
The MiniZinc Challenge compares different solvers on a
set of MiniZinc models and problems instances. MiniZ-
inc1 (Nethercote et al. 2007) was our response to the

call for a standard constraint-programming modeling lan-
guage. MiniZinc is high level enough to express most combi-
natorial optimization problems easily and in a largely solver-
independent way; for example, it supports sets, arrays, and
user-defined predicates, some overloading, and some auto-
matic coercions. However, MiniZinc is low level enough that
it can be mapped easily onto many solvers. For example, it is
first order, and it only supports decision variable types that
are supported by most existing constraint-programming
solvers: integers, floats, Booleans, and sets of integers. MiniZ-
inc also allows separation of a model from its data; provides
a library containing declarative definitions of many global
constraints; and has a system of annotations that allows non-
declarative information (such as search strategies) and solver-
specific information (such as variable representations) to be
layered on top of declarative models.
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n MiniZinc is a solver-agnostic model-
ing language for defining and solving
combinatorial satisfaction and opti-
mization problems. MiniZinc provides a
solver-independent modeling language
that is now supported by constraint-pro-
gramming solvers, mixed integer pro-
gramming solvers, SAT and SAT modu-
lo theory solvers, and hybrid solvers.
Every year since 2008 we have run the
MiniZinc Challenge, which compares
and contrasts the different strengths of
different solvers and solving technolo-
gies on a set of MiniZinc models. Here
we report on what we have learned from
running the competition for 6 years.



A MiniZinc Example
Lets examine the simple MiniZinc model shown in
figure 1, which defines a job shop scheduling prob-
lem where we have n jobs each made up of m tasks
that all have to be processed on o machines during
time 0..span. Each task ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m has an as-
sociated duration dij, and a machine mcij that it must
be processed on. Each of the tasks for each job must
be performed in order, and no machine can be pro-
cessing two tasks at once. The aim is to decide the
time Sij that each task ij starts in order to minimize
the time to finish processing all the tasks.

The first part of the model of figure 1 (lines 1–4)
defines the size parameters of the problem: n, m, o,
and span. The next part of the model (lines 6–8) de-
fines some sets of indices that will be useful in defin-
ing the model: Job is the indices of the different jobs,
similarly Task is the indices for the tasks of each job,
and Mach is the set of different machines. These are
dependent parameters.

Next, line 10 declares the duration input data ar-
ray, so duration dij of task ij will be represented by
d[i,j]. Similarly line 11 declares the machine mc[i,j] for
each task ij. Note that while the durations could be

any integer amount, the machine for each task must
be one of Mach.

Line 13 is the declaration of the decision variables
that will define the answer to the problem. The array
element s[i,j] is the start time for the task ij. Start
times are restricted to be from 0 to span. Note the
keyword var that indicates that these are the (math-
ematical) variables of the problem.

Lines 15–16 impose the first constraint of the
problem, each task in the same job must occur after
its predecessor. This is an example of a generator
comprehension. The forall generates a conjunction
of constraints, one for each i ∈ 1..n and j ∈ 1..m – 1
enforcing that sij + dij, that is the end time of task ij,
is before the start time of the next task sij+1.

Line 18 includes another MiniZinc model file,
unary.mzn; in this case it is a library file that defines
a global unary resource constraint. The next con-
straint (lines 19–23) is the most complex. It is a con-
junction of constraints for k ∈ 1..o. Each constraint is
an instance of the global constraint unary whose def-
inition was included on line 18. The resource con-
straint unary(q, r) takes an array of l, start times q and
l, and durations r and enforces that no two tasks
overlap, that is qi + ri ≤ qj ⋁ qj + rj ≤ qi, ∀1 ≤ i < j ≤ l. In
order to build the correct unary constraints for this
problem we use array comprehensions. On lines 22–
23 we build the array of durations for all the tasks
that make use of machine k. We build the corre-
sponding array of start time variables on the two
lines before. These arrays are the arguments to the
unary global constraint.

The next part of the model defines the objective
function. In this case we have introduced a new vari-
able obj to store its value, although this is not neces-
sary — we could have simply written the max ex-
pression on lines 25–26 instead of obj on line 27. The
objective variable holds the latest end time of any
task, which is the maximum end time of any of the
last tasks (mth tasks) of each job, since they must oc-
cur after the other tasks for the same job. Line 27 de-
clares we are minimizing obj. Finally the last line de-
fines what to do with solutions; here we just print out
the start times of the solution followed by a new line.

