
Each semester, many people visit the MIT Media Lab: visit-
ing faculty and students, press and nonprofit leaders, and
representatives of the companies that sponsor our

research. These visitors find a building full of more than 300
active research projects and more than 20 research groups. It’s
difficult to figure out which research projects one should visit,
and how the projects and groups are interrelated and relate to
the lab’s dominant research themes. This problem is especially
notable during “member’s week,” when hundreds of visitors
come to the lab for a week of talks and demos. Even if one vis-
its during member’s week with a plan and agenda, it can be dif-
ficult to remember and manage all of the interactions and proj-
ects one has had during the week. “Visiting the Media Lab is like
drinking from a firehose for those of us visiting,” a sponsor com-
mented during our user survey. 

We have built the Glass Infrastructure (GI)—a new type of vis-
itor information kiosk for spaces rich in interesting artifacts,
such as stores, museums, and research laboratories. We take the
novel perspective that an information kiosk should preserve key
aspects of exploring collections of artifacts in physical space,
such as object permanence and social engagement, while also
giving users access to alternative spatial organizations of those
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n Most organizations have a wealth of knowl-
edge about themselves available online, but lit-
tle for a visitor to interact with on-site. At the
MIT Media Lab, we have designed and
deployed a novel intelligent signage system, the
Glass Infrastructure (GI), that enables small
groups of users to interact physically through a
touch-screen display with this data and to dis-
cover the latent connections between people,
projects, and ideas. The displays are built on an
adaptive, unsupervised model of the organiza-
tion and its relationships developed using
dimensionality reduction and commonsense
knowledge that automatically classifies and
organizes the information. 

The GI is currently in daily use at the lab.
We discuss the AI model’s development, the
integration of AI into a human-computer inter-
action (HCI) interface, and the use of the GI
during the lab’s peak visitor periods. We show
that the GI is used repeatedly by lab visitors and
provides a window into the workings of the
organization. 



artifacts. In the particular context of our research
lab—where physical space is structured around
organizational groupings of researchers—we want-
ed to let visitors simultaneously explore research in
a thematically organized space, to help them dis-
cover work related to their interests across research
groups. Kiosks are context dependent, so the infor-
mation on display at each kiosk relates to the loca-
tion of the kiosk and the user or users standing in
front of the kiosk. 

The Glass Infrastructure allows visitors to cata-
logue, share, and organize the projects they’ve vis-
ited as they travel through the lab. It organizes
these projects without input from the students
who upload the material and keeps the categoriza-
tion up to date as the lab’s areas of focus change. It
helps users share projects they have visited and rec-
ommends projects based on previous interests. 

The main contribution of this article is an AI
approach to automatically computing the struc-
ture of a thematically organized map of artifacts,
using only short descriptions of the artifacts that
are likely already available. This map is then used
to discover the evolving relationships among the
artifacts, their creators, the research ideas, and the
visitors. This approach eliminates a key obstacle to
providing visitors with a current and coherent the-
matic interface to artifacts: the difficult and often
contentious human process of organizing the arti-
facts thematically. This is particularly true in a con-
text such as our research lab, where new projects
may be added every day, and the ideas that con-
nect the projects are themselves emerging, fading,
and shifting. 

Another important contribution is a collection
of design decisions that harmonize the navigation
of a space of artifacts with one’s fingers on a large
touch-screen kiosk with navigating with one’s feet
in a physical space. In part, we were motivated by
the new building designed for our research lab that
we moved into in 2010. The new Media Lab build-
ing was designed around the principles of visibili-
ty and open space. Much of the building is made of
glass that lets one observe physically neighboring
research groups while visiting one particular
group. The building drove us to want to help visi-
tors to also see research in the conceptual neigh-
borhood of what they were already exploring by
being able to see so much of the building’s activity
from any one location in the building. 

System Description 
The Glass Infrastructure is currently deployed on
30 screens throughout the MIT Media Lab, with
each location strategically chosen to be within
proximity of one or more lab spaces. The research
groups that occupy a particular lab space are dis-
played as the default view on the corresponding

screen. This serves as both the entry point for the
user’s experience of the system and as a means for
the research groups to link their project collateral
to the physical space they inhabit. From the prox-
imal view, the user is able to shift focus to either a
global view of the lab, drill down into greater detail
of each research group, or direct the experience
based on concepts that interest them. Users
equipped with a radio-frequency identification
(RFID) tag are able to “favorite” projects to see their
conceptual overlap with other projects, see other
users who expressed interest in the same projects,
and review them after they leave the lab. 

