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Crowd-Sourcing Real-World
Human-Robot Dialogue and
Teamwork through Online
Multiplayer Games

Sonia Chernova, Nick DePalma, Cynthia Breazeal

W We present an innovative approach for large-
scale data collection in human-robot interac-
tion research through the use of online multi-
player games. By casting a robotic task as a
collaborative game, we gather thousands of
examples of human-human interactions online,
and then leverage this corpus of action and dia-
logue data to create contextually relevant social
and task-oriented behaviors for human-robot
interaction in the real world. We demonstrate
our work in a collaborative search and retrieval
task requiring dialogue, action synchronization,
and action sequencing between the human and
robot partners. A user study performed at the
Boston Museum of Science shows that the
autonomous robot exhibits many of the same
patterns of behavior that were observed in the
online data set and survey results rate the robot
similarly to human partners in several critical
measures.

e envision the need for robots to be not only func-
Wtional, but adaptable, robust to the diversity of human

behaviors and speech patterns, and capable of acting
in a both task and socially appropriate manner. Natural and
diverse human-robot interaction (HRI) of this kind has been a
long-standing goal for robotics research, and a broad range of
approaches have been proposed for the development of robots
that support diverse interactions. Among proposed techniques,
variants that are dependent on hand-coded rule sets and prob-
abilistic single-task policy learning methods have proven to be
too brittle for interactive applications, failing to generalize over
the diversity of possible inputs. Such systems typically force the
user to adapt their method of interaction to fit the coded
requirements of the robot.

A different approach to creating more humanlike robotic sys-
tems has focused on imitating human cognitive processes by
developing large scale cognitive architectures that support
many modalities and interaction styles. While such systems
have been shown to successfully support a broad range of inter-
actions, they rely heavily on precoded data. For example, dia-
logue responses are typically limited to only one or two dozen
phrases, which pales in comparison to the diversity of human
speech.

We believe that in order for robotic systems to become a tru-
ly ubiquitous technology, robots must make sense of natural
human behavior and engage with humans in a more humanlike
way. Robots must become more like humans instead of forcing
humans to be more like robots.

Much of human knowledge about the appropriateness of
behavior, in terms of both speech and actions, comes from our
personal experiences and our observations of others. Common
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Item Game Context Generalization

Research Journal top of stack of boxes reachable by only one player

Captured Alien on a raised platform reachable by either player

Canister on toxic barrels reachable by either, but one is better suited
Memory Chip appears when both players stand on a weight sensor requires action synchronization

Sample Box one of 100 identical boxes located on a high shelf requires coupled actions and dialog

Table 1. Description of the Five Objects Players Must Obtain to Successfully Complete the Game.

behaviors that are repeated hundreds of times in dif-
ferent variations form a knowledge base from which
we learn what to say and what actions to perform to
achieve certain goals. Acquiring an equivalent data
set for human-robot interaction has proven chal-
lenging, largely due to the costs of running user
studies while recruiting hundreds of participants to
perform the task of interest. As a result, while data-
driven techniques and crowd sourcing have become
the norm in other areas of robotics, they have not
been widely adopted in HRI.

We propose an innovative approach for data col-
lection through the use of virtual characters, and
in particular online multiplayer games. Motivated
by projects such as the Restaurant Game (Orkin
and Roy 2007, 2009) and Games with a Purpose
(von Ahn and Dabbish 2008), we show that by
casting a robotic task as a collaborative multiplay-
er game we are able to gather thousands of exam-
ples of human-human interaction. We describe
how we transfer this data into the physical world
and use it to generate natural and robust human-
robot interactive behavior in a similar real-world
environment.

