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As robots move out of the lab and into the real world, it is
critical to develop ways for human users to easily and
flexibly command them. Natural language dialogue is a

compelling solution to this problem because the operator can
flexibly express complex requirements, enabling interaction
with the robot as if it were another human. In order to engage
effectively in dialogue, a robot must be able to interpret natural
language commands. For example, a human supervisor might
tell an autonomous forklift, “Put the tire pallet on the truck”
(figure 1a), or an operator might command a humanoid robot,
“Drive down the hall past the elevators” (figure 1b.) 

A critical component to understanding commands like these
is the ability to map words in the language to aspects of the
external world. This mapping, which Harnad (1990) called the
symbol-grounding problem, has been studied since the early
days of artificial intelligence. There are broadly three different
ways people have approached the symbol-grounding problem
in robotics. Starting with Winograd (1970), many have manu-
ally created symbol systems that map between language and the
external world, connecting each term onto a prespecified action
space and set of environmental features (Bugmann et al. 2004;
Dzifcak et al. 2009; Hsiao, Mavridis, and Roy 2003; Kress-Gazit
and Fainekos 2008; MacMahon, Stankiewicz, and Kuipers 2006;
Roy, Hsiao, and Mavridis 2003; Roy 2005). This class of systems
takes advantage of the structure of spatial language, but usually
the systems do not involve learning, have little perceptual feed-
back, and have a fixed action space. A second approach involves
learning the meaning of words in the sensorimotor space (for
example, joint angles and images) of the robot (Marocco et al.
2010; Modayil and Kuipers 2007; Sugita and Tani 2005). By
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In order for robots to engage in dialogue with
human teammates, they must have the ability
to identify correspondences between elements of
language and aspects of the external world. A
solution to this symbol-grounding problem
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and pick up the tire pallet.” This article
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world. We report on corpus-based experiments
in which the robot is able to learn and use word
meanings in three real-world tasks: indoor nav-
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treating linguistic terms as a sensory input, these
systems must learn directly from complex features
extracted by perceptual systems, resulting in a lim-
ited set of commands that they can robustly under-
stand. A third approach is to use learning to con-
vert from language to aspects of the environment.
These approaches may use only linguistic features
(Ge and Mooney 2005; Shimizu and Haas 2009),
spatial features (Regier 1992) or linguistic, spatial,
and semantic features (Branavan et al. 2009; Brana-
van, Silver, and Barzilay 2011; Kollar et al. 2010b;
Matuszek, Fox, and Koscher 2010; Vogel and Juraf-
sky 2010). These approaches learn the meaning of
spatial prepositions (for example, “above” [Regier
1992]), verbs of manipulation (for example,
“push” and “shove” [Bailey 1997]), and verbs of
motion (for example, “follow” and “meet” [Kollar
et al. 2010a]) and landmarks (for example, “the
doors” [Kollar et al. 2010b]). 

In this article, we give an overview of our prob-
abilistic approach to the symbol-grounding prob-
lem. By taking a probabilistic approach, we are able
to build systems that learn word meanings from
large corpora of examples and use those meanings
to find good groundings in the external world,

despite uncertainty. Our first approach uses a gen-
erative model that factors according to the sequen-
tial structure of language. This model can be used
to follow natural language route instructions and
to perform spatial language video retrieval. How-
ever, the generative approach requires explicit cor-
pora for each modeled factor, rather than learning
word meanings directly from in-domain language.
It cannot represent complex linguistic structures
such as referring expressions (for example, “the
door across from the elevators”) and multiargu-
ment verbs (for example, “put the pallet on the
truck”). To address these limitations, we developed
a new framework, called generalized grounding
graphs (G3), introduced in Tellex et al. (2011). The
G3 framework dynamically instantiates a condi-
tional probabilistic graphical model that factors
according to the compositional and hierarchical
structure of a natural language phrase. Using the
new model, we created a system that successfully
follows many mobile-manipulation commands
from a corpus created by untrained annotators
using crowd sourcing. 

Several earlier publications describe the primary
technical contributions of the models (Kollar et al.

Pick up the pallet of boxes in the middle and place them on the trailer to the left. Go down the hall past the elevators to the kitchen.

a. Robotic Forklift b. Humanoid Robot

Figure 1. Robotic Platforms and Commands. 
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2010a, 2010b; Tellex et al. 2010, 2011). This article
provides an integrated overview of results and les-
sons learned for the generative model and the G3

framework in three domains: navigation in indoor
environments, spatial language video retrieval,
and mobile manipulation. 

