
■ Robotics projects coupled with agent-oriented
trends in artificial intelligence education have the
potential to make introductory AI courses at liberal
arts schools the gateway for a large new generation
of AI practitioners. However, this vision’s achieve-
ment requires programming libraries and low-cost
platforms that are readily accessible to undergrad-
uates and easily maintainable by instructors at sites
with few dedicated resources. This article presents
and evaluates one contribution toward imple-
menting this vision: the RCXLisp library. The li-
brary was designed to support programming of the
Lego Mindstorms platform in AI courses with the
goal of using introductory robotics to motivate un-
dergraduates’ understanding of AI concepts within
the agent-design paradigm. The library’s evalua-
tion reflects four years of student feedback on its
use in a liberal-arts AI course whose audience cov-
ers a wide variety of majors. To help establish a
context for judging RCXLisp’s effectiveness this ar-
ticle also provides a sketch of the Mindstorms-
based laboratory in which the library is used.

In the movie October Sky, a group of high
school students become inspired to learn
how to build high-altitude rockets after

watching Sputnik glide across the night sky
soon after it was launched in October 1957. To-
day AI should be poised to capture students’ in-
terest and imaginations in the same way that
movie showed one application in physics and
astronomy capturing them in the 1950s and

1960s. Look at what today’s undergraduates are
seeing and hearing about AI in popular culture.
Besides the popularity of the AI-inspired fiction
in the movies I, Robot and A.I., consider the
highly publicized success of the Mars rovers
Spirit and Opportunity, the ESPN coverage of the
DARPA autonomous vehicle Grand Challenge,
the lust among gamers after cleverer computer
opponents, and the prevalence of word proces-
sor speech-recognition systems. Students are
not just hearing about AI applications—they
are experiencing them more directly than did
the students in October Sky gazing up at Sput-
nik’s starlike dot. Today’s college and high
school students can evaluate AI applications
firsthand (for example, in games, robotic vacu-
um cleaners, and intelligent search engines).
More importantly for AI, the immediacy of
their experience often makes them feel they
could replicate or even improve the applica-
tions’ capabilities—if only they understood the
AI theory behind the application.

And this situation definitely is enticing stu-
dents into trying out introductory AI courses at
liberal arts colleges. The difficulty for instruc-
tors at such schools is retaining these students’
interest in the field after their first exposure to
formal AI. In many smaller schools’ computer
science departments there is at most one facul-
ty member with AI training, usually with few
dedicated resources. Instructors from such
schools have attested at AAAI and SIGCSE sym-

Articles

SPRING 2006 51Copyright © 2006, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2006 / $2.00

Launching into
AI’s

October Sky
with Robotics

and Lisp
Frank Klassner

AI Magazine Volume 27 Number 1 (2006) (© AAAI)

ficiencies can supply partial source code for AI
systems (like planners or search algorithms) for
students to complete. Those who want to en-
courage students’ deeper understanding of a
topic through attention on “knob-turning” ex-
periments (Cohen 1995) can supply completed
source code sets from the same corpus.

All three trends have strongly influenced the
AI curriculum at Villanova University. In the
fall of 1997 the introduction to AI course CSC
4500 was reorganized around the concept of
agent-oriented design. This approach was aug-
mented in the fall of 1999, offering with team-
based Lego Mindstorms (Klassner 2002) pro-
jects in order to have students explore the
relationships among hardware, environment,
and software organization in agent design.
Since the spring 2001 course we have used the
RCXLisp library developed at Villanova for pro-
gramming Mindstorms in Common Lisp. This
article describes the RCXLisp library with re-
spect to these trends, focusing on its develop-
ment, its uses in CSC 4500, and student feed-
back on both the course and its library. To help
the reader evaluate RCXLisp’s effectiveness,
this article also provides a sketch of the Mind-
storms-based laboratory in which the library is
used.

Choosing Mindstorms and Lisp
The CSC 4500 course is an elective with no for-
mal programming prerequisites. Computer sci-
ence majors typically take the course in their
fourth year, by which time most of these stu-
dents have taken a programming languages
course that introduces them to Lisp. The course
is also open to third- and fourth-year cognitive
science concentrators and computer engineer-
ing majors, who generally have no program-
ming experience in Lisp and as little as one se-
mester of introductory programming in Java
from their first year. The cognitive science stu-
dents hail from a variety of majors: biology, po-
litical science, and physics, to name a few.

The course uses Common Lisp in its pro-
gramming projects for two reasons. The first is
to leverage Lisp’s support for rapid prototyping
against the large body of open-source AI Lisp
systems. The second is to reinforce computer
science majors’ Lisp experience from their pro-
gramming languages course, thereby offering
students another option besides C/C++ for
meeting the department goal that graduates be
familiar with at least one language beyond Ja-
va.