We demonstrate our work in a collaborative
search and retrieval task requiring dialogue, action
synchronization, and action sequencing between
the human and robot partners. Using a custom
game developed around the task, called Mars
Escape, we randomly paired online players in the
roles of a human and robot. We recorded data from
more than 700 players, resulting in a diverse inter-
action corpus. In the following sections we
describe the game and data set, and then discuss
how the online data can be mapped into the phys-
ical world and leveraged to generate natural, task-
centered interactive robot behaviors. While there
are many possible techniques for utilizing this
data, in this work we report on a memory-based
approach based on case-based reasoning (CBR)
(Micarelli, Panzieri, and Sansonetti 2007) as a
means of studying to what degree crowd-sourced
online data can be transfered directly to real-world
domains.

We report results of a user study evaluating the
resulting autonomous robot system at the Boston

Museum of Science. We compare its performance
to a teleoperated robot following a scripted task
protocol and examine both the behavior of the
robot and participant survey responses. We show
that the robot successfully performs the collabora-
tive task and exhibits many of the same patterns
of behavior that were observed in the online data
set. Finally, we discuss open research problems,
such as robust transfer from online to physical
worlds, integration of data-driven techniques with
cognitive architectures, and generalization across
domains.

Online Game

Mars Escape is a two-player online game in which
two randomly paired players take on the roles of a
human astronaut and a robot on Mars. Figure 1
presents a screenshot of the game, showing the
action menu and dialogue between players. We
designed the game to model a collaborative search
and retrieval task in which the players must locate
and retrieve the following five items to successful-
ly complete the mission: research journal, captured
alien, canister, memory chip, and sample box. The
object retrieval task is incorporated into the back-
story of the game, in which players are told that
the oxygen generator on their remote research sta-
tion has failed, and that the pair must salvage the
most critical items and return to the spaceship
before oxygen supplies run out (10 minutes). Col-
laboration and communication between players
are required to complete the entire task. Table 1
lists the location of each object and a description
of the class of problems it represents.

During the game, players are able to navigate in
the environment, manipulate objects using six pre-
determined actions (pick up, put down, look at, go to,
use, analyze) and communicate with each other
through in-game text-based chat. All player actions
and dialogue are recorded by the game server. The
game terminates when the players choose to exit,
or when the game clock runs out. Players are then
asked to complete a survey consisting of the fol-
lowing eight questions rated on a 5-point Likert
scale (strongly agree to strongly disagree):
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Figure 1. The Mars Escape Game.

1. My overall game experience was enjoyable.

2. The other player’s performance was an important
contribution to the success of the team.

3. The actions of the other player were rational.
4. The human-robot team did well on the task.

5. The other player communicated in a clear man-
ner.

6. The other player performed well as part of the
team.

7. The other player’s behavior was predictable.

8. The other player was controlled by a human.

Online Interaction Data Set

games. Of these, approximately 700 player logs
were retained for analysis after excluding logs in
which a player exited the game prematurely by
quitting the application and not filling out the sur-
vey. The following is an example transcript show-
ing an interaction in which the astronaut (A) and
the robot (R) retrieve the book and canister:

A: “hi”
R: “hey”
R: “i'll get the yellow can”

A: “ok, i'll get the book” [astronaut picks up book]
[robot picks up canister] [astronaut places book in
container|

A: “lets do the weight sensor next” [astronaut enters

During the first three months of the release of the weight sensor] [robot places book in container]
game we captured data from 558 two-player R: “ok” [robot enters weight sensor]
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Figure 2. The MDS Robot Platform (a) and Study Setup at the Museum of Science (b).

As a result of the dialogue exchange, both players
become physically colocated on the weight sensor.
This example highlights the interleaved nature of
dialogue and actions within the data set. On aver-
age, players exchanged 19.8 utterances per game,
10.6 in the robot role and 9.2 in the astronaut role.
We found that first-time players engaged in dia-
logue more frequently, while players who were
already experienced at the task focused on task-
specific actions. A total of 708 unique phrases were
recorded, most of which occurred only a single
time in the data set.

