
� The decision-making process of computer-con-
trolled opponents in video games is called game AI.
Adaptive game AI can improve the entertainment
value of games by allowing computer-controlled
opponents to fix weaknesses automatically in the
game AI and to respond to changes in human-play-
er tactics. Dynamic scripting is a reinforcement
learning approach to adaptive game AI that learns,
during gameplay, which game tactics an opponent
should select to play effectively. In previous work,
the tactics used by dynamic scripting were de-
signed manually. We introduce the evolutionary
state-based tactics generator (ESTG), which uses an
evolutionary algorithm to generate tactics auto-
matically. Experimental results show that ESTG im-
proves dynamic scripting’s performance in a real-
time strategy game. We conclude that high-quality
domain knowledge can be automatically generated
for strong adaptive game AI opponents. Game de-
velopers can benefit from applying ESTG, as it con-
siderably reduces the time and effort needed to cre-
ate adaptive game AI.

Today’s video games are becoming in-
creasingly realistic, especially in terms of
the graphical presentation of the virtual

world in which the game is situated. To further
increase realism, characters “living” in these
virtual worlds must be able to reason effective-
ly. The term game AI refers to the decision-mak-
ing process of computer controlled opponents.
Both game industry practitioners (Rabin 2004)

and academics (Laird and van Lent 2000) pre-
dict an increasing importance of game AI.
High-quality game AI will increase the game
playing challenge (Nareyek, 2004) and is a po-
tential selling point of a game. However, the
time allocated to develop game AI is typically
short; most game companies assign graphics
and storytelling the highest priorities and do
not implement the game AI until the end of
the development process (Nareyek 2004). This
complicates designing and testing strong game
AI (that is, game AI that is effective in winning
the game). Thus, even in state-of-the-art games,
game AI is generally of inferior quality (Schaef-
fer 2001).

Adaptive game AI, which concerns methods
for automatically adapting the behavior of
computer-controlled opponents, can potential-
ly increase the quality of game AI. Dynamic
scripting is a reinforcement learning technique
for implementing adaptive game AI (Spronck,
Sprinkhuizen-Kuyper, and Postma 2004). We
apply dynamic scripting to learn a policy for
the complex real-time strategy (RTS) game War-
gus. Dynamic scripting employs extensive do-
main knowledge in the form of knowledge
bases containing tactics (that is, sequences of
primitive actions). Manually designing these
knowledge bases may be time intensive, and
risks errors in analysis and encoding. We intro-
duce a novel methodology, implemented in
the evolutionary state-based tactics generator
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(2005) applied hierarchical reinforcement
learning in a limited RTS domain. Their action
space consisted of partial programs, essentially
high-level preprogrammed behaviors with a
number of choice points that can be learned
using Q-learning. Our tactics bear a strong re-
semblance to their partial programs: both are
preprogrammed, temporally extended actions
that can be invoked on a higher level.

Real-Time Strategy Games
RTS is a category of strategy games that focus on
military combat. For our experiments, we se-
lected the RTS game Wargus, which is built on
Stratagus, an open-source engine for RTS games.
Wargus (illustrated in figure 1) is a clone of the
popular game Warcraft II. RTS games such as
Warcraft II require the player to control armies
(consisting of different types of units) to defeat
all opposing forces that are situated in a virtual
battlefield (often called a map) in real time.

In most RTS games, the key to winning lies
in efficiently collecting and managing re-
sources and appropriately allocating these re-
sources over the various action elements. Typi-
cally, the game AI in RTS games, which
determines all decisions for a computer oppo-
nent over the course of the whole game, is en-
coded in the form of scripts, which are lists of
actions that are executed sequentially. We de-
fine an action as an atomic transformation in
the game situation. Typical actions in RTS
games include constructing buildings, re-
searching new technologies, and combat.

Both human and computer players can use
these actions to form their game strategy and
tactics. We will employ the following defini-
tions in this article: a tactic is a sequence con-
sisting of one or more primitive actions (for ex-
ample, constructing a blacksmith shop and
acquiring all related technologies for that
building), and a strategy is a sequence of tactics
that can be used to play a complete game. De-
signing strong RTS strategies is a challenging
task. RTS games include only partially observ-
able environments, which contain adversaries
that modify the state asynchronously, and
whose decision models are unknown, thereby
making it infeasible to obtain complete infor-
mation on the current situation. In addition,
RTS games include an enormous number of
possible actions that can be executed at any
given time, and some of their effects on the
state are uncertain. Also, to successfully play an
RTS game, players must make their decisions
under time constraints due to the real-time
game flow. These properties of RTS games make
them a challenging domain for AI research.