Once the decision was made in 1997 to orga-
nize CSC 4500 around the agent paradigm, as-
signments using robotic agent simulations

posia that they must tread carefully between a
breadth-first survey style that downplays full
system implementation experience and a
depth-first concentration on subfields that
might not directly relate to popular applica-
tions without exorbitant software or hardware
investments. A heavily unbalanced course, in
either direction, can leave undergraduates with
unrealistic (or worse—nonexistent) views of
how real-world AI systems can be designed and
implemented to meet real-world performance
goals.

Fortunately, three trends are helping to
maintain the balance that AI education needs
for inspiring students from smaller schools.
The first is the growth of the intelligent agent
design framework (Russell and Norvig 2003)
that emphasizes study of the limits and capa-
bilities of different AI techniques in producing
actions appropriate to an agent’s environment.
Because it stresses identification of the weak-
nesses as well as the strengths of these tech-
niques, this framework also naturally encour-
ages exploration of how to integrate two or
more AI techniques (as might be covered in a
more breadth-first oriented course) into hybrid
systems so as to mitigate their individual weak-
nesses.

The second trend is the increasing availabil-
ity of low-cost robotics platforms1 that can play
the same motivating role in AI education that
model rockets and toy telescopes did for as-
tronomy and physics education in the past
century. Pure software-oriented projects such as
gaming agents or simulations can indeed moti-
vate students, but there is no denying the in-
creased registration levels seen in elective AI
courses the first time a new robot-development
component is announced for them.

The third trend is vital to the success of the
second. It is the growing body of open-source
software systems and programming tools for
robot kits that allows students with limited re-
sources to move quickly from learning about AI
techniques in the abstract to actually building
artifacts with them (Yuasa 2003).2 It is not
enough to give students a robot platform that
requires a whole semester to learn how to pro-
gram. After installing the platform’s program-
ming tools, students should be able to get past
“Hello Robot” trials quickly in order to grapple
with moderately complex programs with con-
fidence-boosting results. From a small-college
instructors’ perspective, the most effective ele-
ments in this software collection allow them to
extend the depth of their courses’ coverage in
various ways. Those instructors who want to
encourage students’ deeper understanding of a
topic through attention to implementation ef-

Articles

52 AI MAGAZINE

were tried but did not generate significant en-
thusiasm among students. Based on student
feedback and positive reports on robots’ use in
the computer science education literature
(Beer, Chiel, and Drushel 1999; Kumar and
Meeden 1998; Mazur and Kuhrt 1997; and
Stein 1996), the decision was made to try using
physical robots in the course. The choice of ro-
bot platform was based on four criteria: pro-
gramming environment, cost, flexibility, and
“student comfort level.” In 1999 there was no
low-cost robot kit that supported Common
Lisp programming, so this criterion played a
negligible role in the decision. A Mindstorms
kit with 750 construction pieces, sensors, and
programmable hardware cost approximately
US$200. This was one quarter the cost of some
Handy Board–based robot kits and one tenth
the cost of an ActivMedia-based robot kit—two
of the other platforms considered. In the time
since this evaluation was conducted Lego has
released a “RoboChallenge” kit for US$150 that
has fewer construction pieces (250) for courses
where a sophisticated robot chassis is unneces-
sary. In terms of flexibility the Mindstorms kit
supports the creation of effectors such as arms,
grippers, legs, tread casings, and so on, often
not available in other basic kits. The Handy
Board platform, however, was similarly exten-
sible. The final decision hinged on the “student
comfort level” criterion. Many students had
played with Lego as children and felt more fa-
miliar with those kits. The Mindstorms plat-
form’s reusable snap-together sensors and ef-
fectors allowed computer science majors to
focus more quickly on programming issues. Fi-
nally, compared with an uncushioned Handy
Board, Mindstorms was judged to be more
durable in the face of inevitable drops and
bumps in a computer lab setting.

At the time of Mindstorms’ adoption, there
was no Common Lisp environment for Mind-
storms, and LeJOS—a popular Java environ-
ment for Mindstorms—was still under develop-
ment and not complete enough for classroom
use. There was a Scheme compiler targeted to
Mindstorms’ firmware, but it was a Unix-based
utility not integrated into any Lisp program-
ming environment. This situation led to the
decision to use Not Quite C (NQC) for team-
based robotics projects and Common Lisp for
separate course projects in search, planning,
and machine learning. NQC was judged to
have a syntax that would be recognizable by
most students coming into CSC 4500, yet
would hide certain complexities like pointers
and dynamic allocation from nonmajors.

Student surveys, however, indicated that the
burden of working with two different lan-

guages distracted students from learning the AI
concepts of the course. We also found the lan-
guage had little support for coordinating teams
of robots, though this problem is due more to
NQC’s dependence on Lego’s firmware than to
any design flaws in NQC itself.

Extending Mindstorms
for a Lisp Environment

Against this historical background the decision
was made to develop the Common Lisp library
RCXLisp for programming the Mindstorms
RCX microcontroller. The RCX is the program-
mable yellow brick at the heart of the Lego
Mindstorms kit, shown on the right in figure 1.