The model by itself cannot be solved; in order to
specify an actual problem we must give the data for
the model. This is typically specified in a separate da-
ta file. An example data file for the job shop sched-
uling model is shown in figure 2. The example has
two jobs, each of three tasks and two machines. The
two-dimensional arrays of durations and machine
choices are declared using [ | to start, commas (,) to
separate elements of a row, and vertical bars (|) to
separate rows, with |] to finish.

One can execute the model with the data from the
command line, asking to see all solutions as they are
found, as shown in figure 3.

Figure 3 shows the start times for the two solutions
in the order they are found. The line of dashes indi-
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1 int: n;                % no of jobs 
2 int: m;                % task per job 
3 int: o;                % no of machines 
4 int: span;             % max end time 
5  
6 set of int: Job = 1..n; 
7 set of int: Task = 1..m;  
8 set of int: Mach = 1..o; 
9  
10 array[Job,Task] of int: d;   % durations 
11 array[Job,Task] of Mach: mc; % machines 
12  
13 array[Job,Task] of var 0..span: s; 
14  
15 constraint forall(i in Job, j in 1..m-1) 
16                  (s[i,j] + d[i,j] <= s[i,j+1]); 
17  
17 include "unary.mzn"; 
18 constraint forall(k in Mach) 
20      (unary([s[i,j] | i in Job, j in Task  
21                           where mc[i,j] = k],  
22                 [d[i,j] | i in Job, j in Task 
23                           where mc[i,j] = k])); 
24  
25 var int: obj = max([s[i,m] + d[i,m] 
26                         | i in Job]); 
27 solve minimize obj; 
28  
29 output [show(s),"\n"]; 
 

Figure 1. A MiniZinc Model (js.mzn) for Job Shop Scheduling.



cates a solution and acts as a separator, the line of
equals indicates that the last solution is an optimal
solution.

We now describe the aims and practical issues of
running the MiniZinc Challenge.

Aims of the MiniZinc Challenge
The principle aim of the MiniZinc Challenge is, un-
surprisingly, to compare the state of the art among
constraint-programming (CP) solvers. Over the years
this has broadened. Since MiniZinc is solver agnos-
tic, we can use it to compare any combinatorial opti-
mization technology, not just constraint program-
ming. Beyond this principle aim there are other
important motivations in running the challenge: to
collect a wide variety of combinatorial optimization
benchmarks and instances; to encourage constraint-
programming solvers to include a wide variety of ef-
ficient global propagators within their system; and to
create a de facto standard for expressing combinato-
rial optimization problems. MiniZinc and all its pro-
cessing tools are developed as open source and dis-
tributed using a BSD-style license.

Selecting Benchmark Problems
Every MiniZinc Challenge has required the solvers to
solve 100 problem instances each within a 15-minute
time limit. One key driver throughout the life of the
MiniZinc Challenge has been to ensure that each
year’s challenge uses new problems. There is no way
to test all the features that exist in constraint-pro-
gramming solvers, let alone other solving technolo-
gies, using 100 instances. When selecting which
models to use we try to cover a number of spectra:

Global Constraints: We try to include models that make
use of a reasonable set of global constraints, say 5–10.

Problem Nature: We try to include some problems that
are from the real world, some problems that are pure-
ly combinatorial in nature, and some reasonably arti-
ficial problems, for example, puzzles.

Optimization/Satisfaction: We include some satisfaction
problems each year, but the focus is on optimization
problems since they are more interesting.

Technology Bias: We try to have some models that look
good for other technologies, that is, they seem likely
to be good for MIP or SAT solvers.

We then select instances for each model trying to
avoid the case where instances are either all too hard
or too easy and hence do not differentiate solvers.

Different Categories in the Challenge
The challenge has run a number of different cate-
gories, which have been slowly growing over the
years, including fixed, free, parallel, and open cate-
gories. In the fixed category each solver must follow
a given search strategy. This category is typically on-
ly supported by constraint-programming solvers,
since they are designed to support user-specified
search. In the free category, a solver is free to use any
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search strategy it desires, although it is still passed the
fixed search strategy to make use of if it so desires.
This is the broadest category, supported by almost all
entries. In the parallel category, the solver is free to
use any search, and is run on a multicore processor
with a 15-minute wall-clock time limit. The first
three categories are restricted to single engine solvers,
while the new open search category allows multiple
distinct solving engines.

Scoring the Challenge
Most of the other solver competitions tackle satisfia-
bility problems, and the scoring is principally how
many problem instances can be shown to be satisfi-
able or unsatisfiable in a given time limit. This is in-
adequate for comparing solvers on optimization
problems.