(ESTG), which uses an evolutionary algorithm
to generate tactics to be used by dynamic
scripting automatically. Our empirical results
show that dynamic scripting equipped with
the evolved tactics can successfully adapt (that
is, learn a winning policy) to static opponents.

In this article, we first describe related work.
We then introduce RTS games and the game
environment selected for the experiments.
Next, we discuss our RTS implementation for
dynamic scripting and the ESTG method for
automatically generating the dynamic script-
ing knowledge bases. Finally, we describe our
experimental results and draw conclusions.

Related Work
AI researchers have shown that successful adap-
tive game AI is feasible under the condition
that it is applied to a limited game scenario or
that appropriate abstractions and generaliza-
tions are assumed. 

Demasi and Cruz (2002) used an evolution-
ary algorithm to adapt the behavior of oppo-
nent agents in an action game. They reported
fast conversion to successful behavior, but their
agents were limited to recognizing three
ternary state parameters and making a choice
out of only four different actions. Guestrin et
al. (2003) applied relational Markov decision
process models for some limited RTS game sce-
narios, for example, three on three combat.
Cheng and Thawonmas (2004) proposed a
case-based plan-recognition approach for as-
sisting RTS players but only for low-level man-
agement tasks. In contrast, we focus on the
highly complex learning task of winning com-
plete RTS games.

Spronck, Sprinkhuizen-Kuyper, and Postma
(2004) and Ponsen and Spronck (2004) imple-
mented a reinforcement learning (RL) tech-
nique tailored for video games called dynamic
scripting. They report good learning perfor-
mances on the challenging task of winning
video games. However, dynamic scripting re-
quires a considerably reduced state and action
space to be able to adapt sufficiently fast. Pon-
sen and Spronck (2004) evolved high-quality
domain knowledge in the domain of RTS
games with an evolutionary algorithm and
used this to manually design game tactics
(stored in knowledge bases). In contrast, in the
present work we generate the tactics for the
knowledge bases fully automatically. Aha, Mo-
lineaux, and Ponsen (2005) build on the work
of Ponsen and Spronck (2004) by using a case-
based reasoning technique that learns which
evolved tactics are appropriate given the state
and opponent. Marthi, Russell, and Latham
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Reinforcement Learning with
Dynamic Scripting

In reinforcement learning problems, an adap-
tive agent interacts with its environment and
iteratively learns a policy, that is, it learns what
to do when to achieve a certain goal, based on
a scalar reward signal it receives from the envi-
ronment (Sutton and Barto 1998; Kaelbling,
Littman, and Moore 1996). Policies can be rep-
resented in a tabular format, where each cell in-
cludes a state or state-action value represent-
ing, respectively, the desirability of being in a
state or the desirability of choosing an action in
a state. Several approaches have been defined
for learning optimal policies, such as dynamic
programming, Monte Carlo methods, and tem-
poral-difference (TD) learning methods (Sutton
and Barto 1998).

Dynamic scripting (Spronck et al. 2004) is a
reinforcement learning technique designed for

creating adaptive video game agents. It em-
ploys on-policy value iteration to optimize
state-action values based solely on a scalar re-
ward signal. Consequently, it is concerned on-
ly with maximizing immediate rewards. Action
selection is implemented with a softmax
method (Sutton and Barto 1998). The reward in
the dynamic scripting framework is typically
designed with prior knowledge of how to
achieve a certain goal and causes high discrep-
ancies in the state-action values. Consequently,
this will lead to faster exploitation; that is, the
chance that the greedy action is selected in-
creases.