Approach 
Our goal is a framework that can map between lan-
guage and the external world. We assume a natural
language utterance has a corresponding set of
groundings in the external world. Groundings can
be objects (for example, a truck or a door), places
(for example, a particular location in the world),
paths (for example, a trajectory through the envi-
ronment), and events (for example, a sequence of
robot actions). We additionally assume a semantic
map m, consisting of the locations and labels of
other objects in the environment. The distribution
we want to model is: 

(1)

We explicitly represent the joint distribution
rather than the conditional because it can be used
to solve several types of problems. To interpret
commands, one can optimize over candidate
groundings; this article describes our work in this
area. Furthermore, the model could be used to gen-
erate natural language descriptions of objects or
events by searching for a description . Finally it
could also be used to recognize events by directly
computing the probability of a particular set of val-
ues and thresholding. The challenge in making
this approach practical for any of these problems is
factoring the distribution and providing models
for each factor. 

Generative Model 
In our previous work (Kollar et al. 2010b), we
approached this problem by factoring equation 1
to give p( | , m) p( , m). This formulation
allowed us to make independence assumptions
corresponding to the sequential clause structure of
the language, yielding: 

(2)

where i are the words associated with each clause.
We assumed that each factor had a fixed structure:
a verb, v, a spatial relation, sr, and a landmark, l.
Furthermore, we assumed that each clause had a
fixed set of groundings, consisting of a path frag-
ment, p, and an object, o:

(3)

We then made independence assumptions based
on this structure. 

p( , ,m)

p( | ,m) = p
i

( i | ,m)

p( i | ,m) = p(v,sr,l | p,o,m)

(4)

This approach allowed us to define individual
models for each term in the factorization. We
defined models for prespecified verbs and adverbs
such as “left,” “right,” and “straight,” and we
trained models for spatial relations such as “to,”
“past,” and “through.” For the landmark factor, we
exploited co-occurrence statistics from a large
online database1 of labeled images to estimate the
probability of an unknown landmark phrase given
objects detected in the semantic map (Kollar and
Roy 2009). These statistics enabled the robot to
estimate the probability of seeing a landmark
phrase such as “the kitchen” using a limited set of
existing object detectors, such as a refrigerator and
a sink. 

We tested our generative model in two real-
world domains: following natural language direc-
tions through real-world environments and spatial
language video retrieval. The model can be used to
follow natural language directions by finding the
path through the environment, path , that max-
imizes the distribution in equation 3. To evaluate
the system at following natural language direc-
tions, we collected from 15 subjects a corpus of 150
directions through a large office environment. Our
system successfully followed 67 percent of the
directions in the corpus, compared to human per-
formance of 85 percent. 

For video retrieval, the task was to find video
clips from a large corpus (Roy et al. 2006) that
match a spatial language description of a person’s
motion, such as “Show me people walking into the
kitchen.” The system performed ranked retrieval
by scoring video clips according to how well they
matched a spatial language query according to
equation 3. We demonstrated that our system
could effectively retrieve video clips, evaluating on
a large corpus of natural language queries created
by untrained users. Figure 2 shows a sample query
result for the system. 

However, the generative framework has several
limitations. First, because it only models the flat
sequential structure of language, rather than the
hierarchical structure, it cannot handle commands
such as “Go to the door across from the elevators.”
The phrase “the door across from the elevators” is
treated as a bag of words, and the system is unable
to distinguish whether to approach the door or the
elevators. Second, we assumed that each clause has
a fixed structure consisting of a path and a land-
mark, but language has variable, hierarchical struc-
ture. The flat structure cannot support two-argu-
ment verbs like “Put the tire pallet on the truck,”
or nested arguments. Third, it is difficult to obtain
models for the meanings of words in the individ-
ual factors. In our route directions data set, people

p(v,sr,l | p,o,m)

= p(v | p) p(sr | p,o) p(l | p,m)
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Highest-Ranked Clip

Low-Ranked Clips

Figure 2. Video Retrieval Results.

Query: “from the couches in the living room to the 
dining room table” (from Tellex et al. 2010).

often used “thru” instead of “through.” Since the
system learned word meanings from a separate,
curated corpus that did not contain “thru,” we
manually encoded this synonymy. The system was
unable to learn word meanings directly from the
corpus. 