Physical Components 
The Glass Infrastructure has several major physical
components: kiosks, RFID tags, existing databases,
and a server. Kiosks are the touch-screen displays
deployed throughout the lab that run the Glass
Infrastructure. A UI application called the Project
Browser is the central application of the Glass
Infrastructure and is running on the majority of
the screens. It displays the information and con-
nections between the projects in the lab. Kiosks
have an RFID reader that captures the identity of
visitors and lab members who pass by and interact
with the screens.  

Each lab member and visitor is issued an RFID
tag in their name badge with a unique identifier
the system uses to understand who is interacting
with it. 

Another major component is the collection of
existing databases that provide information about
projects and groups and the people associated with
those groups. Another system provides informa-
tion about people (lab members and visitors) who
interact with the system through their assigned
RFID tags. 

The Glass Infrastructure is powered by a server
that runs the back-end processes and that organiz-
es the information from the existing database and
feeds it to the Project Browsers on the kiosks. It also
collects and processes the data from the RFID tag
readers and records information about the usage of
the system. The physical system and information
flow is illustrated in figure 1. 

User Experience 
When a visitor arrives, she receives a badge with an
RFID identifier. When she approaches one of the
many touch-screens around the building, the sys-
tem recognizes her and prompts her to log in. She
is presented with a view of the lab relative to the
geographic location of the screen where she has
begun her engagement; a list of research groups
that occupy the surrounding space are presented as
buttons on the screen. 

Suppose she is deciding which project to view
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next. She would be able to zoom into a research
group to view the people and the projects that con-
stitute it. She picks a project she is interested in
and selects it. She is then able to see a video demo
of the project in action, alongside other related
projects in this group and throughout the lab, tak-
ing into account her location, interests, and cur-
rently selected project. The machine-learning sys-
tem clusters projects according to their semantic
connections with several predefined topic areas
that represent the major interest areas of lab visi-
tors. She becomes interested in a topic area and
chooses to browse other local projects in that top-
ic area. The topic area places the projects she has
seen before in context, helping her plan what to
see next. 

She can then “favorite” projects she is interested
in, and these favorites, or “charms” (as they are
referred to in the GI), are stored in a personal pro-
file she can access after the visit. Favorite projects
are demarcated with heart-shaped badges. 

When a second user approaches the screen and
logs in, that user’s favorites are also displayed, and
items that the two users have in common are high-
lighted by having their heart-shaped badges
stacked. Users are able to exchange favorites with
each other. One of the core innovations of this user
experience is that it is social; we have successfully
encouraged the sharing of a single screen, a space
historically reserved for solitary interaction. Figure
2 shows a screen detailing the Viral Communica-
tions research group, with two users logged in. 

During public events, we display a large leader-
board, or community mirror (Borovoy et al. 1998),
showing a series of interesting statistics about the
activity of the Glass Infrastructure including which
screens have the most activity, which projects are
the most popular, who has favorited the most proj-
ects, and a ticker that displays the social activity of
the system. When a user favorites a project, this is
reflected on the leaderboard counts. When a user
exchanges a favorite with another user, the activi-
ty feed is updated with a statement such as “Pol Y.
shared CitiCar with Boris K. at the BT Laboratory.” 

After leaving the Media Lab, the users are able to
log in to a “portfolio” through the Internet, where
they see a log of the projects they favorited and the
people they shared screens with. The users may
connect with the researchers whose projects inter-
ested them and the people they met while inter-
acting with the system. This living model of the lab
aids visitors in retaining more of the ideas they
encounter here. 

Technical Approach 
To create the Glass Infrastructure we needed a way
to model the relationships that make up the Media
Lab. In the lab there are relationships among proj-
ects, researchers, research groups, the lab’s main
directions, and ideas or concepts that inform a
project. Each of these connections is important in
building an accurate picture of the lab’s interac-
tions. We want to be able to build this space in a

Articles

SUMMER 2012   93

Normalized
Text Project

Browser

GI Server

PLDB

Other
Data

TF-IDF
Matrix

ConceptNet Luminoso
Model

RFID
Personalization

1 3

4

2

5

8

7

6

Figure 1. A System Diagram of the Information Flow in the Glass Infrastructure.