Dynamic scripting has been designed so that
adaptive agents start exploiting knowledge on-
ly in a few trials. It allows balancing exploita-
tion and exploration by maintaining a mini-
mum and maximum selection probability for
all actions. Elementary solution methods such
as TD learning or Monte-Carlo learning update
state-action values only after they are executed
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Figure 1. Screenshot of a Battle in the RTS Game Wargus.



ally is essential for its successful use in video
games. The learning task in a game constantly
changes (for example, an opponent player may
choose to switch tactics), thus aiming for an
optimal policy may result in overfitting to a
specific strategy. Dynamic scripting is capable
of generating a variety of behaviors and re-
sponding quickly to changing game dynamics.

Dynamic Scripting in Wargus
In this section we will detail our dynamic
scripting implementation in the RTS game
Wargus. In Wargus, we play an agent controlled
by dynamic scripting, henceforth called the
adaptive agent, against a static agent. Both agents
start with a town hall, barracks, and several
units. The static agent executes a static script
(representing a strategy), while the adaptive
agent generates scripts on the fly based on its
current policy. We will next describe our repre-
sentation of the state space in Wargus and de-
tail the policy update process. 

States and their Knowledge Bases
Typically, players in an RTS game such as War-
gus start with few admissible actions available
to them. As players progress, they acquire a
larger arsenal of weapons, units, and buildings.
The tactics that can be used in an RTS game
mainly depend on the availability of different
unit types and technologies. 

We divided the Wargus game into a small
number of abstract states. Each state corre-
sponds to a unique knowledge base whose tac-
tics can be selected by dynamic scripting when
the game is in that particular state. We distin-
guish states according to types of available
buildings (see figure 2), which in turn deter-
mine the unit types that can be built and the
technologies that can be researched. Conse-
quently, state changes are spawned by tactics
that create new buildings. 

Dynamic scripting starts by selecting tactics
for the first state. When a tactic is selected that
spawns a state change, tactics will then be se-
lected for the new state. To avoid monotonous
behavior, each tactic is restricted to be selected
only once per state. Tactic selection continues
until either a total of N tactics is selected (N =
100 was used for the experiments) or until final
state 20 (see figure 2) is reached. For this state
in which the player possesses all relevant build-
ings, a maximum of M tactics must be selected
(M = 20 was used for the experiments) before
the script moves into a repeating cycle (called
the attack loop), which continuously initiates
attacks on the opponents. 

(Sutton and Barto 1998). In contrast, dynamic
scripting updates all state-action values in a
specific state through a redistribution process
(Spronck et al. 2004), so that the sum of the
state-action values remains constant.

Because of these properties, dynamic script-
ing cannot guarantee convergence. This actu-
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Nodes represent states (defined by a set of completed buildings), and state transi-
tions involve constructing a specific building.



Weight Value Adaptation
For each tactic in a state-specific knowledge
base, dynamic scripting maintains an associat-
ed weight value that indicates the desirability
of choosing that tactic in the specific state. At
the start of our experiments weight values of all
tactics are initialized to 100. After each game,
the weight values of all tactics employed are
updated. The magnitude of the weight adjust-
ments in a state is uniformly distributed over
the nonselected tactics for that state. The size
of weight value updates is determined mainly
by a state reward, that is, an evaluation of the
performance of the adaptive agent during a cer-
tain state. To recognize the importance of win-
ning or losing the game, weight value updates
also take into account a global reward, that is,
an evaluation of the performance of the adap-
tive agent for the game as a whole. 

The state reward function Ri for state i, i �
�0, for the adaptive agent a yields a value in the
range [0, 1] and is defined in equation 1.

(1)

In equation 1, Sa,x represents the score of the
adaptive agent a after state x, Ss,x represents the
score of the static agent s after state x, Sa,0 = 0,
and Ss,0 = 0. The score is a value that measures
the success of an agent up to the moment the
score is calculated. The score never decreases
during game play. 

The global reward function R� for the adap-
tive agent a yields a value in the range [0, 1],
and it is defined in equation 2.

(2)

In equation 2, Sa,x and Ss,x are as in equation
1, L is the number of the state in which the
game ended, and b � (0, 1) is the break-even
point. At this point the weight values remain
unchanged. The score function is domain de-
pendent and should reflect the relative
strength of the two opposing agents in the
game. For Wargus, the score Sx,y for agent x af-
ter state y is defined in equation 3.