Generalized Grounding Graphs 
Our aim in creating the G3 framework was to
address the challenges from the previous section
by modeling the hierarchical, compositional struc-
ture of language in a framework that could learn
word meanings from data. To facilitate learning,
we converted the distribution in equation 1 to a
discriminative model (Kollar, Tellex, and Roy 2010)
by introducing a correspondence vector, : 

(5)

The correspondence vector contains a Boolean
variable for each linguistic constituent and
corresponding grounding such that is true
if and correspond and false otherwise. 

The G3 framework factors the model according
to the structure of the language, allowing explicit
inference over groundings for each linguistic con-
stituent: 

(6)

This factorization can be represented graphically as
a factor graph (Kschischang, Frey, and Loeliger
2001). A factor graph is a bipartite graph with two
types of nodes: random variables and factors. Each
factor node corresponds to a factor in the distribu-
tion and connects to variable nodes, which are its
arguments. For example, figure 3 shows a factor
graph for the phrase “the truck,” consisting of a
single factor and three variables: , which is a vec-
tor of features corresponding to an object in the
external world with a particular appearance and
location, , the words “the truck,” and , which is
true if corresponds to , and false otherwise. The
graph corresponds to the distribution p( | , , m).
(If in figure 3 were the words “the tire pallet,”
then p( = False | , ) would have higher probabil-
ity.) Since the semantic map m appears in all fac-
tors, we omit it from the graphical representation.
We refer to factor graphs created by the G3 frame-
work as grounding graphs. Word models in each fac-
tor can be learned discriminatively, and the result-
ing factorization allows the system to compose
them in order to follow novel commands that may
have never been seen in training. 

In order to precisely define the factorization in
equation 6, we use spatial description clauses
(SDCs). SDCs were introduced by Kollar et al.
(2010b) and refined by Tellex et al. (2011); they
correspond to the parse structure of a natural lan-
guage command. An SDC consists of a figure phrase
f, a relation r, and a variable number of landmark

p( | , ,m) = p
i

( i | i , ,m)

p( | , ,m)
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noun phrases li. We assign a type to each SDC fol-
lowing the system defined by Jackendoff (1983): 

EVENT Something that takes place (or should take
place) in the world, for example, “Move the tire pal-
let” or “Turn right.” 

OBJECT A thing in the world. This category includes
people and the robot as well as physical objects (for
example, “forklift,” “the tire pallet,” “the hallway,”
“the person”). 

PLACE Places in the world (for example, “on the
truck,” “next to the tire pallet,” or “in the kitchen”). 

PATH Paths through the world (for example, “past
the truck” or “down the hall”). 

SDCs with relations contain one or more argu-
ments. Since almost all relations take two core
arguments or fewer, we use at most two landmark
fields l1 and l2. Given this definition, a general nat-
ural language command is represented as a
sequence of SDC trees. An SDC tree for the com-
mand “Put the pallet on the truck” appears in
figure 5a. Leaf SDCs in the tree contain only text in
the figure field, such as “the truck” (figure 3a).
Internal SDCs contain text in the relation field and
child SDCs in the figure and landmark fields. 

The system automatically extracts SDCs from
the Stanford dependency parse structure (de Marn-
effe, MacCartney, and Manning 2006). The SDC
extraction algorithm maps between particular
dependency types and fields in the SDCs, putting
verbs and prepositions in the relation field, their
arguments in the landmark field, and their subjects
in the figure field. In cases of ambiguity the algo-
rithm outputs multiple candidate SDCs for a single

parse. We obtain additional candidates by running
the extractor on the n-best list of parse candidates.
The system then performs discriminative rerank-
ing using a model trained from annotated SDCs. 

Using SDCs, we can rewrite the inner term from
equation 6 as: 

(7)

Further independence assumptions can be made in
the product terms based on the structure of the
language. To specify these factors, we first define
the variables in the model as follows: 

i True if the grounding i corresponds to ith SDC. 

f
i The text of the figure field of the ith SDC.

r
i The text of the relation field of the ith SDC.

i
f, i

l1, i
l2 The groundings associated with the

corresponding field of the ith SDC: the robot or
object state sequence, or a location in the semantic
map. 

Looking at equation 7, we can see that the mod-
el has a factor for each SDC in the parse. The
dynamically generated factors fall into two types: 

p( i | i
f, i, m) for leaf SDCs. 

p( i | i
r, i

f, i
l1, m) or p( i | i

r, i, i
l1, i

l2, m) for inter-
nal SDCs. 