The RCX has a 16-megahertz central process-
ing unit (CPU) (the Hitachi H8/3292 microcon-
troller) and 32 kilobytes of random-access
memory (RAM), and it houses an infrared (IR)
transmitter/receiver for sending and receiving
data and commands from a desktop PC or from
other RCXs. The IR transceiver has a range of
15–25 feet, depending on lighting conditions.
The RCX is powered by six AA batteries. The
platform supports both serial-port and univer-
sal serial bus (USB) IR towers for broadcasting
messages and software to the RCX from a desk-
top (a USB IR tower is shown on the left in fig-
ure 1). RCX units have three input (sensor)
ports, three effector ports, and a five-character
liquid crystal display (LCD) display. Lego mar-
kets touch, light, temperature, and axle-rota-
tion sensors that can be connected to the RCX’s
input ports; third-party vendors offer magnetic

Articles

SPRING 2006 53

Infrared (IR) Tower

LCD
Display

Effector
Ports

IR Port
Sensor
Ports

Figure 1. The Lego Mindstorms Infrared
Transceiver Tower (Left) and the RCX Unit (Right).

have several teams of students in the same lab
control their own robots without interference.
It is also not possible for a single desktop appli-
cation to coordinate several robots of a team
without a mechanism to address the robots’
RCXs individually.

To address this communication shortcom-
ing, a firmware version named Mnet (for Mind-
storms networked) was developed at Villanova
University. Mnet replaces Lego’s standard
firmware. It supports directed IR communica-
tions by extending the Lego protocol with
source and target fields and by allowing each
RCX and host desktop to set a 1-byte ID value
for itself. Mnet firmware also allows an RCX to
restrict the RCXs from which it will accept mes-
sages. To support compatibility with other pro-
gramming environments targeted to the RCX,
Mnet recognizes the same byte-code set as the
standard Lego firmware.

Mnet does not support garbage collection or
call stacks. This decision was made to speed up
firmware development and to keep the
firmware footprint reasonably small. Lest the
lack of garbage collection seem too limiting for
RCXLisp, it should be noted that LeJOS, too,
does not currently implement a garbage collec-
tor in an effort to keep the JVM footprint as
small as possible (Cohen 1995). Our RCX-based
lisp system, RCXLisp, developed atop this Mnet
firmware.

RCXLisp Language Design
The first goal of RCXLisp was to help AI stu-
dents start quickly with designing basic soft-
ware for controlling individual robots and ro-
bot teams. It achieves this by augmenting the
Common Lisp language with an application
program interface (API) of primitive functions
that represent a programmer’s, rather than an
engineer’s, view of a robot and its communica-
tion abilities. It adheres as closely as the Mnet
firmware permits to the Common Lisp specifi-
cation of the second edition of Steele’s Com-
mon Lisp: The Language (1990).

The second goal of RCXLisp was to support
integration of Mindstorms with sophisticated
AI systems. Since such integration will natural-
ly produce distributed systems, this goal in-
cluded the ability to coordinate processes on
the RCX with processes within a Lisp desktop
environment. Table 1 summarizes the features
that RCXLisp provides in support of this goal.

The RCXLisp libraries are currently support-
ed in the LispWorks environments on both
Windows (98 through XP) and Mac OS X. It is
also available for use on Digitool’s MCL for the
Mac platform, but currently only for Mac OS 9.

compass sensors, ultrasonic distance sensors,
and infrared distance sensors. Motors, light-
emitting diodes (LEDs), and infrared emitters
can be attached to the effector ports. Lego also
offers a computer-tethered video camera for
use with the RCX.

The 32 kilobytes of nonupgradeable RAM on
the RCX represents a significant limitation for
AI robotic agent projects involving schedulers,
planners, or neural networks with large foot-
prints. However, this can be mitigated by judi-
cious use of the system’s firmware.

The Lego-supplied firmware models a primi-
tive virtual machine with support for threading
and 16-bit integer arithmetic. There is no call
stack; programmers must watch for accidental
unbounded recursion problems. There is also
no dynamic allocation support. A key feature
of the firmware is that it supports two styles of
program control: on-board programming and
remote-control programming. In the first style
the robot’s behavior depends only on the pro-
gram loaded into its memory. In the second
style a control program on a desktop computer
broadcasts individual instructions to the robot
for immediate execution.

Thus, it could be possible for large AI systems
(with accompanying needs for call stack and
dynamic allocation support) to be used with
Mindstorms as long as they are modified to
control RCX robots remotely from a desktop
computer. Unfortunately, Lego firmware uses a
broadcast protocol for sending control mes-
sages to RCXs. It does not support targeted
message passing. It therefore is not possible to

Articles

54 AI MAGAZINE

Control an RCX from a Common Lisp
program on a desktop computer.

Create and compile RCXLisp programs for
downloading to RCXs ìon t he fly,”
from within Common Lisp desktop
environments.

Control more than one RCX from a single
MindStorms IR Tower simultaneously.

Set up networks of RCXs that can
communicate with each other in a targeted
manner.

Table 1. RCXLisp Features That Support Integration of Common-Lisp AI
Systems with the Mindstorms RCX.