(3)

In equation 3, for agent x after state y, Mx,y
represents the military points scored, that is, the
number of points awarded for killing units and
destroying buildings, and Bx,y represents the
building points scored, that is, the number of
points awarded for conscripting units and con-

S x,y = C Mx,y + (1 − C) B x,y

R∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
S a,L

S a,L + S s,L
, b if a lost,

max
S a,L

S a,L + S s,L
, b if a won.

R i =
(S a,i − S a,i − 1)

(S a,i − S a,i − 1) + ( S s,i − S s,i − 1)

structing buildings. The constant C ⊥ [0, 1] rep-
resents the weight given to the military points
in the score function. Since experience indi-
cates that military points are a better indication
for the success of a tactic than building points,
C is set to 0.7. Weight values are bounded by a
range [Wmin,Wmax]. A new weight value is cal-
culated as W + �W, where W is the original
weight value, and the weight adjustment �W
is expressed by equation 4. 

(4)

In equation 4, Rmax � � and Pmax � � are the
maximum reward and maximum penalty, re-
spectively, R� is the global reward, Ri is the state
reward for the state corresponding to the
knowledge base containing the weight value,
and b is the break-even point. For the experi-
ments in this article, we set Pmax to 400, Rmax to
400, Wmax to 4000, Wmin to 25, and b to 0.5.
The constant Cend � [0, 1] represents the frac-
tion of the weight value adjustment that is de-
termined by the global reward. It is desirable
that, even if a game is lost, knowledge bases for
states where performance was successful are
not punished (too much). Therefore, Cend was
set to 0.3, that is, the contribution of the state
reward Ri to the weight adjustment is larger
than the contribution of the global reward R�.

Automatically Generating Tactics
The evolutionary state-based tactics generator
(ESTG) method automatically generates knowl-
edge bases for use by dynamic scripting. The
ESTG process is illustrated in figure 3.

The first step (called EA, for evolutionary algo-
rithm) uses an evolutionary algorithm to search
for strategies that defeat specific opponent
strategies. This step of the process is similar to
experiments described by Ponsen and Spronck
(2004). The opponent strategies are provided to
EA as a training set, which is the only manual
input ESTG requires. In our experiments, the
training set contains 40 different strategies.
Four of these are static scripts that were de-
signed by the Wargus developers. Static scripts
are usually of high quality because they are
recorded from human player strategies. The re-
maining 36 strategies in our training set are
evolutionary scripts, that is, previously evolved
strategies that we will use as an opponent strat-
egy. The output of EA is a set of counterstrate-
gies. 

The second step (called KT, for knowledge
transfer) involves a state-based knowledge
transfer from evolved strategies to tactics. Fi-
nally, we empirically validate the effectiveness

W =

⎧⎪⎪⎨
⎪⎪⎩

−Pmax Cend
b−R ∞

b + (1 − Cend ) b−R i

b

R max Cend
R ∞−b

1−b + (1 − Cend ) R i−b
1−b
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of the game AI script represented by the chro-
mosome. The fitness function F for the adap-
tive agent a (controlled by the evolved game
script) yields a value in the range [0, 1] and is
defined in equation 5.

(5)

In equation 5, CT represents the time step at
which the game was finished (that is, lost by
one of the agents or aborted because time ran
out), Cmax represents the maximum time step
the game is allowed to continue to, Ma repre-
sents the military points for the adaptive agent,
Ms represents the military points for the adap-
tive agent’s opponent, and b is the break-even
point. The factor CT / Cmax ensures that a game
AI script that loses after a long game is award-
ed a higher fitness than a game AI script that
loses after a short game. Our goal is to generate
a chromosome with a fitness exceeding a target
value. When such a chromosome is found, the
evolution process ends. This is the fitness stop
criterion. For our experiments, we set the target
value to 0.7. Because there is no guarantee that
a chromosome exceeding the target value will
be found, evolution also ends after it has gen-
erated a maximum number of chromosomes.
This is the run-stop criterion. We set the maxi-
mum number of chromosomes to 250. The
choices for the fitness-stop and run-stop crite-
ria were determined during preliminary exper-
iments.

Genetic Operators
Relatively successful chromosomes (as deter-
mined by equation 5) are allowed to breed. To

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
CT

Cmax
· Ma

Ma + Ms
, b if a lost,

max
M a

M a + M s
, b if a won.

of the evolved tactics by testing them with dy-
namic scripting (DS). The evaluation with dy-
namic scripting is not a necessary part of the
ESTG process, because other machine-learning
techniques may also be used; for example, the
case-based reasoning algorithm in Aha, Molin-
eaux, and Ponsen (2005) also used tactics
evolved with ESTG.