Leaf factors always correspond to an OBJECT or
PLACE SDC and operate over the correspondence
variable i, the figure text i

f, and a unique ground-
ing i. An internal factor corresponds to an
OBJECT, PLACE, PATH, or EVENT SDC, which has
text in the relation field. The arguments to these
factors are correspondence variable i, relation text

i
r, and the candidate groundings i

f and i
l1 (and

optionally i
l2) corresponding to the figure and

landmark fields of an SDC. 
For example, figure 4 shows the grounding

graph for the phrase “on the truck.” It contains a
subgraph corresponding to “the truck” that is iden-
tical to the one shown in figure 3. The value of the
correspondence variable 1 depends only on the
values of 1 (“on”) and the groundings 1 (a place
in the world) and 2 (an object), and not on the
specific words “the truck.” This independence
assumption enables the model to represent a gen-
eral meaning for “on” that does not depend on
specific text in its argument phrase. 

Each factor in equation 7 is a log-linear model
with the following form (Lafferty, McCallum, and
Pereira 2001): 

(8)

Here, sk are feature functions (described more fully
in Tellex et al. [2011]) that take as input a corre-
spondence variable, an SDC, and a set of ground-

p( i | i , ,m) = p( i | SDCi , ,m)

p( i | SDCi , ,m)

=
1
Z

exp μk
k

sk( i ,SDCi , ,m)

a. SDC Tree

φ = True

λ = “the truck”

γ =

OBJ(f = the truck)

b. Induced Model

c. Factorization

p(Φ|Λ, Γ, m) = p(φ|γ, λ, m)

Figure 3. SDCs and Grounding Graph for the Phrase “the Truck.” 
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ings and output a binary value. For example, one
of the many feature functions corresponds to
whether the landmark grounding l

i is supporting
the figure grounding f

i and the  word “on” is in the
relation field of the SDC: 

(9)

We use features relating the distance between
the figure and the landmark groundings, as well as
the change in state at the beginning and end of the
robot’s trajectory. Features are created based on the
syntactic role of the words in the language:
whether it appears as a figure, relation, or land-
mark in the SDC. To ground noun phrases, the sys-
tem assumes access to an object detector that can
recognize certain classes of objects, such as pallets
and trucks. The system learns to map between
these labels and words that actually appeared in
the command, such as “skid” or “trailer.” We also
use features derived from co-occurrence statistics
from large web corpora, such as Flickr, as described
by Kollar et al. (2010b). 

The k are the weights corresponding to the out-
put of a particular feature function. At training
time, we observe SDCs, groundings , and the out-
put vector . In order to learn the parameters k
that maximize the likelihood of the training  data
set, we use L-BFGS (Andrew and Gao 2007) to opti-
mize the parameters of the model through gradi-
ent descent. 

Figure 5 shows an entire worked example for
the command “Put the pallet on the truck,”
beginning with SDCs, the grounding graph, and
finally the factorization of the distribution. Note
that the factor graph contains subgraphs corre-
sponding to the constituents “on the truck”
(shown in figure 4) and “the truck” (shown in
figure 3). This decomposition allows the model to
learn word meanings from each factor and flexi-
bly compose them together in order to under-
stand novel commands. 

Results 
We present results from experiments with the G3

framework using three corpora of natural language
commands paired with robot actions and environ-
ment state sequences. Examples from the corpora
appear in figure 6. We used one part of these cor-
pora to train the G3 model to learn the meanings
of words and used a held-out test set to evaluate
the end-to-end performance of the system at com-
posing word meanings in order to follow com-
mands. 

The first corpus focuses on spatial prepositions
describing paths, such as “across,” “to,” “toward,”
and “along.” Each example in the corpus consists
of a trajectory, a landmark object, and a phrase
such as “Go to the door” or “Go across the confer-

f ( i
f , i

l , i
r ) supports( i

f , i
l ) ("on" i

r )

ence room”; the corpus includes both positive and
negative examples of each spatial relation. One of
the authors created the corpus by drawing a
sequence of waypoints that corresponded to a
phrase such as “down the hallway.” Negative
examples were created by treating positive exam-
ples of one spatial relation as negative examples of
another, with some exceptions such as “to” and
“toward.” This data set provides a simple test bed
to demonstrate the model’s performance, as well as
providing training examples for bootstrapping the
model on this important class of words. Figure 6a
shows a sample prepositional phrase from this cor-
pus, paired with a path and landmark. 