A version for Allegro (Franz) is under develop-
ment.

RCXLisp has both a remote and local com-
ponent. The first is remote RCXLisp, a collec-
tion of macros, variables, and functions for re-
motely controlling RCX units from a desktop.
The second is local RCXLisp, a subset of Com-
mon Lisp that can be cross-compiled to run on
both Lego and Mnet firmware for on-board
control of the unit.

The next two subsections detail these two
parts of RCXLisp, with the aim of showing the
tight integration among the Lisp environment,
the RCX, and the desktop control processes the
library makes possible. The example code sup-
ports the claim that RCXLisp facilitates linking
AI systems with Mindstorms robots. The dis-
cussion occasionally makes comparisons be-
tween RCXLisp functions and Common Lisp
functions of the same name. For clarity’s sake
all RCXLisp functions will appear in italics.

Remote RCXLisp
The remote RCXLisp library provides with-
open-com-port and with-open-rcx-stream macros
to set up communication environments for
contacting RCX units. These macros are mod-
eled closely on Common Lisp’s with-open-
stream macro. With-open-com-port specifies the
communication port (serial or USB) for con-
tacting an RCX, and with-open-rcx-stream de-
fines the data stream through a port for a spe-
cific RCX unit. The macros offer users several
arguments to modify low-level port character-
istics such as data transmission rate, timeout
interval, and retry limit. This flexibility is im-
portant especially when ambient lighting and
other environmental conditions change. The
code in figure 2 shows how these macros are
used and provides an example of the functions
that can be invoked to control an RCX from
within the macros’ communication environ-
ment.

In keeping with RCXLisp’s design goal of
helping programmers focus on programming
rather than lower-level communication issues,
the language contains a tell-rcx macro that
combines the two port and stream macros’ ar-
gument lists and builds in flexible default val-
ues for port settings loadable from a site config-
uration file. This level of abstraction helps
beginning Lispers new to macros and stream
management.

Ordinarily one would type the functions in
figure 2 into an editor and then load them into
a desktop environment for invocation at the
Lisp listener prompt as (testing). The full-speed-
ahead example contains the following remote
RCXLisp functions for controlling an RCX: set-

effector-state (for controlling motors), set-sensor-
state (for configuring input types), and sensor
(for accessing the current reading from a sensor
input). The testing function uses alivep to deter-
mine whether the RCX is in range and re-
sponding. It is important to note for later dis-
cussion that the language includes a var
function that asynchronously queries for the
value stored in one of the RCX’s 32 globally-ac-
cessible registers.

All remote RCXLisp functions take an op-
tional stream argument (for example, “r” in
full-speed-ahead). One can forego repetitious
typing of the stream argument, with the using-
rcx macro as in figure 3 to define a default
stream for enclosed RCXLisp functions. This
macro is closely modeled on Common Lisp’s
using-slots macro for object-oriented program-
ming. It also serves to define a symbolic envi-
ronment in which the desktop acts as a director
telling some particular RCX what to do next.

Programs that are intended to be executed
on an RCX are first compiled within the
RCXLisp desktop environment to Mnet byte
code and then downloaded through the IR
tower to the RCX. This is accomplished
through the rcx-compile-and-download utility
function in remote RCXLisp. The Mnet
firmware (and standard Lego firmware) is also
loaded from the desktop Lisp environment
with the download-firmware utility function in
remote RCXLisp.

It is important to note that these functions
are native to the Lisp environment. That is, no
non-Lisp mechanism is needed for these ac-
tions. Both LeJOS3 and Wick, Klipsch, and
Wagner’s Lego/Scheme compiler4 require a sep-
arate command-line system program to down-
load compiled code or firmware into the RCX.
The compiler in rcx-compile-and-download is im-
plemented in Lisp. It is this feature that allows
RCXLisp to interface cleanly with other AI sys-
tems written in Common Lisp. The rcx-compile-
and-download utility supports on-the-fly compi-
lation of both dynamically generated RCXLisp
forms (by a planner, for example) and static
forms in prewritten files for execution on a ro-
bot.

XS (Yuasa 2003) is a Scheme interpreter for
Mindstorms developed after RCXLisp. It too is
supported by native libraries for a Scheme desk-
top environment. The difference between re-
mote RCXLisp and XS is that XS sets up the
desktop as a listener and the RCX as the evalu-
ator, while remote RCXLisp evaluates all forms
on the desktop and sends byte codes to the
RCX. XS enjoys the advantages over RCXLisp
of a garbage collector and full call stack support
on the RCX but requires higher bandwidth in

Articles

SPRING 2006 55

some of the functional nature of Common
Lisp.

For consistency with remote RCXLisp, and
to simplify the transfer of desktop Lisp code to
the RCX, local RCXLisp implements all of the
RCX control functions in remote RCXLisp. In
the local version, however, control functions
like set-sensor-state do not have an optional fi-
nal stream argument. It is assumed that the
code will only be executed on the RCX unit it-
self. If an RCX needs to control the behavior of
another RCX unit, it can do so through integer-
valued messages for the other RCX to interpret
rather than by outright code transfer.