EA: Evolving Domain Knowledge
To specify the evolutionary algorithm used in
the EA step, we will discuss the chromosome
encoding, the fitness function, and the genetic
operators.

Chromosome Encoding
EA works with a population of chromosomes
(in our experiments we use a population of size
50), each of which represents a static strategy.
Figure 4 shows the chromosome’s design. The
chromosome is divided into the 20 states as de-
fined earlier (see figure 2). States include a state
marker followed by the state number and a se-
ries of genes. Each gene in the chromosome
represents a game action. Four different gene
types exist, corresponding to the available ac-
tions in Wargus, namely (1) build genes, (2) re-
search genes, (3) economy genes, and (4) com-
bat genes. Each gene consists of a gene ID that
indicates the gene’s type (B, R, E, and C, re-
spectively), followed by values for the parame-
ters needed by the gene. Chromosomes for the
initial population are generated randomly. A
partial example chromosome is shown at the
bottom of figure 4.

Fitness Function
To determine the fitness of a chromosome, the
chromosome is translated to a game AI script
and played against a script in the training set.
A fitness function measures the relative success
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select parent chromosomes for breeding, we
use size-3 tournament selection. This method
prevents early convergence, and it is computa-
tionally fast. Newly generated chromosomes
replace existing chromosomes in the popula-
tion, using size-3 crowding (Goldberg 1989). To
breed new chromosomes, we implemented
four genetic operators: (1) state crossover, which
selects two parents and copies states from ei-
ther parent to the child chromosome, (2) gene
replace mutation, which selects one parent, and
replaces economy, research, or combat genes
with a 25 percent probability, (3) gene biased
mutation, which selects one parent and mutates
parameters for existing economy or combat
genes with a 50 percent probability, and (4)
randomization, which randomly generates a
new chromosome. Randomization has a 10
percent chance of being selected during an evo-
lution. The other genetic operators have a 30
percent chance. By design, all four ensure that
a child chromosome always represents a legal
game AI. 

The genetic operators take into account acti-
vated genes, which represent actions that were
executed when fitness was assessed. Nonacti-
vated genes are irrelevant to the chromosome.
If a genetic operator produces a child chromo-
some that is equal to a parent chromosome for
all activated genes, then this child is rejected
and a new child is generated.

KT: State-Based 
Knowledge Transfer
ESTG automatically recognizes and extracts
tactics from the evolved chromosomes and in-
serts these into state-specific knowledge bases.
The possible tactics during a game mainly de-
pend on the available units and technology,
which in RTS games typically depend on the

buildings that the player possesses. Thus, we
distinguish tactics using the Wargus states dis-
played in figure 2. All genes grouped in an ac-
tivated state (which includes at least one acti-
vated gene) in the chromosomes are con-
sidered to be a single tactic. The example chro-
mosome in figure 4 displays two tactics. The
first tactic for state 1 includes genes 1.1 (a com-
bat gene that trains a defensive army) and 1.2
(a build gene that constructs a blacksmith
shop). This tactic will be inserted into the
knowledge base for state 1. Because gene 1.2
spawns a state change, the next genes will be
part of a tactic for state 3 (that is, constructing
a blacksmith causes a transition to state 3, as
indicated by the state marker in the example
chromosome).

Experimental Evaluation
Through the EA and KT steps, ESTG generates
knowledge bases. The quality of these knowledge
bases is evaluated with dynamic scripting (DS). 

Crafting the 
Evolved Knowledge Bases
We evolved 40 chromosomes against the strate-
gies provided in the training set. The EA was
able to find a strong counterstrategy against
each strategy in the training set. All chromo-
somes had a fitness score higher than 0.7 (as
calculated with equation 5), which represents a
clear victory.