The dialogue corpus highlights some of the ben-
efits and challenges of crowd-sourcing interactive
behaviors through online games. The dialogue
data set is extremely diverse, far more so than any
hand-coded system of comparable scope. This
diversity can be leveraged to enable the robot to
understand and contextually relate a broad range
of phrases, as well as to produce varied, more
humanlike dialogue. The challenge introduced by
this data-gathering technique is one that’s shared
by most crowd-sourcing applications — the issue
of data quality. Player dialogue frequently includ-
ed topics that are not relevant to the task or are
inappropriate in a real-world context. Examples

included discussion of computer interfaces (“the
font is really big,” “click on the box”), personal
comments (“hi dad!”), Internet slang (“lmao”),
profanity, and dialogue in other languages, includ-
ing Spanish, Portuguese, and Chinese. While our
current solution to this problem is to filter the data
manually, we anticipate that automated solutions
can be developed in the future, possibly through
additional crowd sourcing.

The retrieval of different items provided differ-
ent degrees of challenge to the players, leading to
several commonly observed patterns of behavior.
For example, the majority of players first picked
up those items that were in clearly visible loca-
tions and could be retrieved individually (that is,
the canister and the journal), delaying the
retrieval of collaborative items. Somewhat unex-
pectedly, we also found that only 57 percent of
player pairs successfully collected all five items in
the duration of the game (86 percent collected
three or more). Of the five items, in 75 percent of
games the last item to be retrieved was the sample
box, the item that was most difficult to find and
required the greatest degree of collaboration and
communication between players. Furthermore, of
the games in which players collected four items
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and missed only one, 89 percent were missing the
sample box. All of these behavioral patterns affect
the ordering, density, and distribution of data
across the range of recorded player behaviors. In
later sections we discuss how these patterns are
reproduced by the robot in real-world experi-
ments.

Transfer to Physical World

The robot used in this research is the MDS plat-
form, which combines a mobile base with a social-
ly expressive face and two dexterous hands that
provide the capability to grasp and lift objects (fig-
ure 2a). The robot is equipped with a biologically
inspired vision system that supports animate
vision for shared attention to visually communi-
cate the robot’s intentions to human observers.
Auditory inputs support a microphone array for
sound localization, as well as a dedicated channel
for speech recognition through a wearable micro-
phone. Speech recognition utilized Sphinx 4,! with
a grammar file generated from the online corpus.
Speech synthesis and synchronized jaw move-
ments were generated through the Cereproc soft-
ware.? Navigation was implemented using a stan-
dard A* algorithm. Manipulation of objects was
teleoperated by a hidden operator using a standard
off-the-shelf 6DOF Connexion Mouse.

The Environment

In order to evaluate the behavior of the physical
MDS robot in the collaborative task, we recreated
the Mars Escape environment at the Boston Muse-
um of Science. The physical setup of the space,
shown on the right side of figure 2, closely mod-
eled the game environment. It contained five mis-
sion objects in similar placements to their in-game
counterparts, including a tall shelf to keep the
journal out of the robot’s reach; a raised platform
that could be lowered to access the alien; toxic bar-
rels near which the human user was warned to step
away; a box that would automatically open to
reveal a chip when both players stepped on the
scale; a shelf unit containing several dozen small
numbered boxes, one of which contained a sam-
ple; and a number of other props, such as empty
crates and tools. The left side of figure 2 shows the
robot reaching for the button that activates the
moving platform while the human participant
retrieves the journal from the shelf.

Due to the complexity of the search and
retrieval task, a high-precision offboard Vicon MX
camera system was used to supplement the robot’s
onboard sensors and provide a degree of environ-
mental awareness comparable to that of a human.
The Vicon system was used to track the position of
the robot, the objects in the environment, and the
participant’s head and right hand in real time
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using lightweight reflective markers attached to
object surfaces.

Since the collaborative task presented many
challenges in terms of robot sensing and mobility,
a remote operator monitored the robot’s progress
from a hidden location and was able to intervene
if necessary. Possible interventions included cor-
recting the sensor state (for example, when a per-
son picked up an object, but long-term occlusion
prevented the system from recording the event),
and overriding the autonomous behavior of the
robot by selecting a different action. Examples of
overrides are discussed in the evaluation section.