Figure 4 shows how the “full-speed-ahead”
function in figure 2 would be expressed in local

communication since remote control is
achieved through the transmission of complete
ASCII expressions to the RCX for evaluation by
the on-board XS interpreter.

Local RCXLisp
Local RCXLisp is a subset of Common Lisp
with a few nonstandard additions that can be
compiled and downloaded to run au-
tonomously on an RCX. As with remote
RCXLisp, the design goal was to follow Steele’s
standard (Steele 1990) as closely as possible and
to maintain compatibility with both Lego
firmware and the Mnet extended firmware. Yet
because neither firmware supports indirect ad-
dressing or call stacks, local RCXLisp still lacks

Articles

56 AI MAGAZINE

(DEFUN full-speed-ahead (r s dir)
“This will make the rcx in stream R go at speed S
in direction DIR until touch sensor on its ‘2’ port returns 1.”
(LET ((result 0))

(set-effector-state ‘(:A :B :C) :power :off r)
;in case things are in an inconsistent state,
;turn everything off first

(set-effector-state ‘(:A :C) :speed s r)
(set-effector-state ‘(:A :C) :direction dir r)

; dir is eq to :forward, :backward, or :toggle
; no motion will occur until the
; next call to set-effector-state

(set-sensor-state 2 :type :touch :mode :boolean r)
(set-effector-state ‘(:A :C) :power :on r)
(LOOP ;this loop will repeat forever until sensor 2 returns a 1

(SETF result (sensor 2 r))
(WHEN (AND (NUMBERP result)

;needed to keep = from causing error if
;sensor function returns nil due to timeout.
(= result 1))

(RETURN)))
(set-effector-state ‘(:A :C) :power :float r))))

(DEFUN testing ()
(with-open-com-port (port :LEGO-USB-TOWER)

(with-open-rcx-stream (rcx10 port :timeout-interval 80 :rcx-unit 10)
; increase/decrease serial timeout value of 80 ms depending on
;environmental factors like ambient light.
(WHEN (alivep rcx10)

(full-speed-ahead rcx10 5 :forward)))))

Figure 2. Sample Remote RCXLisp Code Illustrating Sensor-Based Motor Control.

RCXLisp for execution on board a robot. Note
that threads do not accept input arguments in
RCXLisp yet, so parameters must be made into
global variables. Figure 5 demonstrates how de-
fregister can set variables’ values from a desk-
top program.

Local RCXLisp supports analogs to a core
subset of Common Lisp control expressions,
Boolean operators, and data types, along with
16-bit signed integer arithmetic including the
most commonly used operators. For example,
just as Common Lisp allows one to use compar-
ison invocations such as “(< 2 x 6)” to test for
when the value of x is between 2 and 6, so too
does local RCXLisp. It provides a limited ver-
sion of the Common Lisp RANDOM function, al-
lowing on-board experimentation with proba-
bilistic control algorithms.

Local RCXLisp does not support floating-
point arithmetic. The ability to define new key-
words is also lacking, but constants may be de-
clared with defconstant and global variables can
be declared with defvar. Setq provides value-as-
signment, but there is currently no analog in
local RCXLisp to the Common Lisp SETF
macro.

Since general function calls are not support-
ed, local RCXLisp does not have an analog to
the Common Lisp DEFUN form. In an effort to
support some kind of code abstraction, the
language design borrows inspiration from
NQC’s emphasis on macros for code abstrac-
tion and includes a defmacro form that follows

the complete semantics of Common Lisp’s
DEFMACRO form. RCXLisp also borrows from
Brooks’s much earlier L language (Brooks 1993)
a desire for simplicity and memory conserva-
tion that is necessary for squeezing as much
programming as possible into the small mem-
ories available on most inexpensive robot plat-
forms even today.

The language provides two special-purpose
forms that are neither in the remote RCXLisp
language nor the Common Lisp language. The
first form is defthread, which is used to define
threads to run on an RCX unit. Calling this
form nonstandard, however, is less of an indict-
ment of local RCXLisp than of the Common
Lisp specification itself since as of 2005 little
progress has been made in formalizing thread-
ing in the language! The second form, defregis-
ter, allows a programmer to tie a symbolic vari-
able name to a given register so that a remote
RCXLisp program on a desktop using var to
query a register can be guaranteed to access the
intended variable value on an RCX.