Edges are labeled for reference in the text.



dynamic and unsupervised manner. For this pur-
pose, we used the Media Lab’s abstracts as an exist-
ing base of text to create a semantic space to mod-
el the connections that make up the Media Lab.
We represent this text in a way that is easy for a
computer to understand in an automatic fashion

by focusing on the relationships between the
words and concepts in each abstract. Then we add
some world knowledge, in the form of common-
sense statements, to help in the text understand-
ing. The result combines this knowledge to form a
multidimensional space where concepts, people,
groups, and projects are all represented as vectors.
From that space we retrieve information relevant
to lab visitors—dynamically creating their pres-
ence in the vector space by creating a vector from
the projects they have chosen as favorites. We then
use the vector space to determine the relevance of
objects in the space to each other—determining
which projects are similar, which projects would be
good fits for a lab visitor, and which projects fit
which lab themes. Additionally, we have designed
a user interface that makes this system easy and
social to interact with. 

The following subections discuss our approach
to interface design, our methods for extracting
semantic information from the text base, and for
assessing similarity of user interests with that
knowledge. 

User Interface Design 
The interface design of the GI adroitly navigates
some challenging information-presentation sce-
narios. We are able to manage a dynamically shift-
ing display that rearranges a large amount of infor-
mation in response to where the screen is located
and who is interacting with it, in a clear and con-
sistent manner. The three key aspects of this design
include object permanence, interests drive percep-
tual salience, and social engagement. 

Object Permanence: Technological artifacts in a
museum or our lab space—even more than the
people who make and curate them—become the
key organizers of visitors’ understandings of our
lab. Therefore, the main elements in the GI user
experience are persistent representations of these
artifacts. Every view is a view onto “artifact
space”—there are no maps or organization charts
unless they are used to organize and show artifacts.
Furthermore, the representations of these artifacts
are designed to persist across the user experience
whenever possible. When a user is viewing the
projects in a particular group and clicks one of
them to see thematically related projects, ones that
are already in view simply move over into their
new arrangement. 

Interests Drive Perceptual Salience: Our interests
affect what we see (Egeth and Yantis 1997). When
we explore artifacts in physical space, our interests
make relevant properties of those artifacts seem
more salient, and this makes navigating the space
more manageable. In the flat world of the GI,
where small images are substituted for the artifacts
themselves, there is much less information to
guide user salience. Therefore, we explicitly intro-
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Figure 2. Two Users Logged into a Screen. 

The image shows the research group detail view with favorited projects indi-
cated by heart-shaped badges, in the “molecule” configuration clustered by
Open Mind Common Sense (OMCS). 



duced a means to call attention to artifacts related
to users’ expressed interests, called “charms.” Users
can charm artifacts they’re interested in, and these
charms persist across time (users wear RFID badges
that identify them to each screen, and allow their
charms to be saved and reloaded). In this way,
charming an artifact is similar to bookmarking or
favoriting. The key distinction is our ubiquitous
use of charms throughout the interface to call
attention to people, groups, ideas, and projects
related to users’ interests (somewhat similar to
Google’s +1 buttons).

Social Engagement: We know that visitors often
explore our laboratory in groups, and that they
learn a lot from each other. Therefore, we designed
the GI to also support social exploration. When
two people are in front of a screen, both their
charm sets display in a way that makes it immedi-
ately apparent what interests they have in com-

mon. They may then exchange charms to collabo-
ratively explore their common interests (figure 3). 

Besides welcoming, informing, and entertaining
visitors, we believe a place-based information sys-
tem also helps organizations with a common but
difficult problem: the siloing of information relat-
ed to the organization’s various subcomponents.
Frequently, people are unaware of what co-workers
are doing down the hall or across the building.1

Our system through its interaction design and data
model is designed to expose and encourage the
exploration of the links between people, what they
are doing, and the underlying ideas. 

Such a system needs to be flexible, responding
to changes in the lab’s research focuses and the dai-
ly addition of new content and projects, and it
should help the user to not be overwhelmed by the
large amounts of information and demos available
during their visit to the lab. Underlying the Glass
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Figure 3. A Student Shares Her Work with a Media Lab Sponsor Using the Glass Infrastructure. 