Data Transfer

In the transfer of a virtual character to an embod-
ied agent, a one-to-one mapping must be created
between the referent objects, the action set, and
the world state of both worlds. The action set of
the robot contained the same six actions as the
online game — pickup, put down, go to, use, look at,
and analyze — plus the additional action, speak, for
dialogue. Physically impossible actions, such as
pick up astronaut, were ignored.

All mission-critical objects had equivalent coun-
terparts between the virtual and physical worlds.
The robot’s state was modeled using the following
13 features: the last robot action, the last astronaut
action, the last robot spoken phrase, the last astro-
naut spoken phrase, object held by astronaut,
object held by robot, and the area location (for
example, center, near shelf, near toxins, and so on)
of the astronaut, robot, journal, alien, chip, canis-
ter, and sample box. This information enabled
tracking of recent events in terms of agent actions
and dialogue, while also maintaining a coarse
long-term history based on current object loca-
tions (for example, which objects have already
been retrieved). The continuous movement of
characters in the online game was discretized into
regions in order to allow for generalization across
similar actions.

Memory-Based Test Condition

Our goal is to leverage the corpus of interaction
data describing the movements, actions, and spo-
ken dialogue of players in the virtual world, to gen-
erate contextually correct social and task-oriented
robot behaviors in the physical world. We are par-
ticularly interested in exploring the degree to
which data gathered in the virtual world can be
directly leveraged in the real world through data-
driven techniques. To study this question we chose
a memory-based approach to behavior generation
utilizing case-based reasoning (Kolodner 1993,
Aamodt and Plaza 1994).

Case-based reasoning utilizes a library of past
experiences (cases) to solve new problems by find-



ing similar past cases and reusing them in the new
situation. CBR has been successfully applied to
autonomous robot control in many applications,
including indoor navigation (Micarelli, Panzieri,
and Sansonetti 2007) and autonomous robot soc-
cer (Ros et al. 2009). In this work, we use the inter-
action corpus collected in the online game to cre-
ate a case library and apply CBR retrieval to
generate autonomous robot behavior in the phys-
ical world. Our case library contains only examples
recorded in the virtual world. Methods for aug-
menting this data set with new examples from the
physical world will be explored in future work.
Using the state representation described in the
previous section, our data set resulted in 82,479
unique cases. For case storage and retrieval we uti-
lized the open source FreeCBR software package.?
During case retrieval, the current state of the robot
is encoded using the feature vector and compared
to the library of recorded cases. Similarity between
the query and cases in the library is calculated
based on a weighted sum of differences between
features. We selected the weight for each feature
based on the accuracy of the measure of that fea-
ture. For example, the weighting for all object loca-
tions was high because we were able to track this
information with high accuracy, whereas a low
weight value was used to compare speech data due
to noise in the speech-recognition system. The case
library includes all actions (both physical and
speech) equally, enabling the same action selection
mechanism to perform both behaviors.

Scripted Test Condition

Our second test condition, based on scripted Wiz-
ard-of-Oz control, represents hand-coded rule sets
that are frequently found in robotic applications. In
the scripted condition, a hidden operator teleoper-
ates the robot through a preset sequence of dialogue
and actions following a set script. The following
example shows the first few actions of the script:

R: “Lets collect these items and get out of here.”

R: “The toxic waste barrels look dangerous. I will go
get the canister.”

R: “Can you get the journal?” [go to toxic waste bar-
rel] [pickup canister] [go to container] [drop canis-
ter]

R: “I'll go get the alien”

The scripted condition represents a precoded,
open-loop behavior typical of many automated
interactive systems. In the scripted condition the
robot clearly states its intentions as it moves
between different elements of the task. However,
the robot is unable to adapt or respond to the
speech and actions of the human participant. In
our evaluation, we compare participant responses
to the scripted and memory-based conditions, and
show that although the scripted condition was rat-

ed more positively with respect to communication,
it was rated significantly lower than the memory-
based approach in performing as part of a team.