The second corpus consists of natural language
route instructions. We collected a corpus of 150
natural language route instructions from 15 peo-
ple, through one floor of two adjoining office
buildings. An example set of directions from the
corpus is shown in figure 6b. Following these direc-
tions is challenging because they consist of natural
language constrained only by the task and as a
result may use any of the complicated linguistic
structures associated with free-form natural lan-

λ1 = “on”

γ1

φ1

λ2 = “the truck”

γ2

φ2

a. SDC Tree

b. Induced Model

p(Φ | Λ, Γ, m) = p(φ1 | λ1, γ1, γ2, m) × p(φ2 | λ2, γ2, m)

PLACE2(r = on
l1 = OBJ1(f = the truck))

c. Factorization

Figure 4. SDCs and Grounding Graph for the Phrase “on the Truck.” 
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guage. This corpus provides a complex sample of
spatial language for a real-world task. To train the
model, we annotated each constituent in the cor-
pus with a corresponding path segment or land-
mark. We constructed negative examples by ran-
domizing these annotations. Figure 6b shows a
sample command from the corpus. 

EVENT1(r = Put,

λ1
r

“Put”

γ
1

φ1

λ2
f

“the pallet”

λ3
r

“on”
λ4

f

“the truck”

φ4

a. SDC Tree

I = OBJ2(f = the pallet),

I2 = PLACE3(r = on,
I = OBJ4(f = the truck)))

p(φ2|γ2, λ2 = the pallet, m) × p(φ3|γ3, γ4, λ3 = on, m) ×rf

p(φ4|γ4 ,λ4 = the truck, m)f

p(Φ|Γ,SDCs, m) = p(φ1|γ1, γ2, γ3, λ1 = Put, m) ×r

b. Induced Model

c. Factorization

γ
2

φ2
φ3

γ
3

γ
4

Figure 5. Worked Example for the Command 
“Put the Pallet on the Truck.” 

The third corpus consists of mobile-manipula-
tion commands given to a real robotic forklift.
Annotators on Amazon Mechanical Turk watched
a video of a simulated forklift performing an
action, then wrote natural language commands
they would give to an expert human operator in
order to command the operator to carry out the
actions in the video. This corpus consists of a rich
variety of mobile-manipulation commands such as
“Pick up the pallet of tires directly in front of the
forklift.” Figure 6c shows an example command
from this dataset. 

Meanings for Words 
Next, we trained models for each of the corpora
and evaluated their performance for specific words
in a held-out test set, using the same features for all
models and annotated parses. Table 1a shows the
performance on words from the spatial relations
corpus. Not surprisingly, it learned good models
for the meanings of words in this simple corpus.
To illustrate the learned models for individual
words, we present the probability distribution as a
heat map, where red is high probability and blue is
low probability. Figure 7 shows maps for “to the
truck,” “past the truck” and “toward the truck,”
demonstrating that the system has learned
nuanced models for these different words. 

Table 1b shows the performance of the trained
system on individual examples from the route
directions corpus. Performance is lower because
this corpus contained fewer examples of individ-
ual spatial relations and was noisier in general. The
effects of this noise can be seen in the heat map
shown in figure 9b. 

Finally, table 1c shows the performance of the
system when trained on the mobile manipulation
corpus. The system was able to learn good models
for verbs such as “put” and “take” as well as spatial
relations such as “to,” “toward,” and “on” from
relatively few training examples. 

The word “take” appeared in both the mobile
manipulation corpus and the route directions cor-
pus, but it was used in different ways. In the route
directions corpus, it was used in phrases such as
“Take your first left,” while in the mobile manipu-
lation corpus, it was used in commands like “Take
the pallet of tires to the trailer on the left.”
Although the system learned these two senses sep-
arately, learning from a single corpus that con-
tained both would be challenging because the
same feature weights would be trained for both
word senses simultaneously. 

Figure 8a shows the distribution of locations for
“on” as learned from the mobile manipulation cor-
pus from phrases such as “Put the pallet on the
truck.” (The target locations are a constant height
above the ground.) The system gives high weight
to locations that are supported by the truck,
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a. Spatial Relations

b. Route Directions
With your back to the windows, walk straight through the door near the 
elevators. Continue to walk straight, going through one door until you 

come to an intersection just past a white board.

c. Mobile Manipulation
Lift the tire pallet in the air, then proceed to deposit it to the right 

of the tire pallet already on the table right in front of you.