Figure 5 summarizes and illustrates many of
the features just described. The program beeps
whenever the RCX is carried too close to a re-
flective object. This code makes the RCX IR
port work together with a light sensor attached
at port 1 in order to implement a simple prox-
imity sensor. The signaler thread repeatedly
sends out an arbitrary integer message through
the IR port. When the front of the RCX gets
close to an obstacle, the IR port’s signal reflects

Articles

SPRING 2006 57

(DEFUN full-speed-ahead (r s dir)
“This will make the rcx in stream R go at speed S in direction DIR until touch
sensor on its ‘2’ port returns 1.”
(LET ((result 0))

(using-rcx r
(set-effector-state ‘(:A :B :C) :power :off)
(set-effector-state ‘(:A :C) :speed s)
(set-effector-state ‘(:A :C) :direction dir)
(set-sensor-state 2 :type :touch :mode :boolean)
(set-effector-state ‘(:A :C) :power :on)
(LOOP

(SETF result (sensor 2))
(WHEN (AND (NUMBERP result)

(= result 1))
(RETURN)))

(set-effector-state ‘(:A :C) :power :float))))

Figure 3. Cleaning up Remote RCSLisp Code with the using-rcx Macro.

Setting up a Mindstorms
Robotics Lab

The high school student protagonists in Octo-
ber Sky required more than just reliable fuel and
construction materials to achieve their goal of
a high-altitude rocket; they needed a testing
field. Besides a control system like RCXLisp, AI
students need appropriate facilities to design
and test their robot agents. The CSC 4500
course has a 15 by 30 foot computer lab dedi-
cated for its projects during a semester, but, as
will be seen from the following description, the
room’s setup can be duplicated without too
much overhead even at schools where space is
at a premium and labs must be shared among
courses.

The course uses team-based active-learning
robotics projects. Students are grouped in
threes or fours, with each team having at least
one nonmajor. Accordingly, the lab has four
PCs—one per team—for programming robots.
Each PC has an IR tower suspended from the
ceiling not only so that its signal will be in
range of the group’s RCXs on the floor but also
so that the likelihood of someone accidentally
blocking the IR signal is reduced. The room’s
lighting is under the complete control of stu-
dents, since sometimes bright sunlight or fluo-
rescent lighting can interfere with the IR sig-
nals used in the distributed control systems
supported by RCXLisp. For some projects, it is
useful to have a navigational grid on the floor,
so a temporary grid of electrical tape marking
out the 1–square-foot tiles on a portion of the
room is put down at the beginning of each se-
mester CSC 4500 is offered. Figure 7 gives a pic-
ture of this setup’s implementation. Note the
IR towers at upper right suspended from the
ceiling and facing down for maximum range
for remote control projects. The entire room is
15 by 30 feet and accommodates four teams of
four students.

Kits are prepared for the teams to use on all
projects throughout the semester. Table 2 lists
the equipment in a typical kit.

The robotics laboratory also has a few extra
pieces of equipment: two Hitechnic ultrasonic
distance sensors, three Lego vision command
cameras, and ten Techno-stuff limit switches
for special projects as they arise. Hitechnic5 is a
contractor firm that manufactures Lego-com-
patible sensors. Techno-stuff’s6 limit switches
allow one to link a touch sensor directly to a
motor’s power connection. In this way the
touch sensor can detect when a motor-driven
arm, wheel, and so on, has reached some limit
of movement and stop the motor without be-
ing attached to one of the RCX’s three input

back, and the light sensor picks this echo up. As
the reflections increase in intensity, the light
sensor’s value jumps more wildly. The value of
LIMIT may need to be adjusted for environ-
mental conditions or the light sensor’s sensitiv-
ity. It is declared as a register variable so that a
remote RCXLisp program can modify it on the
fly. Figure 6 shows the remote RCXLisp code for
achieving this. The :raw mode setting for the
light sensor means that the sensor returns un-
interpreted 10-bit sensor values.

Articles

58 AI MAGAZINE

(defvar *dir* :forward)
(defvar *s* 5)
(defthread (full-speed-ahead :primary t) ()

(set-effector-state ‘(:A :B :C) :power :off)
(set-effector-state ‘(:A :C) :speed *s*)
(set-effector-state ‘(:A :C) :direction *dir*)
(set-sensor-state 2 :type :touch :mode :boolean)
(set-effector-state ‘(:A :C) :power :on)
(loop

(when (= (sensor 2) 1)
(return)))

(set-effector-state ‘(:A :C) :power :float))

Figure 4. Local RCXLisp Code That Performs the Same
Actions as “full-speed-ahead” in Figure 3.

Figure 5. Multithreaded Local RCXLisp Sample Code.

(defconstant *receiver* 1)
(defregister 4 *LIMIT* 16)

(defthread (signaller) ()
(loop
(send-message 78)
(sleep 25) ;; leave IR port silent for short time

;; in case desktop is sending message.
))

(defthread (alpha :primary t) ()
(let ((diff1 0) (diff2 0))
(set-sensor-state *receiver* :type :light :mode :raw)
(setq diff1 (abs (- (sensor *receiver*) (sensor *receiver*))))
(setq diff2 (abs (- (sensor *receiver*) (sensor *receiver*))))
(start-rcx-thread signaller)
(loop

(when (>= (abs (- diff1 diff2)) *LIMIT*)
(play-tone 500 1))

(setq diff1 diff2)
(setq diff2 (abs (- (sensor *receiver*)

(sensor *receiver*)))))))

ports. Thus the limit switch is an excellent re-
source for increasing the RCX’s sensory band-
width.