Our scoring assigns one point for each pair of
solvers and each instance. If one solver is better than
the other (proves optimality faster, or finds a better
solution) on the instance it gets the point, if the
solvers are indistinguishable (both find the same
quality solution), they each get half a point. In the
last iteration of the competition we updated the scor-
ing scheme slightly. If both solvers prove optimality,
they split the point in the reverse ratio of time taken.
This helps to differentiate cases in which one solver

1 n = 2; 
2 m = 3; 
3 o = 2; 
4 span = 100; 
5  
6 d = [| 3, 2, 4 | 4, 1, 3 |]; 
7 mc = [| 1, 2, 1 | 2, 1, 1 |]; 
 

Figure 2. Data (jsd.dzn) for the Job Shop Scheduling Model.

minizinc js.mzn jsd.dzn --all-solutions 
 
which might print 
 
 [0, 3, 5, 5, 9, 10] \\ 
---------- \\{} 
[0, 4, 8, 0, 4, 5] \\ 
---------- \\ 
========== 
 

Figure 3. Executing the Model with Data from the Command Line.



is only slightly faster than another from cases in
which it is orders of magnitude faster.

Lessons of the Challenge
Entrants over the years to the MiniZinc Challenge in-
clude constraint-programming solvers, optimization
research group, mixed-integer programming solvers,
SAT and SAT modulo theory solvers, and hybrid
solvers:

Constraint Programming Solvers:
Gecode,2 ECLiPSe (Apt and Wallace 2007), SICStus
Prolog,3 JaCoP,4 BProlog,5 Choco (Laburthe 2000),
Mistral,6 OR-tools,7 gecoxicals, picat,8 and Opturion
CPX,9 as well as CP solvers developed by the NICTA
Optimization Research Group: g12-fd, g12-lazyfd (Fey-
dy and Stuckey 2009), and Chuffed.

Mixed Integer Programming Solvers:
SCIP,10 as well as interfaces to MIP solvers developed
by the Optimization research group: CPLEX,11 Guro-
bi,12 and CBC.13

SAT and SAT Modulo Theory Solvers:
fzntini (Huang 2008), BEE (Metodi, Codish, and Stuck-
ey 2013), fzn2smt (Bofill et al. 2012), minisatid.14

Hybrid Solvers:
izplus.

A list of all the medal winners from 2008–2013 is
shown in table 1.

After running the competition for 6 years we have
certainly learned many things. Some things were
simply lessons about how to run the competition. At
the start of running the challenge we included sys-
tem stress benchmarks designed to stress a particular
part of the solver. These included stressing search,
and propagation. These are interesting for CP solver
developers but it’s not clear what they measure for
other solving technologies, and they can also end up
simply testing whether some feature, for example,
learning, is implemented. We removed these kind of
benchmarks after the second competition.

In 2010, the first time we ran the parallel category,
we found that comparing the results of the free and
parallel categories demonstrated the lack of robust-
ness of the purse-based scoring system15 we used —
the best solver in the free category did even better in
the parallel results but ended up being equalled by
the second solver in the free category (which did not
run in parallel). This was the impetus to move to a
simpler scoring approach.

In 2013, we added the new category open to cater
for our first portfolio solver entrant. Unfortunately
some bugs in the entry that were not picked up in the
initial testing meant that it did not perform at all
well, so the open category was effectively identical to
the parallel category. We hope to have meaningful re-
sults in this category (and at least two portfolio en-
trants) in 2014.

We certainly learned more about solver-agnostic
combinatorial modeling and helped redefine MiniZ-

inc by running the challenge. The number of global
constraints supported by MiniZinc has grown steadi-
ly over the life of the challenge from an initial 10 or
so to around 100 today. Many of these have never ap-
peared in a challenge benchmark, and the bench-
marks are dominated by just a few, such as alldiffer-
ent and cumulative. In addition, the language
MiniZinc has been pretty stable over its lifetime; ma-
jor changes were better handling of output, which
was partly driven by the challenge.

The language FlatZinc, which is the actual input
language read by the solvers, has also been highly sta-
ble. This is good because it means solver writers are
not having to constantly change their input han-
dling. The tools for converting from MiniZinc to
FlatZinc, have become more robust and flexible over
the life of the challenge.

As a side effect of the challenge we have collected
more than 70 benchmarks, each with usually at least
20 instances each, and some with 100s of instances.
It is pleasing that these benchmark problems have
been used in a number of publications, including by
solvers that do not support MiniZinc.

The more interesting lessons are perhaps what we
learned about the solving technology.We discuss the
possible lessons we can draw from competition re-
sults in the following paragraphs.

