT - the number of cycles since significant radiation

Values too long to appear in the Value column:
Vl - the previous dose advanced by 50 mg/m”
V2 ~ 250 mg/m2 attenuated by the minimum count attenuation
V3 ~ the minimum of 250 mg/m2 and the previous dose
V4 - the minimum of 250 mg/m2 and the previous dose attenuated

by the minimum count attenuation

Evaluation Rule Value NORMALCOUNTS CYCLE SIGXRT Combinatio
80 250mg/m2 YES Cl
76 (D) Vl YES (:, (:I Cl

R 667 v2 NO 1 1 c2
R 67 v2 NO c2

76 (D) VI YES (:, (OTiER) C3
M NO 1 OTHER c4

82 v3 YES OTHER c5
76 (D) Vl YES (OTHER) (:, c5

C 600 v3 NO OTHER 1 C6
C 69 v4 NO OTHER C6

76 (D) Vl YES (OTHER) (OTkER) C7
M NO OTHER OTHER C8

Summary of Comparison

Conflict exists in combination(s): C6 (RULE600 RULE069)
Redundancy exists in combination(s): C2 (RULE667 RULE067)

Missing rules are in combination(s): C4, C8

Notes

Evaluation:
M-Missing; C-Conflict; R-Redundant.

Rules:
Default rules are indicated by (D).

Values of Condition Parameters:

A value in parentheses indicates that the parameter is not explicitly used in the rule,
but the rule will succeed when parameter has this value.

Figure 1. An example of the rule-checking program

In

that NORMALCOUNTS is the only condition parameter which attenuated by the minimum count attenuation).
appears explicitly in rule 76, as indicated by the parentheses Rule 600 is in conflict with rule 69 because both use
around values of the other two parameters. Rule 76 will combination C6, but they conclude different values (and both
succeed in all combination which include NORMALCOUNTS=YES are categorized as “normal” rules).
(namely Cl, C3, C5, and C7). No rules exist for combinations C4 and C8, so the pro-

Rules 667 and 67 are redundant because both use com- gram hypothesizes that rules are missing.
bination C2 to conclude the value labled V2 (250 mg/m2 The system builder can enter ONCOCIN’s knowledge

20 THE AI MAGAZINE Fall 1982

Missing rule corresponding to combination C4:

To determine the current attenuated dose for Cytoxan in CVP:
If: 1) The blood counts do warrant dose

attenuation,
2) The current chemotherapy cycle

number is 1, and
3) This is not the start of the first

cycle after significant radiation
Then: Conclude that the current attenuated dose is . . .
Note that no value is given for the action parameter; this could be
filled in by the system builder if the rule looked appropriate for
addition to the knowledge base

Figure 2 Proposed Missing Rule (English Translation)

Rule set: 33 24
Context: the drug DTIC in the chemotherapy ABVD
Action Parameter: the dose attenuation due to low WBC
Default value: 100

Evaluation Value WBC Combination
Rule (percentage) (in thousands)

015235
33 25 . . . ****0..... Cl
24 50 ***0... c2

Summary of Comparison
No problems were found.

NOTES

*‘s appear beneath values included by the rule
O’s appear beneath upper lower bounds that are not included acquisition program to correct any of the errors found by the

rule-checker. A missing rule can be displayed in either LISP
or English (Fig. 2), and added to the system’s knowledge I

base after the expert has provided a value for its action
parameter.

E g., Rule 33 applies when 1 5 5 WBC < 2 0

If a summary table is too big to display, it is divided
into a number of subtables by assigning constant values to
some of the condit,ion parameters. If the conditions involve
ranges of numeric values, the table will displays these ranges
graphically as illustrated in Fig. 3.

Figure 3 A Table of Rules with Ranges of Numerical Values

gineer in ensuring the consistency and completeness of the
rule set in the ONCOCIN rule-based consultation system.
The program has already proved useful in development of
that system. The program’s design is general so that it could
be adapted to other rule-based systems.

Effects of the program. The rule checking program
described in this paper was developed at the same time that
ONCOCIN’s knowledge base was being built. During this
time, periodic runs of the rule checker suggested missing
rules that had been overlooked by the oncology expert. It
also detected conflicting and redundant rules; these generally
arose because a rule had the incorrect context and therefore
appeared in the wrong table.

Acknowledgments

A number of inconsistencies in the use of domain con-
cepts were revealed by the rule checker. For example, on
one occasion the program proposed a missing rule for a
meaningless combination of condition parameter values. In
discussing the domain knowledge that expressed the inter-
relationship among the values, it became clear that a num-
ber of individual yes/no valued parameters really could be
represented more logically as different values for the same
parameter.

During the development of the program described here,
the authors received encouragement and useful suggestions
from other members of the ONCOCIN research project. We
would like to thank all of those who helped to make the
program possible. We are especially grateful to Craig Tovey,
Miriam Bischoff, and Bruce Buchanan for numerous valuable
comments on earlier versions of this paper.

References

The knowledge engineers and oncology experts alike
have found the rule checker’s tabular display of rule sets
much easier to interpret than a rule-by-rule display. Having
tabular summaries of related rules has facilitated the task of
modifying the knowledge base.

Davis, R. 1976 Applications of meta-level knowledge to the construc-
tion, maintenance, and use of large knowledge bases. Doctoral dis-
sertation, Computer Science Department, Stanford University.

Shortliffe, E.H. 1976. Computer-based medical consultations: MYCIN.
New York: Elsevier/North Holland.

Concluding Remarks

Shortliffe, E.H., Scott, A.C., Bischoff, M.B., Campbell, A.B., van
Melle, W., and Jacobs, C.D. 1981. ONCOCIN: An expert
system for oncology protocol management. IJCAI 7, 876-881.

van Melle, W 1980. A Domain-independent system that aids in con-
structing knowledge-based consultation programs. Doctoral disser-
tation, Computer Science Department, Stanford University.

The program we have described assists a knowledge en-

THE Al MAGAZINE Fall 1982 21