Infrastructure is a text-understanding system that
drives this interaction. Rather than rely solely on
the graphic design and position of the stations, we
combine this with an analytical process that
dynamically tailors the information to the ongo-
ing activities in the lab, as recognized from text
about those activities, and ultimately personalizes
the perspective presented to the people using the
system at any moment. We believe this is a novel
application of such techniques to open, public dis-
plays. In the following sections, we describe the
manner by which the data is processed, presented,
used, and altered. 

The core visual mechanism for handling the
changes in screen configuration is animated tran-
sitions that crystallize selected information and
keep the user’s gaze on known entities as the
remainder of the screen rearranges. For example,
the default state of a screen is a list of research
groups. Clicking the name of the research group
initiates a transition whereby the text of the but-
ton grows and moves to the top left of the screen
to become the header of the page. At all times the
text remains visible even as the rest of the screen
completely rearranges. Users are always aware of
what they clicked, and after following the text to
the top of the screen they can now take in the new-
ly arranged display. If users have favorited projects
that are part of the currently displayed research
group or are conceptually related to the projects
they are browsing, the icon of the project will tran-
sition from the user’s collection to the inline pres-
entation. Favorited projects are demarcated with a
heart-shaped badge. 

To support free exploration of all the projects in
the laboratory from macro, proximal, or interest-
based entry points we faced a daunting challenge
with respect to navigation. We needed the users to
always be aware of why they were seeing the cur-
rent screen configuration and how they could
return to something they had seen before. We
solved this problem by employing a “molecule”
metaphor for arranging the items onscreen. Proj-
ects within a research group are arranged around
the circumference of a circle representing the con-
cept by which they are all linked. Touching a proj-
ect focuses the screen around that project; the con-
tent on the screen will relate to that project. The
concept to which the project belongs and the oth-
er projects related to it by that concept also remain
on screen at all times, while those no longer rele-
vant fade out and new associations fade in. Transi-
tions always maintain elements that don’t change
onscreen and maintain the user’s gaze on the
selected element. A back button allows users to
retrace their steps, while selecting another project
continues the users’ exploration. 

The GI makes heavy use of hardware-accelerated
CSS3 animations to create an application-like

interface that runs within a WebKit browser. This
platform allows us to leverage the portability of
web standards while simultaneously developing a
pageless, smooth animation dependent interface. 

Building a Semantic Space from Text 
We can help users navigate the lab by recom-
mending nearby projects to visit based on projects
they’ve seen and favorited, tell visitors which proj-
ects are similar across the entire lab, and show
them how a project fits into a series of labwide ini-
tiatives. This requires building a semantic under-
standing of the relations between projects and user
interests. 

Inputs: Common Sense 
and Project Information 
The model behind the Glass Infrastructure must be
derived from material that the lab already uses and
maintains. As a result, we have chosen the Media
Lab’s Project List Database (PLDB) as the source of
our data. The PLDB’s central feature is an abstract-
length description of each project written by the
students, faculty, and staff involved in the project.
It also notes which researchers and groups are affil-
iated with each project. 

The information in the PLDB is primarily
unstructured natural language text, which presents
several issues for automatically extracting the rela-
tions among projects. In particular, researchers
have a strong propensity to refer to an object or
action by many different terms, and to describe the
same or similar problems using different terminol-
ogy or expressions (for example, “cell phone,”
“cell,” “phone,” “mobile phone,” “smart phone,”
“smartphone,” and “mobile device” are all terms
used in Media Lab abstracts to refer to the same
thing). As texts, the project descriptions also rely
on implicit background knowledge to communi-
cate meaning, which is available to the reader but
not necessarily to the machine. We will employ a
commonsense reasoning component to “fill in the
gaps.” 

A more traditional way of quickly processing
unstructured text would be the “bag of words”
approach, where each project is distilled to a list of
how frequently each word appears in the descrip-
tion, and projects are compared to each other in
that form. However, the PLDB data set is small,
only 325 active projects with only a paragraph
abstract each, and a bag of words approach would
fail to find many fundamental connections. 