Go to the door.

Figure 6. Commands Paired with Environments 
from Corpora Used in Our Experiments. 

because features related to “support” have the
highest weight among the learned features for
“on.” Figure 8b shows the distributions for the
phrase “near the truck,” which is not peaked as
strongly as “on.” The distributions are asymmetric
with respect to the truck because of frame-of-refer-
ence features that take into account the position
and orientation of the robot. We intended these
features to capture phrases like “on your left” and
“to the left of,” but the system also weights them
for “on” and “near.” 

Figure 9 shows maps for “to the truck” from
models trained on each of the three datasets. The
system is able to learn good models from both the
spatial relation and mobile manipulation data sets.
The mobile manipulation data set is noisier
because it contains fewer training examples, and
many of the examples were part of compound
prepositional phrases such as “to the left of the
truck.” The route instructions corpus is biased to
go past the landmark object, probably because
examples of “to” often occurred in the context of
longer phrases such as “walk to the end of the hall
and turn left.” 

End-to-End Evaluation 
The fact that the model performed well at predict-
ing the correspondence variable from annotated
SDCs and groundings is promising but does not
necessarily translate to good end-to-end perform-
ance when using the model to follow natural lan-
guage commands. 

To assess end-to-end performance, we evaluated
the system in the mobile manipulation domain as
described by Tellex et al. (2011). For each com-
mand in the corpus, the system inferred a plan and
executed it in a realistic robot simulator. Then,
annotators ranked whether the robot’s behavior
was correct or incorrect given the command. By
this metric, our system correctly followed 54 per-
cent of the 30 most confident commands in the
corpus. When using a ground-truth parse instead
of an automatic parse, the system followed 47 per-
cent of commands from the entire corpus, and 63
percent of the 30 most confident commands. 

The system qualitatively produced compelling
end-to-end performance. When the system did
make mistakes, it was often partially correct. For
example, it might pick up the left tire pallet instead
of the right one. Other problems stemmed from
ambiguous or unusual language in the corpus com-
mands, such as “remove the goods” or “then swing
to the right,” that make the inference particularly
challenging. Despite these limitations, however,
the system successfully followed commands such
as “put the tire pallet on the truck,” “pick up the
tire pallet,” “put down the tire pallet,” and “go to
the truck,” using only data from the corpus to
learn the model. 
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An enabling technology for our approach to
mobile manipulation is the availability of infra-
structure for reliably simulating and logging robot
actions. We used these technologies to collect cor-
pora of language paired with robot actions to train
the system. We were then able to simulate the
robot and automatically produce videos of the sys-
tem following each command in the corpus, which
we used for the end-to-end evaluation. 

Lessons Learned 
An important next step is to leverage larger corpo-
ra of language paired with robot actions. Children
hear millions of words in many different contexts
as they acquire language. The relative lack of data
was the cause of many of the errors our system
made. For example, an annotator referred to a pal-
let that was separated from other pallets as “the

a. “to the truck” b.  “past the truck” c. “toward the truck”

Figure 7. Heat Maps Showing High-Probability and Low-Probability Ending Locations for 
Various Phrases According to a Model Trained on the Spatial Relations Data Set. 

The path is constrained to be a straight line starting at the left edge of the image. 
The highest-probability path is drawn in white. 

a. “on the truck” b. “near the truck”

Figure 8. Heat Map Showing High-Probability and Low-Probability Locations 
According to a Model Trained on the Mobile Manipulation Corpus. 

The location of the truck is drawn in white. 
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lonely pallet,” but the word “lonely” did not appear
in the training set. As a result, the system was
unable to learn a model for this word. Our learning
framework requires detailed alignment annotation
between linguistic constituents and groundings in

the world, which limits our ability to leverage larg-
er data sets. Our next goal is to reduce the amount
of annotation required by using algorithms that
alternate between picking labels and learning mod-
els using the inferred labels. A second approach to

a. Spatial Relations 

Word  F-Score Accuracy No. of Examples 

path prepositions: 

across 0.77 0.83 42 

around 1.00 1.00 218 

past   0.71 0.98 218 

through 0.75 0.83 24 

to     0.93 0.99 474 

toward 0.84 0.99 214 

b. Route Directions 

Word  F-Score Accuracy No. of Examples 

path prepositions: 