First, constraint-programming solvers typically
maintain state by trailing, that is, recording changes
in state so that they can be undone. Another ap-
proach is copying, which copies state every time a
new state is required. Many people in the CP com-
munity judged copying as uncompetitive, but
Gecode, a copying-based solver, won every gold
medal in every challenge from 2008–2012. Clearly
copying is competitive.

Second, the combination of constraint-program-
ming propagation with learning, so called lazy-clause
generation (Ohrimenko, Stuckey, and Codish 2009),
leads to solvers that are remarkably effective. Such
solvers consistently performed well over the chal-
lenge although they were excluded from medals since
they were constructed by our group until the external
solver Opturion/CPX was entered in 2013.

Third, one of the pleasing lessons from the chal-
lenge is that technology-agnostic competition is pos-
sible. The SAT modulo theory–based solver fzn2smt
(Nieuwenhuis, Oliveras, and Tinelli 2006) has per-
formed very well in the challenge. Similarly the MIP
solvers Cplex and Gurobi dominate on various prob-
lems but are also reasonably competitive overall in
the challenge.

Our final lesson should be highly encouraging for
the community. The solver izplus was created by an
outsider to the community, using a hybrid of com-
plete and local search, and won bronze medals in
2012 and 2013. This shows there is plenty still to
learn in building solver technology, and the barrier
to entry for new ideas is not prohibitively high.
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Year Category Medal Winner 

2008 Fixed Gold Gecode 

  Silver ECLiPse Prolog 

2009 Fixed Gold Gecode 

  Silver Sicstus Prolog 

 Free Gold Gecode 

  Silver Sicstus Prolog 

2010 Fixed Gold Gecode 

  Silver JaCoP 

 Free Gold Gecode 

  Silver fzn2smt 

  Bronze JaCoP 

 Parallel Gold (=) Gecode 

  Gold (=) fzn2smt 

  Bronze JaCoP 

2011 Fixed Gold Gecode 

  Silver JaCoP 

  Bronze B-Prolog 

 Free Gold Gecode 

  Silver fzn2smt 

  Bronze JaCoP 

 Parallel Gold Gecode 

  Silver fzn2smt 

  Bronze JaCoP 

2012 Fixed Gold Gecode 

  Silver JaCoP 

  Bronze OR-Tools 

 Free Gold Gecode 

  Silver fzn2smt 

  Bronze izplus 

 Parallel Gold Gecode 

  Silver fzn2smt 

  Bronze izplus 

2013 Fixed Gold Opturion/CPX 

  Silver OR-Tools 

  Bronze Gecode 

 Free Gold Opturion/CPX 

  Silver OR-Tools 

  Bronze izplus 

 Parallel Gold OR-Tools 

  Silver Choco 

  Bronze Opturion/CPX 

 Open Gold OR-Tools 

  Silver Choco 

  Bronze Opturion/CPX 

Table 1. All Medal Winners in the MiniZinc Challenge 2008–2013.



The Future of the 
MiniZinc Challenge

Comparing constraint-programming
systems is a much harder task than
comparing other kinds of solvers, be-
cause of the wide variety of features in
a constraint-programming system.
MiniZinc overcomes some of the ob-
stacles by handling global constraints
and defining a simple but expressive
search language. Still, any comparison
of CP systems is by definition incom-
plete, and indeed even the slowest
solver in the competition is capable of
creating highly effective commercial
solutions to complex real-world com-
binatorial optimization problems. We
believe the MiniZinc Challenge is im-
portant. We are excited by the poten-
tial of MiniZinc to unify the diverse re-
search fields interested in com –
binatorial optimization and to provide
a valuable tool for those who are tack-
ling these problems.
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Notes
1. See www.minizinc.org.

2. See www.gecode.org.

3. See www.sics.se/sisctus.

4. See jacop.osolpro.com.

5. See www.probp.com.

6. See homepages.laas.fr/ehebrard/Soft-
ware.html.

7. See code.google.com/p/or-tools.

8. See picat-lang.org.

9. See www.opturion.com/cpx.html.

10. See scip.zib.de

11. See www-01.ibm.com/software/com-
merce/optimization/cplex-optimizer.

12. See www.gurobi.com.

13. See projects.coin-or.org/Cbc.

14. See dtai.cs.kuleuven.be/krr/software/
minisatid.

15. See the unpublished draft of Purse-Based
Scoring for Comparison of Exponential-
Time Programs by A. Van Gelder, D. Le
Berre, A. Biere, O. Kullmann, and L. Simon
at users.soe.ucsc.edu/~avg/purse-poster.pdf.
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