We might also have employed tagging and clas-
sification to process text, but this would require
motivating the lab to maintain and create the tags
and to update the tags for existing projects. Addi-
tionally, handtagging would make it difficult to
change focus areas or maintain project entries for
students who have graduated. 
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Building a Semantic Space 
We process information in the PLDB using the
Open Mind Common Sense (OMCS) platform
(Havasi et al. 2009), which includes a representa-
tion of commonsense background knowledge
called ConceptNet, and an analysis tool for creat-
ing and exploring semantic spaces from textual
information, called Luminoso (Speer et al. 2010). 

The creation of a semantic space begins by pre-
processing the text in the project descriptions.
Common words such as and and the are removed,
verbs are stripped of inflections, and contractions
are unpacked. We find the terms and phrases that
appear in each document, and place the results in
a matrix whose rows are Media Lab projects and
whose columns are term occurrence counts. We
normalize these counts across projects, so that
words that are common across many documents
are given less weight than those that appear in
only a subset, and eliminate terms of sufficiently
low count. Finally, we use this representation of
projects to extract the implicit relations among the
terms they contain. This data takes the form of a
symmetric matrix indexed by terms, whose entries
are occurrence counts adjusted by proximity infor-
mation, that is, the counts are increased when
terms appear in the same or adjacent sentences. 

To add background knowledge to this domain-
specific data, we use Luminoso to construct a sim-
ilar representation of the relations between terms
in ConceptNet. For its semantic model, Luminoso
uses a technique called Spectral Association
(Havasi, Speer, and Holmgren 2010) to find weight-
ed connections between related words (such as
“puppy” and “cute” or “sadness” and “crying”),
even when these connections require multiple
steps of association. Spectral Association constructs
a symmetric matrix that expresses which terms are
related, and expands this matrix through power
iteration to find connections that require multiple
steps of association. 

We employ a technique called blending (Havasi
et al. 2009, Arnold and Lieberman 2010) to merge
the domain-specific term associations derived from
the PLDB data with the more general appreciation
of the relations among concepts obtained from
ConceptNet. Blending performs joint reasoning
over multiple sources of data simultaneously by
taking advantage of the overlap between them. It
inputs two matrices with some overlap in their row
and/or column labels, and outputs a single matrix
that can be processed by more standard tech-
niques. In effect, blending allows associations /
analogies to propagate over different forms of
information. 

We employ a form of dimensionality reduction
called Singular Value Decomposition (SVD) to
transform this blended matrix into a semantic
model we call AnalogySpace (Speer, Havasi, and

Lieberman 2008). The SVD expresses concepts
(such as “car” or “happiness”) and features (“made
of metal”) in terms of a core set of axes, or princi-
pal components, that are automatically selected by
the algorithm to represent the most variance in the
data. This process simultaneously generalizes over
related words and smoothes over missing informa-
tion, while reducing the memory footprint of the
model. The resulting space of axes provides a basis
for computing semantic similarity of projects and
user interests through operations on vectors that
represent concepts or features in the compressed
space. 

Overall, our approach to building a semantic
space works on large sets of related words at one
time, which gives the system the ability to gener-
alize from extremely sparse input data; it can con-
struct a meaningful representation of a topic even
when that topic is identified by a single word
(Cambria et al. 2010). 

Finding Similarity 
If we want to find projects similar to a given proj-
ect, we simply find the project vector in our PLDB-
space and find projects whose vectors are closest in
the semantic space. Here, closeness can be meas-
ured by the angle between the two vectors—pro-
jects with a small angle between them are similar. 

We can personalize our recommendations by
taking into account the projects that have been
favorited by the user or users currently using the
kiosk. By adding the vectors for each of the user’s
favorited projects together we form a new vector
called an ad hoc category vector (Havasi, Speer,
and Pustejovsky 2009). We let that vector represent
the user’s preferences in the space and then use the
similarity metric described above to find projects
similar to that category vector. This extends to rec-
ommendations for multiple users as well: we can
simply combine their favorites, placing a greater
weight on items that more than one user have
favorited. 

Focus Areas 
A central part of the Glass Infrastructure is its auto-
matic categorization of projects into several cate-
gories that serve as the lab’s focus areas or direc-
tions. These categories, which cut across multiple
lab groups, were predefined by the Media Lab’s
leadership. As the lab’s focus areas change from
time to time (the categories have changed twice
during our deployment), and new projects arise
that need to be categorized, it’s important that cal-
culating these categories be a quick and unsuper-
vised process. 