In the KT step, the 40 evolved chromosomes
produced 164 tactics that were added to the
evolved knowledge bases for their correspond-
ing state. We noticed that no tactics were found
for some of the later states. All games in the
evolution process ended before the adaptive
agent constructed all buildings, which explains
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using the automatically evolved knowledge
bases found with the ESTG method (referred to
as the automatic approach). The results for dy-
namic scripting with the two competing ap-
proaches are shown in figure 5. From the fig-
ure, we conclude that the performance of
dynamic scripting improved with the evolved
knowledge bases against all previously tested
scripts, except for KR; RTP values against these
scripts have substantially decreased. Dynamic
scripting with the evolved knowledge bases
outperforms both balanced scripts before any
learning occurs (for example, before weight val-
ues are adapted). In previous experiments
against the SR, dynamic scripting was unable to
find an RTP. In contrast, dynamic scripting us-
ing the evolved knowledge bases recorded an
average RTP of 51 against SR.

We believe that dynamic scripting’s in-
creased performance, compared to our earlier
experiments (Ponsen and Spronck 2004), oc-
curred for two reasons. First, the evolved
knowledge bases were not restricted to the (po-
tentially poor) domain knowledge provided by
the designer (in earlier experiments, the knowl-
edge bases were manually designed and manu-
ally “improved”). Second, the automatically
generated knowledge bases include tactics that
consist of multiple primitive actions, whereas
the knowledge bases used in earlier experi-
ments mostly include tactics that consist of a
single primitive action. Knowledge bases con-
sisting of compound tactics (that is, an effec-
tive combination of fine-tuned actions) reduce
the search complexity in Wargus allowing dy-
namic scripting to achieve fast adaptation
against many static opponents.

The Issue of Generalization
The automatic approach produced the best re-
sults with dynamic scripting. However, it is pos-
sible that the resulting knowledge bases were
tailored for specific game AI strategies (that is,
the ones received as input for the ESTG
method). In particular, scripts 1 to 4 (SBLA,
LBLA, SR, and KR) were both in the training and
test sets. We ran additional experiments against
scripts that were not in the training set. As part
of a game programming class at Lehigh Univer-
sity, students were asked to create Wargus game
scripts for a tournament. To qualify for the tour-
nament, students needed to generate scripts
that defeat scripts 1 to 4 in a predefined map.
The top four competitors in the tournament
(SC1–SC4) were used for testing against dynam-
ic scripting. During the tournament, we learned
that the large map was unbalanced (that is, one
starting location was superior over the other).
Therefore, we tested the student scripts on the

why these later states were not included. By de-
sign, the AI controlled by dynamic scripting
will only visit states in which tactics are avail-
able and will ignore other states.

Performance of Dynamic Scripting
We evaluated the performance of the adaptive
agent (controlled by dynamic scripting using
the evolved knowledge bases) in Wargus by
playing it against a static agent. Each game last-
ed until one of the agents was defeated or until
a certain period of time had elapsed. If the
game ended due to the time restriction, the
agent with the highest score was considered to
have won. After each game, the adaptive
agent’s policy was adapted. A sequence of 100
games constituted one experiment. We ran 10
experiments each against four different strate-
gies for the static agent:

Strategies 1 and 2. Small / Large Balanced Land
Attack (SBLA / LBLA). These two strategies focus
on land combat, maintaining a balance be-
tween offensive actions, defensive actions, and
research. SBLA is applied on a small map (64 by
64 cells) and LBLA is applied on a large map
(128 by 128 cells).

Strategy 3. Soldier’s Rush (SR): This strategy at-
tempts to overwhelm the opponent with cheap
offensive units in an early state. Because SR
works best in fast games, we tested it on a small
map.

Strategy 4. Knight’s Rush (KR): This strategy at-
tempts to quickly advance technologically,
launching large offenses as soon as powerful
units are available. Because KR works best in
slower-paced games, we tested it on a large map.

To quantify the relative performance of the
adaptive agent against the static agent, we used
the randomization turning point (RTP), which
is measured as follows. After each game, a ran-
domization test (Cohen 1996) was performed
using the global reward values over the last 10
games, with the null hypothesis that both
agents are equally strong. The adaptive agent
was said to outperform the static agent if the
randomization test concluded that the null hy-
pothesis can be rejected with 90 percent prob-
ability in favor of the adaptive agent. RTP is the
number of the first game in which the adaptive
agent outperforms the static agent. A low RTP
value indicates good efficiency for dynamic
scripting. Ponsen and Spronck (2004) manual-
ly improved existing knowledge bases (referred
to as the semiautomatic approach) from coun-
terstrategies that were evolved offline and test-
ed dynamic scripting against SBLA, LBLA, SR,
and KR. 