User Study Setup

We recruited 44 museum visitors as participants,
none of whom had previous experience with
humanoid robots. Data from 13 trials was thrown
out due to robot error (dead battery, motor slip-
page, or critical perception problem), leaving 15
participants for the scripted condition (6 male, 9
female, 12-36 years of age), and 16 for the CBR
condition (10 male, 6 female, 14-35 years of age).
Before the start of the experiment participants
were informed that the robot could understand
speech, move around, pick up objects, and use its
sensors to locate organic life-forms. They were also
instructed that the toxins were hazardous to
humans and should be avoided. The study contin-
ued until the team retrieved all five objects. Fol-
lowing the study, participants were asked to fill out
the same questionnaire as in the online game.

Evaluation and Comparison

The behavior of museum participants toward the
robot and the task varied greatly. Some users acted
independently, freely explored the space, quickly
found all objects and tried to help the robot with
its share of the task. A similar number of partici-
pants took a passive role, expected the robot to
take charge and to provide all the answers. Below
we present and discuss example interactions and
then present a quantitative comparison of the
experimental conditions.

The following example shows a hesitant partici-
pant (A), who checks with the robot (R) before per-
forming any action:

A: “Do you want me to pick up the alien?”

R: “Climb up there, I can’t go” [participant picks up

alien]

A: “Do you want to put it in the bucket?”

R: “Please put the object in the bucket” [participant
puts object in bucket]

Similar behaviors were observed in several other
participants. We note that although the alien is
successfully retrieved, the robot’s response to the
first question requires some interpretation. In fact,
the “Climb up there ...” statement was originally
crowd-sourced from an online player in reference
to the journal, not the alien. Reused by CBR in this
context, the robot’s phrase communicates the nec-
essary information, but in an unnatural manner.
The response given to the second question is more
appropriate.

Another dialogue exchange, this time initiated
by the robot, shows how successful dialogue paired
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Figure 3. Comparison of Object Collection Times.

with social cues fosters human-robot collaboration
and leads to successful retrieval of the sample box:

R: “Check the little box”
A: “What little box?”
R: “The object is in bin 56” [robot directs gaze at the
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shelf of boxes] [participant follows gaze and realizes

the object location]

A: “Oh okay” [participant retrieves sample box]
Finally, we present an example in which several
robot errors result in a confusing situation:



[robot picks up canister, moves toward participant
while looking at him]

[canister becomes occluded from the perception
system]

R: “I gave you the canister”

A: “The bucket is over there.” [points]

R: “I gave you the canister” A: “Oh you want to give
it to me?”

R: “Could you pick up the biohazard waste?” [Par-
ticipant takes canister out of robots hand]

R: “Could you pick up the biohazard waste?”
A: “You want me to go over there and pick it up?”

[participant picks up barrel] [robot moves to scale]
[participant follows robot, places barrel on scale]

A number of factors played a role in this situa-
tion. First, due to perceptual error, the canister dis-
appears from the robot’s grasp. The phrase “I gave
you the canister,” which was originally used online
when handing an object to the astronaut, is then
matched by CBR as the closest relevant event in
the interaction corpus. The participant, not know-
ing about the perception error, attempts to inter-
pret the robot’s intentions and take the canister.
The interaction concerning biohazard waste is
then retrieved by CBR from a different log in
which the players consider placing a barrel on the
scale. In the original online scenario the human
player answers “it’s too toxic” and does not retrieve
the barrel. Interestingly, in the real-world scenario
most people treated the robot as an expert and fol-
lowed its requests even if they went against the
guidelines given in the study.

Action Order

Figure 3 plots the distribution of times at which
items were collected by participants in the online
game and the memory-based study condition. The
x-axis shows the elapsed time in the trial in sec-
onds. We note several interesting patterns. In the
online data, the sample box is typically retrieved
much later than the other four items, with signifi-
cantly fewer total successful retrievals. The chip,
the other item that required collaboration between
players, also shows a distribution skewed further
along the time line than the easily accessible can-
ister, journal, and alien.