across 0.75 0.75 8 

around 0.80 0.80 10 

past   0.80 0.83 30 

through 0.81 0.81 114 

to      0.72 0.71 144 

toward  0.61 0.69 29 

place prepositions: 

near   1.00 1.00 8 

on     0.98 0.98 55 

verbs:  

take   0.92 0.93 40 

 

c. Mobile Manipulation 

Word F-Score Accuracy No. of Examples 

path prepositions: 

to     0.78 0.79 48 

toward 0.80 0.75 4 

place prepositions: 

near   0.00 0.50 4 

on     0.66 0.66 62 

verbs: 

lift 0.88 0.87 60 

put 1.00 1.00 6 

take 1.00 1.00 12 

Table 1. Performance of the Learned Model in Terms of Recognizing Actions for Various Words.

The final column shows the number of examples in the test set, with a 70 percent–30 percent training-testing split. 
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this problem would be to acquire word meanings
from existing large corpora (Kollar and Roy 2009).
The challenge here is to identify data sets that
would allow the system to map from words such as
“pick up” or “lonely” to actions and perceptual fea-
tures accessible to the robot. 

A second challenge is interpreting high-level com-
mands such as “unload the truck” that might require
long sequences of primitive actions, as well as low-
level commands such as “drive forward six inches.”
An action space detailed enough to represent actions
such as driving forward a small distance will require
extremely long action sequences to generate behav-
ior like unloading a truck. This problem was made
concrete by one of our annotators, who posted
instructions for picking up a dime with a forklift: 

Raise the forks 12 inches. Line up either fork in
front of the dime. Tilt the forks forward 15 degrees.
Pull the truck forward until one fork is directly over
the dime. Completely lower the forks. Put the truck
in reverse and gently travel backward a foot. The
dime will flip up backwards onto the fork. Level the
forks back to 90 degrees. Raise the dime with the
forks 12 inches. 

To handle different granularities of actions, we
are developing a hierarchical action space and new
search algorithms that will enable the robot to effi-
ciently search among both large-scale and small-
scale actions when following a command. 

A third challenge is learning word meanings
that generalize across different domains without
retraining the model. Figure 9 shows three differ-
ent meanings for the word “to” learned from three

different data sets. A further challenge is modifying
learned models in response to modifiers, such as
“half-way to the truck.” Modeling nuanced
changes of meaning in different contexts remains
a challenging problem. 

The ability to understand spatial language dis-
course and engage in dialogue is critical to enable
robots to robustly interact with humans using lan-
guage. The model described here represents an ear-
ly step toward a framework for acquiring word
meanings, but much remains to be done. A system
that can understand the full complexity of lan-
guage must be able to handle ellipsis (when words
are omitted from sentences), conditional expres-
sions (for example, “if a truck comes in, unload it”),
and quantifiers (for example, “move all the tire pal-
lets”). It must also reason about uncertainty from
the speech recognizer about what the person actu-
ally said, as well as uncertainty in the parser, such
as ambiguous prepositional phrase attachment. We
envision a joint search over speech-recognition
candidates, parse structures, and groundings in the
world, applying information from multiple modal-
ities jointly to reduce uncertainty. Furthermore the
system must be able to combine multiple utter-
ances into higher-level semantic units. Finally, it
must be embedded in a higher-level dialogue
understanding framework that can reason about
the system’s uncertainty and take actions to reduce
it, such as asking questions. Grounding graphs pro-
vide a building block to address these problems, but
a more sophisticated framework must be developed
to utilize them effectively. 

a. Spatial relations b. Route directions c. Mobile manipulation

Figure 9. Heat Maps Showing High- and Low-Probability 
Ending Locations for a Path Corresponding to “To the Truck.” 

The path is constrained to be a straight line starting at the left edge of the image. 
The highest probability path is drawn in white.
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Conclusion 
This article describes two probabilistic approaches
to the symbol-grounding problem. We first re -
viewed a generative model that factors according
to the sequential structure of language. Next we
presented a hierarchical model, called generalized
grounding graphs (G3), that is able to learn word
meanings from corpora and compose them to
understand novel commands. We described appli-
cations of the G3 framework to several different
domains and presented results demonstrating that
it has learned the meanings of complex spatial
prepositions and verbs. 
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