We represented the categories as canonical doc-
uments in Luminoso. In the graphical version of
Luminoso, a canonical document serves as a “sign-
post” in the visual representation of the semantic
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space and as a focus area during Luminoso’s statis-
tical analysis of the space (Speer et al. 2010). In the
Glass Infrastructure, a canonical document serves
as a focal point for a cluster; the resulting cluster-
ing helps the user understand the big ideas behind
a project and how that project relates, through that
big idea, to labwide research focuses and other
projects. 

Canonical documents behave like the ad hoc
categories (Havasi, Speer, and Pustejovsky 2009)
described above, but for a set of words that is
defined by Luminoso’s users—in this case the
architects of the Glass Infrastructure. Luminoso
can often discover categories simply given the cat-
egory’s name, but since many of the lab’s category
names are idiosyncratic, we provided several words
that would help define, and in some cases target,
the model’s definition of the particular lab direc-
tion. For example, the category “reability” focuses
on helping those with disabilities and contains
words such as “prosthesis” and “autism,” which
are focuses of the lab’s research in that area. 

Before the launch of the Glass Infrastructure,
researchers and students were invited to check the
categorization of their projects. Most of the Media
Lab’s researchers showed up to check the catego-
rization and all researchers agreed with their cate-
gorization. 

Summary: Text Analytics 
from Project Descriptions 
Here, again, are the steps involved in creating and
reasoning with a vector space from the informa-
tion contained in the PLDB and ConceptNet. We’ll
tie these steps back to the labeled edges in figure 1. 

Query the PLDB to discover the researchers,
research group(s), and project description for each
active project (labeled Edge 1). Use ConceptNet to
find the terms and phrases that appear in each doc-
ument such as “cell phone” or “user interface.” 

Remove stop words and inflections, but preserve a
reverse mapping for the purpose of outputting the
phrases. For example, “Opera of the Future” should
appear in that form, not as the system’s internal
phrase of “opus future.” 

Account for negative relations: words that appear
between a negation token (such as not) and punc-
tuation are counted negatively. The system can
handle double negatives, should they occur. 

Create special words inside each document to iden-
tify the research group and researchers involved in
the project, such as Lifelong Kindergarden or min-
sky. Place the counts in a matrix whose rows are
Media Lab projects and whose columns are terms.
This is the “project matrix.” 

Normalize the matrix with tf-idf,2 so that words
that are common across many documents are given
less weight than those that appear in only a subset
(Edge 3). 

Drop terms that appear fewer than a threshold
number of times, to simplify the model. We use a
threshold of three. 

Create a new symmetric matrix containing the
implicit associations between terms in the docu-
ments, A. Whenever terms appear in the same sen-
tence, increment their entry in A by 1. Whenever
terms appear in adjacent sentences, increment their
entry in A by 1/2. 

Use blending to combine the symmetric matrix
with the ConceptNet association matrix. This and
the two following steps are described earlier (Edges
4 and 6). 

Find the spectral decomposition of the blended
matrix; this is the semantic space (PLDB-space).
Create a projection of the project matrix into the
semantic space, by multiplying them along the axis
of terms (Edge 5). 

Discover the relationships between people, projects,
and focus areas (Edge 7) that are displayed along-
side pictorial representations of these elements
from the PLDB (Edge 2). 

Personalize the GI content for users as they acquire
charms and interact with screens (Edge 8). 

Usage at the Media Lab 
The system was first deployed in the Media Lab
building in Spring 2010, in time for the biannual
sponsor event that the Media Lab hosts every fall
and spring. Each of these events is attended by
500–1000 people, including representatives from
nearly a hundred companies and Media Lab stu-
dents, faculty, and staff. The GI has now been in
place across four sponsor meetings, and the bulk of
the activity clusters around those events. 

Figure 4 shows a more detailed look of GI activ-
ity across time and space during—and immediate-
ly following—the Fall 2010 Sponsor Event. Each
number in this heat-map reflects the number of
times a user clicked a UI object on a particular
screen on a particular date. Higher numbers corre-
spond to a darker square; for example, the chart
reflects peak activity on October 14 when screen
charm-5 was clicked 4134 times. This diagram
shows that on October 14 and 15, 2010, there was
substantial use of most of the GI screens. This use
tapered off on the days that followed, as the Media
Lab returned to a more normal activity pattern. 