We ran new experiments with dynamic
scripting against SBLA, LBLA, SR, and KR, now
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small map. Dynamic scripting using the
evolved knowledge bases was played against the
new student scripts. The experimental parame-
ters for dynamic scripting were unchanged. Fig-
ure 6 illustrates the results. From the figure it
can be concluded that dynamic scripting is able
to generalize against strong strategies that were
not in the training set. Only the champion
script puts up a good fight; the others are al-
ready defeated from the start.

Conclusions
In this article, we proposed a methodology (im-
plemented as ESTG) that can automatically
evolve knowledge bases of state-based tactics
(that is, temporally extended actions) for dy-
namic scripting, a reinforcement learning
method that scales to computer game com-
plexity. We applied it to the creation of an
adaptive opponent for Wargus, a clone of the
popular Warcraft II game. From our empirical
results we showed that the automatically
evolved knowledge bases improved the perfor-
mance of dynamic scripting against the four
static opponents that were used in previous ex-
periments (Ponsen and Spronck 2004). We also
tested it against four new opponents that were
manually designed. The results demonstrated
that dynamic scripting using the ESTG evolved
knowledge bases can adapt to many different
static strategies, even to previously unseen
ones. We therefore conclude that ESTG evolves
high-quality tactics that can be used to gener-
ate strong adaptive AI opponents in RTS games. 

Acknowledgments
Marc Ponsen and Héctor Muñoz-Avila were
sponsored by DARPA and managed by NRL un-
der grant N00173-06-1-G005. The views and
conclusions contained here are those of the au-
thors and should not be interpreted as neces-
sarily representing the official policies, either
expressed or implied, of DARPA, NRL, or the
U.S. government. Pieter Spronck is funded by a
grant from the Netherlands Organization for
Scientific Research (NWO grant No
612.066.406).

References
Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learn-
ing to Win: Case-Based Plan Selection in a Real-Time
Strategy Game. In Proceedings of 6th International Con-
ference on Case-Based Reasoning (ICCBR-05), Lecture
Notes in Computer Science 3620, 5–20. Berlin:
Springer-Verlag.

Cheng, D., and Thawonmas, R. (2004). Case-Based
Plan Recognition for Real-Time Strategy Games. In
Proceedings of the 5th International Conference on Intel-
ligent Games and Simulation (GAME-ON-04), 36–40.

Articles

FALL 2006   83

Figure 5. Recorded Average RTP Values for Two Competing Approaches.

Values represent 10 experiments for the two competing approaches. The x-axis
lists the opponent strategies. The y-axis represents the average RTP value. A low
RTP value indicates good efficiency for dynamic scripting. The three bars that
reached 100 represent runs where no RTP was found (for example, dynamic
scripting was unable to statistically outperform the specified opponent).

Semiautomatic

100

90

80

70

60

50

40

30

20

10

0
SBLA LBLA SR KR

Automatic

Figure 6. Recorded Average RTP Value for Dynamic Scripting.

Values represent 10 experiments for dynamic scripting with the automatically
evolved knowledge bases against the student scripts. The x-axis lists the oppo-
nent strategies. The y-axis represents the average RTP value.

100

90

80

70

60

50

40

30

20

10

0
SC1 SC2 SC3 SC4

Automatic



as computer games. He coauthored several refereed
conference, workshop, and international journal pa-
pers on this subject.

Héctor Muñoz-Avila is an assis-
tant professor at the Department
of Computer Science and Engi-
neering at Lehigh University. Pri-
or to joining Lehigh, Muñoz-Avila
worked as a researcher at the
Naval Research Laboratory and
the University of Maryland at Col-
lege Park. He received his Ph.D.

from the University of Kaiserslautern (Germany).
Muñoz-Avila has done extensive research on case-
based reasoning, planning, and machine learning,
having written more than 10 journal papers and
more than 30 refereed conference or workshop pa-
pers on the subject. Two of these papers received
awards. He is also interested in advancing game AI
with AI techniques. He has been chair, program com-
mittee member, and a reviewer for various interna-
tional scientific meetings. He was program cochair of
the Sixth International Conference on Case-Based
Reasoning (ICCBR-05) that was held in Chicago, Il

(USA).