Because of the course’s emphasis on pro-
gramming teams of agents, the cost for one
team’s kit (with three RCXs) is approximately
US$900, and Lego now has piece sets available
that could reduce the cost to US$750. Curricula
focusing on design of one robot per student
team could use one Mindstorms set (with one
extra light sensor, one extra touch sensor, one
extra motor, and one axle-rotation sensor) per
student team for approximately US$300.

Course Project Descriptions
Since 2000, RCXLisp has been used to imple-
ment the following projects in the CSC 4500
course’s laboratory. Typically three or four of
the projects are assigned and completed in a
given semester. Some are used to help students
develop skills for the course’s final robot com-
petition (see the “Capture the Balls Contest”
section). Although the majority are symbolic
AI projects, there is nothing in the RCXLisp li-
brary that would prevent it from supporting
numeric-level AI projects such as neural net-
works.

Simple-Reflex Robot Design (and
RCXLisp Orientation)
This 10-day project is always assigned to show
students how robots with simple stimulus-re-
sponse rules and no model of the environment
can achieve effective behaviors as well as
demonstrate emergent behavior. Students de-
sign a robot based on a tread-wheeled
“Pathfinder” model described in the Mind-
storms user manual. Students start with this ba-
sic design in order to reduce time spent on dis-
tracting mechanical engineering issues, but
they are free to mount sensors on the chassis as
needed.

Students first build a robot that uses a com-
pass sensor to maintain a given bearing: team 1
goes north, team 2 goes south, and so on. They
next add code to monitor, using data from
mounted light sensors, whether the robot was
about to roll over a dark tile on the floor. In
such cases the robot has to back up and/or turn
to avoid the obstacle for a brief time, after
which it resumes its bearing. In programming
efforts where the threads for the two behaviors
are well-balanced (that is, avoidance turns are
kept short and forward motion on the required
bearing is steadily maintained), students ob-
serve the emergent behavior of a robot per-
forming edge-following along dark tiles. Stu-
dents implement this project first using local

RCXLisp and then remote RCXLisp to gain an
understanding of the reaction times for teth-
ered and untethered operation.

Robot Odometry
This two-week project’s goal is to help students
understand the major factors that can intro-
duce error into a robot’s internal representation
of its current location in the world—an impor-
tant issue in any navigation process. It also in-
troduces them to the importance of maintain-
ing a representation of state—in particular, the
robot’s position.

Each team designs and builds a robot that
will measure the perimeter of a convex black
shape on a light background on the floor. These
shapes are printed on reusable laminated sheets
(see figure 8). The reported measurement (over
200 cm) should be accurate to within plus or
minus 3 cm and should be obtained within 90

Articles

SPRING 2006 59

;;;;Example 1
(tell-rcx (38 :port :LEGO-USB-TOWER :retries 3)

(SETF (var 4) 19))

;;;;Example 2
(with-open-com-port (p :LEGO-USB-TOWER)

(with-open-rcx-stream (s p :rcx-unit 38 :retries 3)
(using-rcx s

(SETF (var 4) 19))))

Figure 6. Remote RCXLisp Code Allowing a Desktop to Update the Contents
of Register 4 on RCX with Unit ID Number of 38.

3 Mindstorms Robotic Invention Systems packages
3 Lego light sensors beyond the three in the
 Mindstorms Systems packages
3 Lego touch sensors beyond the six in the
 Mindstorms Systems packages
3 Lego motors beyond the six in the
 Mindstorms Systems packages
2 Lego axle-rotation sensors
1 Hitechnic magnetic compass sensor
18 rechargeable batteries
1 large lockable toolbox to hold all of the above as
 well as a partially completed robot (for an idea of
 size, see the box in the middle of the floor or the
 black box on the grid in figure 7).

Table 2. Equipment in a CSC 4500 Kit.

and Common Lisp search program to solve the
eight-puzzle on a desktop. The team first tries a
search formulation that defines four opera-
tors—”move up,” “move down,” “move left,”
and “move right”—for each piece in the puzzle.
They find that the formulation can lead to a
search algorithm with a branching factor of 32.
The team then develops a set of four operators
that involve conceptually moving the “space”
up, down, left, or right, rather than 32 opera-
tors for moving each of the numbered tiles up,
down, left, or right. The students observe that
this design decision dramatically reduces the
branching factor of the search algorithm (4 ver-
sus 32), leading to a faster execution time for
the game-solver.

In the second stage students write a remote
RCXLisp program for a Mindstorms robotic
arm mechanism that moves pieces in an eight-
puzzle according to the solution developed by
stage 1’s programming. In this stage students
find that the search space reformulation trick

seconds. The project permits use of dead reck-
oning (for example teams used one rotation
sensor to measure the distance being traversed
and a second one to estimate when the robot’s
orientation had completed one rotation
around its body’s axis) and landmark-based
navigation (for example, some teams used a
second RCX as a beacon to tell the robot when
it had reached the point at which it had start-
ed) techniques. Although all teams generally
succeed in this project, many find the time lim-
it challenging in light of the accuracy con-
straint.