To use a uniform performance metric across all
three events, we introduce “engagement” E,
defined as: 

where E is the engagement metric for variable V
during event e, |V| is the observed value for vari-
able V, and Ne is the number of visitors participat-
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ing in event e. Essentially, this metric normalizes
the observed value of each variable shown in table
1 by dividing by the number of visitors at each
respective event. 

Figure 5 shows that per capita engagement
between fall 2010 and fall 2011 has almost dou-
bled. While the absolute number of navigation
events remained constant in the last event, user
engagement was richer in terms of location ubiq-
uity (more logins at multiple locations by the same
user), more in-depth exploration of the displayed
information (more users and favorited projects),
and more social engagement (more cologins). We
postulate this increase was due to repeat users
returning to member’s week and using the GI more
often and at greater depth. Additionally, a new for-
mat to member’s week removed many of the
overview presentations, requiring visitors to orient
themselves more than in previous weeks. 

Based on the data and by our own observations,
the GI added substantial value during all three
member’s week periods. There were often crowds
of people gathered around the displays, and we
witnessed many conversations between sponsors
about favorite projects while collaboratively
exploring the GI and exchanging charms with
each other. GI use and value fell off steeply in the
times between member’s weeks, when we found it
more challenging to maintain the system, to get
visitors set up with RFID badges, and to orient
them to the system’s functionality. 

During our third deployment, we performed a
small user study of visitors who used the screens
and trip reports. Seventeen users took our study;
for some of these users it was their first time at the
lab, while others had been to multiple (some up to
10) member’s weeks. There was no significant dif-
ference in response from those who were visiting
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Figure 4. Heat-Map.

This heat-map shows GI usage at different screens over a period of two weeks during our second member’s week deployment in fall 2010. 



for the first time and the more experienced visitors. 
In table 2, we can see the various GI goals and

users’ responses to those goals. Using the AI system
to discover projects was the most highly rated goal,
with an average rating of 4.0, followed closely by
using the system to remember and organize visited
projects. In table 3 we can see that 16 out of 17
users got value out of the Glass Infrastructure. 

Related Systems and Research 
Our work was influenced by and is related to trends
in both the private sector and academe. These
come in two general forms: utility-based kiosks
that are designed to accomplish or incentivize spe-
cific tasks, and information-based kiosks that are
designed to provide contextual access to digital
content. GI fills both of these roles by promoting
exploration and social interaction while present-
ing custom displays based on the user’s and
screen’s physical location. 

The United States Library of Congress has begun
to deploy a series of information kiosks that have
appeared in several of its exhibits. The kiosks pro-
vide interfaces where patrons can identify their
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Figure 5. Usage Statistics.

This figure depicts usage statistics for the events of fall 2010, spring 2011, and fall 2011, in which there were 882, 590, and 474 visitors
respectively. The variables observed in each column are normalized by the number of visitors in each event. As a result, the graph reveals
the degree of per capita engagement Ee across each variable. While the absolute number of events observed during fall 2010 and fall 2011
are approximately the same, the number of visitors in the latter were almost half and therefore users in the latter event exhibited higher
engagement. 

 Fall 2010 Spring 2011 Fall 2011 

Click events 8167 
(9.26) 

3694 (6.16) 7041 (14.85) 

Navigation events 5915 
(6.71) 

2317 (3.86) 5604 (11.82) 

Unique user logins 383 (0.43) 374 (0.62) 247 (0.52) 

Logins at multiple locations 75 (0.09) 99 (0.16) 61 (0.13) 

Cologins 114 (0.13) 100 (0.16) 77 (0.16) 

Favoriting events 389 (0.44) 568 (0.95) 398 (0.84) 

Favoriters 93 (0.11) 91 (0.15) 79 (0.17) 

Unique projects favorited 124 (0.14) 188 (0.31) 199 (0.42) 

Average time spent on-screen 25 seconds 25 seconds 30 seconds 

Number of visitors 882 590 474 

Table 1. “Logins at Multiple Locations” Reflects
the Ubiquity of System Use by One Person. 