Pieter Spronck is a researcher of
artificial intelligence at the Insti-
tute of Knowledge and Agent
Technology (IKAT) of Maastricht
University, The Netherlands. He
received his Ph.D. from Maas-
tricht University with a disserta-
tion discussing adaptive game AI.

He has coauthored more than 40 articles on AI re-
search in international journals and refereed confer-
ence proceedings, about half of which are on AI in
games. His research interests include evolutionary
systems, adaptive control, computer game AI, and

multiagent systems. 

David W. Aha (Ph.D., University
of California, Irvine, 1990) leads
the Intelligent Decision Aids
Group at the U.S. Naval Research
Laboratory. His group researches,
develops, and modifies state-of-
the-art decision-aiding tools. Re-
cent example projects concern a

testbed (named TIELT) for evaluating AI learning
techniques in simulators, knowledge extraction from
text documents, and a web service broker for inte-
grating meteorological data. His research interests in-
clude case-based reasoning (with particular emphasis
on mixed-initiative, conversational approaches), ma-
chine learning, planning, knowledge extraction from
text, and intelligent lessons learned systems. He has
organized 15 international meetings on these topics,
served on the editorial boards for three AI journals,
assisted on eight dissertation committees, and was re-
cently elected to the AAAI executive council.

Zwijnaarde, Belgium: European Multidisciplinary So-
ciety for Modelling and Simulation Technology.

Cohen, P. (1996). Empirical Methods for Artificial In-
telligence. IEEE Expert: Intelligent Systems and Their
Applications 11(6): 88.

Demasi, P., and Cruz, A. (2002). Online Coevolution
for Action Games. Paper presented at the 3rd Inter-
national Conference on Intelligent Games and Sim-
ulation (GAME-ON 2002), 113, 120, November
29–30.

Goldberg, D. 1989. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Reading, MA: Addi-
son-Wesley.

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N.
2003. Generalizing Plans to New Environments in
Relational MDPs. In Proceedings of Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
03), 1003–1010. San Francisco: Morgan Kaufmann
Publishers.

Kaelbling, L.; Littman, M.; and Moore, A. 1996. Re-
inforcement Learning: A Survey. Journal of Artificial
Intelligence Research 4: 237–285.

Laird, J., and van Lent, M. 2000. Human-Level AI’s
Killer Application: Interactive Computer Games. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on on In-
novative Applications of Artificial Intelligence,
1171–1178. Menlo Park, CA: AAAI Press.

Marthi, B.; Russell, S.; and Latham, D. 2005. Writing
Stratagus-Playing Agents in Concurrent ALisp. Paper
presented at the Workshop on Reasoning, Represen-
tation and Learning in Computer Games, IJCAI-05,
Edinburgh, Scotland, 31 July.

Nareyek, A. 2004. AI in Computer Games. Queue
1(10), 58–65.

Ponsen, M., and Spronck, P. (2004). Improving Adap-
tive Game AI with Evolutionary Learning. In Proceed-
ings of Computer Games: Artificial Intelligence, Design
and Education (CGAIDE-04), 389–396. Manhasset,
NY: CMP Media.

Rabin, S. 2004. AI Game Programming Wisdom 2.
Hingham, MA: Charles River Media.

Schaeffer, J. 2001. A Gamut of Games. AI Magazine,
22 (3): 29–46.

Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E.
2004. Online Adaptation of Game Opponent AI with
Dynamic Scripting. International Journal of Intelligent
Games and Simulation 3(1): 45–53.

Sutton, R., and Barto, A. (1998). Reinforcement Learn-
ing: An Introduction. Cambridge, MA: The MIT Press.

Marc Ponsen is a computer sci-
ence Ph.D. candidate at the Insti-
tute of Knowledge and Agent
Technology (IKAT) of Maastricht
University. Prior to joining Maas-
tricht University, he worked as an
artificial intelligence researcher at
Lehigh University. His research in-
terests include machine learning,

reinforcement learning, and multiagent systems. His
current research focuses on scaling reinforcement
learning algorithms to complex environments, such

Articles

84 AI MAGAZINE