Comparing the online data to the memory-
based condition in the museum, we observe simi-
lar distributions in the data for all five items, with
several noteworthy differences. The time between
the beginning of the study and the retrieval of the
first object is longer in the real-world scenario. This
can be attributed to the participants taking time to
evaluate the surroundings and observe the robot.
Additionally, the time at which the canister is
picked up tends to occur later in the experiment.
This is due to the fact that in the physical world,
the robot’s pickup action requires approximately

60 seconds to complete, whereas in the online
game this action was instantaneous. The overall
run time for the online and real-world conditions
was similar.

Critically, this data highlights the fact that many
of the same high-level behavior patterns are pres-
ent in both the virtual and real-world applications
of this task. While some of this effect is likely due
to the structure of the domain itself, such as the
placement of visible objects, we hypothesize that
the robot’s action selection choices, driven by the
crowd-sourced data set, also play a significant role.
For example, had the robot chosen always to locate
the sample box before retrieving the canister, the
distribution of the data would be very different.
Further studies are needed to verify this hypothe-
sis and to test to what degree the action selection
of the robot influences the behavior of the human.

Level of Autonomy

In the memory-based condition, the robot took an
average of 24.0 actions (4.4 utterances) to com-
plete the task, compared to 25 (8 utterances) in the
scripted condition. An average of 64.1 = 4.4 per-
cent of all robot actions in the memory-based con-
dition were selected autonomously, as defined by
the number of autonomous actions divided by the
total number of actions. The remaining actions
were manually triggered by an operator as an over-
ride. Unsurprisingly, locating the sample box
proved to be a significant challenge for the human-
robot teams, resulting in the greatest number of
operator interventions. A common interaction
would be for the robot to approach the shelf of
boxes while the human was paying attention else-
where. The robot would scan the shelf, announce
the location of the box containing the sample,
then continue on to other tasks with the assump-
tion that the user would pick up the box (the robot
is unable to retrieve the box in both the online and
real-world versions of the task). Approximately
half of the participants appropriately responded by
picking up the sample box item, while others did
not pay attention to the message, or simply
observed the robot and did not take initiative to
move toward the shelf. In these cases, if the sam-
ple box was not retrieved after some time, the
remote operator would manually redirect the robot
back to the shelf to repeat its instructions. The sec-
ond most common override instruction was in
relation to repeat a failed attempt to pick up the
canister.

Survey Results

Figure 4 presents a comparison of the survey
results for the online, scripted, and memory-based
conditions. Note that for clarity of presentation,
the 5-point Likert scale has been collapsed to 3 cat-
egories by combining the “strongly disagree”/“dis-
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Figure 4. Comparison of the Results of the Eight Survey Questions between the
Online, Scripted, and Case-Based Reasoning Conditions.

Questions 1-8 correspond to figures (a)-(h), respectively.

agree” categories (1-2), and the “strongly agree” /
“agree” categories (4-5).

The survey shows that the vast majority of par-
ticipants enjoyed taking part in the study, espe-
cially in the real-world scenarios. In all three study
conditions, participants agree that the robot made
an important contribution to the task and acted
rationally (b—c). In fact, although 33 percent of par-
ticipants reported uncertainty or disagreement
with the statement that the robot’s actions were
rational, the same numbers are reported for the
rationality of human players in the online game!
As a result, we view the autonomous memory-
based approach as highly successful in scoring on
par with both human and scripted behavior in
these critical measures.

In the memory-based condition, the robot is rat-
ed similarly to online human partners with respect
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to its performance at the overall task (d); both the
online and memory-based conditions score slight-
ly higher than the scripted condition. A similar,
and even more pronounced pattern of responses is
observed with respect to whether the robot per-
formed as part of a team (f). These results highlight
that the nonadaptable nature of a predefined poli-
cy adversely affects both task performance and col-
laboration, supporting the need for further
research into adaptable systems.