“Cologins” is the number of unique pairs that visitors formed when logging
in at the same time on the same screen. “Favoriters” are the unique visitors
who have favorited at least one project. Values in parentheses reflect the
respective normalized value by the number of visitors in each event. 



favorite artifacts and associate them with a per-
sonal account. More information about these arti-
facts can then be accessed from home through the
myloc.gov web portal.3 The project shares several
GI concepts, such as facilitated exploration
through digital “mementos,” but there is no social
component to this system. 

Pepsi is producing a recycling kiosk system that
allows consumers to receive incentives based on
the amount they personally recycle. Their system
allows users to log in and provide physical inputs
at the kiosk that are immediately reflected in the
user’s digital account. The kiosks utilize touch-
screens, which allow users to identify themselves
using email addresses.4 Kiosk location is not a fac-
tor in this system, which speaks to the fact that its
primary focus is not based on information display. 

A system utilizing RFID linked to student sched-
ules was deployed to explore the concept of per-
sonalized maps on a college campus. The system
was placed in two locations within the same build-
ing. It could detect nearby students with RFID
badges, look up their schedules, and direct them to
their next destination (Luse 2010). Unlike GI, the
information transfer at this kiosk is unidirectional.
The data is customized based on location and user,
but there is no way for the user to update that data
from the kiosk itself. 

The Future of the 
Glass Infrastructure 

The semantic space itself will need to be updated
during the life of the project as lab research focus-
es shift and new projects are created. Since the
information is read in an unsupervised manner
from the internal database, the model is automat-
ically updated periodically. This allows for domain
knowledge to be added and updated in an unsu-
pervised manner. 

In addition to continuously improving the reli-
ability and ease of use of the Glass Infrastructure,
we are focused on making the system more valu-
able for everyday use. As reflected in the data, the
GI added more value during member’s weeks than
other, more normal patterns of lab activity in part
because the RFID functionality is only active dur-
ing member’s week. We are also adding a variety of
new functions to address this, including making it
easier for lab researchers to use the GI to show off
their work to sponsors; making it easier to register
visitors in the system; and making the GI more
useful for locating and communicating with lab
members. 

Since this research began, we’ve been working to
expand these techniques to areas such as ad hoc
social networking and locationally aware user
interfaces. The Glass Infrastructure has become a
research platform here at the Media Lab and will

continue to grow and expand as a way to bring
place and artificial intelligence into a variety of
research projects. 
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Notes
1. Since deploying the GI at the MIT Media Lab, we have
prototyped a GI installation at a large financial software
company to help company employees connect the com-
pany’s own ideas, projects, and people. Additionally, at
the request of our users, we have installed GI screens at
the headquarters of a large bank that wishes to further
engage the Media Lab in collaboration to enable them
better to navigate the changing Media Lab projects.

2. Term frequency–inverse document frequency (tf-idf) is
a measure of how interesting a word is in a document set
by taking into account not only how related a word is to
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GI Goal 1 2 3 4 5 

Discover new projects 1 0 2 9 5 

Find out more about interesting projects 1 0 4 11 1 

Connect with other sponsors 2 5 8 2 0 

Connect with Media Lab researchers 1 0 3 13 0 

Organize my visit 1 2 3 8 3 

Remember interesting projects 1 2 1 7 6 

Table 2. Users Opinions of the GI’s Value Doing Different Tasks.

A score of 1 indicates strong disagreement while a score of 5 indicates
strong agreement. 

 1 2 3 4 5 
I got value out of the GI 1 0 0 11 5 
The screens were helpful 1 0 0 12 4 
The trip report was helpful 1 1 3 9 3 

Table 3. Users Evaluate the GI. 

A score of 1 indicates strong disagreement while a score of 5 indicates strong
agreement. 



a document but also how often the word occurs in the
document set. This allows words that differentiate topics
to come into the forefront and tends to deemphasize
words that appear frequently, such as stop words.

3.  See www.cwhonors.org/CaseStudy/viewCaseStudy
2009.asp?NominationID= 175&Username=LiBry.

4. www.greenerpackage.com/recycling/video_pepsico_
unveils_reverse-vending\%E2\%80\%98dream_
machine\%E2\%80\%99_encourage_recycling.
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