Finally, human partners in the online game sig-
nificantly outperformed both robot conditions in
three measures: clear communication (e), pre-
dictable behavior (g), and being human (h). In all
three measures, the scripted condition scored bet-
ter than the memory-based condition. However,
despite the ordered nature of the script, a signifi-



cant number of participants found the robot’s
behavior difficult to predict, which highlights the
potential need for additional social cues to com-
municate intentions more clearly. We believe that
the measure of whether the robot was autonomous
or controlled by a human is strongly dependent on
the clarity of communication and predictability of
actions. We anticipate that improvements in these
areas will lead to perceptions of more humanlike
behavior for the entire system. Interestingly, we
note that more than 20 percent of online players
were uncertain as to whether their teammate was
human or not.

Discussion

We view the previously described approach as one
that sets a baseline for what can be achieved
through data-driven methods directly mapping
from the virtual to the physical world. In this sec-
tion we discuss lessons learned through the course
of this study, important directions for future
research, and related work.

Obtaining the Data Set

Arguably, the greatest challenge that any crowd-
sourced system must address is to ensure that the
sourced data accurately represents, and effectively
maps to, the goal task. In the collection of an
online data set that will be transferred to the phys-
ical world, game designers must ensure that the
domain attributes that are most critical to the suc-
cess of the real-world task are accurately represent-
ed in the online game. For example, due to its
focus on collaboration, the Mars Escape game
accurately modeled the movement speeds and
reach abilities of the characters, which we believe
aided in the transfer between domains.
Additionally, games must be designed with care
to incentivize the desired behaviors, which can
prove to be a challenge. The Mars Escape game
included time pressure, in the form of a time lim-
it, in order to encourage players to focus on per-
forming task-relevant actions. While successful
(most players stayed on task), an undesired side
effect of this feature was that players attempted to
minimize dialogue engagement in order to finish
the task more quickly. This effect was not intend-
ed and could be counteracted in the future by
removing the time pressure or allowing players to
communicate through a hands-free head set.

Transfer to the Physical World

The biggest challenges we observed with respect to
the transfer of data from the virtual to the physical
world were in relation to dialogue. One challenge
is filtering out phrases that are not only off topic,
but highly unlikely to be encountered in the real
world (for example, “this font is big”). While

crowd sourcing is the source of this problem, it is
also a likely source of a future automated solution.
Anonymous reviewers contracted through services
such as Amazon’s Mechanical Turk? could be used
to flag and remove inappropriate phrases in the
future.

Another challenge is that of generalization —
how can data crowd-sourced for one application be
applied for a highly related similar task? For exam-
ple, what if we were to perform the same search
and retrieval task but in a different setting, replac-
ing the book on top of the boxes with a vase on
top of a table? Although both the dialogue and
physical actions would need to be adapted to the
new task, changes to dialogue pose a greater chal-
lenge due to its diversity. Direct search and replace
methods substituting one word for another are
unlikely to succeed due to both the diversity of
human speech (for example, terms used to describe
the alien included bird, green thing, and toy, among
others) and the possible need for changes in the
grammatical structure of the resulting phrase.
More advanced techniques for generalization and
transfer between domains remain an interesting
topic for future work.

More generally, simulated worlds are far simpler
and more predictable than their real counterparts,
making the transfer of policies between these rep-
resentations difficult. Potential methods for
addressing this problem include building more
accurate simulations of the physical world by mod-
eling the stochasticity of real-world environments,
developing base behavior models through crowd
sourcing in simulation and then adaptively cor-
recting them in the physical world, and learning
the complete task in situ in the real world. Our
own work so far has explored crowd-sourcing base
policies through simulation, and we are in the
process of exploring techniques for refining these
policies through human instruction in the real
world. In situ crowd-sourced learning has previ-
ously been explored by Crick et al. (2011), who
demonstrated a technique for collecting a diverse
set of demonstrations by enabling online users to
directly teleoperate a robot through a maze.

Finally, the presented work focuses on a data-dri-
ven approach, exploring what can be achieved
with a direct mapping from a virtual to a physical
world. A natural future step is to integrate crowd-
sourced data into existing systems, such as higher-
order planning and cognitive architectures.

Related Work

Research on crowd-sourcing HRI derives ideas from
many related works in machine learning and
robotics. Projects leveraging Internet users to col-
lect large-scale data corpora for different applica-
tions include Soylent (Bernstein et al. 2010), Open-
Mind (Singh et al. 2010), OpenStreetMap (Haklay
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and Weber 2008), and the ESP Game (von Ahn and
Dabbish 2008). These projects range from collect-
ing common sense knowledge to providing copy
editing help for writers. Our work is particularly
motivated by two projects, Games With A Purpose,
which aims to address computational problems
through the creation of online games (von Ahn
and Dabbish 2008), and the Restaurant Game, in
which data collected from thousands of players in
an online game is used to create an automated
data-driven behavior and dialogue authoring sys-
tem (Orkin and Roy 2007; 2009). Our work differs
from that of Orkin and Roy most significantly in
that data collection is performed in a fundamen-
tally different domain than the one in which it is
applied.

Within robotics, crowd sourcing has been
applied to many subfields including vision
(Sorokin and Forsyth 2008), grasping (Sorokin et
al. 2010), and navigation (Crick et al. 2011). On a
smaller scale, data collection from nonexpert users,
both in the real world and in simulation, has been
used in learning from demonstration research,
such as interactive reinforcement learning
(Thomaz and Breazeal 2007), the TAMER learning
framework (Knox and Stone 2009) and confidence-
based autonomy (Chernova and Veloso 2009). All
of these approaches differ from our work in that
they utilize humans as data sources for policy
learning of narrowly defined tasks, whereas our
goal is to model and create systems capable of nat-
ural humanlike interaction. A closely related work
in the area of robotics is that of Kollar et al. (2010),
in which a large corpus of task-constrained lan-
guage is used to develop a robotic system capable
of following natural language instruction. This
work is highly relevant but does not extend to col-
laborative and social aspects of robot interaction
and behavior.

Conclusion

The ability for robots to engage in interactive
behavior with a broad range of people is critical for
future development of social robotic applications.
Our work presents a novel approach to generating
task-specific social behaviors based on crowd-
sourcing human-robot interaction in virtual
worlds. We show that crowd-sourced interaction
data describing the movements, actions and spo-
ken dialogue of players in the virtual world can be
used to generate contextually correct social and
task-oriented behaviors for a robot operating in a
real-world environment, allowing the robot to
exhibit similar patterns of behavior to those
observed in online players.

This is the first study that we are aware of exam-
ining large-scale online crowd sourcing for human-
robot interaction. While many existing approach-

110 AI MAGAZINE

es have explored learning in a virtual world, in
real-world environments, and through games, we
are unaware of any work that examines the trans-
fer of social and collaborative robot behaviors
between virtual to physical worlds at this scale.
The comparison of questionnaire answers across
both the online and real-world conditions shows
that participants enjoyed taking part in the inter-
action and rated the robot similarly to human part-
ners in several critical measures. In comparison to
a scripted interaction, participants reported the
autonomous robot to be a better team member, but
poor at communication. This work sets a baseline
for what can be achieved through direct data-dri-
ven methods and suggests many interesting direc-
tions for future research in this area. Ultimately, we
believe that crowd sourcing in virtual worlds has
the potential to become a powerful tool in human-
robot interaction research.

Acknowledgements

This work was supported by Microsoft Research
and the Office of Naval Research Award Numbers
N000140910112 and N000140710749. We would
also like to thank Dan Noren and the staff of Cah-
ners Computer Place at the Boston Museum of Sci-
ence for their support and assistance.

Notes

1. See cmusphinx.sourceforge.net.

2. See www.cereproc.com.

3. Johanson, L. 2010. FreeCBR. (freecbr.sourceforge.net).
4. See www.mturk.com.
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