Eight-puzzle Solver
This two-week project has the goal of showing
students that data abstractions that facilitate
search can produce solution representations
that are not immediately translated into con-
trol programs for hardware.

The project has two stages. In the first stage
students develop a knowledge representation

Articles

60 AI MAGAZINE

Figure 7. Robotics Lab at Villanova.

ultimately costs them in the complexity of
their second program as it spends time translat-
ing the “move space up/down/left/right” oper-
ator list to a list of “move tile at (2,2) to (2,1)”
commands.

Search-Based Path Planning
In this three-week project students design a
Common Lisp search program to solve the nav-
igation problem of having a robot traverse a
field of obstacles whose corners are defined by
points in a plane while trying to minimize dis-
tance traveled between its start point and its
goal. Students then use remote RCXLisp to in-
terface the search algorithm with a prebuilt ro-
bot and have the robot follow the prescribed
path. This project has been used many times in
AI courses with graphical simulations. But
when students see even the best-designed ro-
bots incur too much location uncertainty using
simple geometric dead reckoning, they gain a
better appreciation for the need to augment
planning with sensor-based localization and
navigation techniques.

Decision-Tree Control
In this project students run a prebuilt robot
with light sensors and touch bumpers on a ran-
dom walk through a simple maze, recording
sensor readings when an obstacle is encoun-
tered. Although the Mindstorms RCX has only
three input ports, it is possible to multiplex up
to three touch sensors or three light sensors on
a single port. Thus a total of nine sensors can be
arrayed on the robot. Students record the ro-
bot’s correct action (move forward, turn left,
turn right, or back up) for each situation (vec-
tor of all sensors’ readings). They then develop
a decision tree that tries to capture the essential
sensor readings for guiding the robot through
the maze. The decision tree is incorporated into
either a remote RCXLisp program or a local
RCXLisp program for evaluation and refine-
ment.

Robotic Agent Planning
In this individual independent-study project, a
student used a planner (Carver and Lesser 1993)
to control a robot through remote RCXLisp.
Some plan primitives were precompiled, and
these local RCXLisp programs were loaded into
the robot for execution as each primitive action
completed. Other plan primitives included re-
mote RCXLisp queries about the current state of
the robot. This project has considered “Wum-
pus World” scenarios thus far, but could be for-
malized for a more intricate environment to
provide students a chance to investigate both
reactive and incremental planning.

Capture-the-Balls Contest
This project serves as a capstone that ties to-
gether skills students have developed through
the course. It also generates an exciting finish
to the semester. The contest is based on the pa-
per by Beer, Chiel, and Drushel (1999), with
some adaptations to fit the RCX’s capabilities.
Each student team designs and builds two ro-
bots, each no larger than 1 cubic foot, to com-
pete against other teams’ robots in a 20-minute
contest. Contestants play in a walled arena that
has ranged from 64 square feet to 160 square
feet in area (depending on what classrooms are
available each year). When large classrooms are
available for the contest (that is, those that per-
mit a playing field larger than 120 square feet),
student teams are allowed to field teams of
three robots.

Each robot team has a 1-square-foot dark-
colored goal area. All other portions of the
playing field are light-colored. Black, white,
and yellow Ping-Pong balls are scattered
throughout the field. Robots gather balls and
bring them back to their goal for points. Each
yellow ball in a team’s goal earns five points;
white ones add one point; black balls subtract
a point. A 1-foot-square grid of half-inch-thick
black tape lines the playing field. Figure 9
shows one such contest layout. To aid in navi-
gation, the walls’ corners have RCXs mounted
to bathe the immediate area in IR signals
uniquely identifying the region. Robots are per-
mitted to scatter or steal balls already in oppos-
ing teams’ goal areas. They are also able to

Articles

SPRING 2006 61

Figure 8. Example Shape Sheets for the
“Robot Odometry” Laboratory Project.

strategies over the years. Some have incorporat-
ed time-dependent approaches. For example, as
the contest progresses, robots generally push
balls toward the walls of the field; some teams
therefore designed ball-scooping robots with
search patterns whose coverage regions ex-
panded probabilistically toward the walls
whenever too few “scoops” occur. Some teams
have tried with varying degrees of success to
combine elaborate planners on their control
desktop with very limited planners on board
their robots for recovering from breakdowns in
remote-control IR communication that happen
when robots’ RCXs lose line-of-sight contact
with the control desktop’s IR tower.

When three-robot teams were permitted (on-
ly twice in the last five years), some student
teams have attempted to use distributed-agent
approaches whereby one of the robots is de-
signed as an “information gatherer” that peri-
odically traverses the playing field to find
where concentrations of balls are located and

place balls in opposing teams’ goal areas. Ro-
bots are permitted to block opposing robots’
movements physically. However, robots are not
allowed to “park” closer than one foot from a
goal area, and robots are not permitted to use
behaviors that clearly would damage other ro-
bots (for example, ramming or piercing). Com-
petitions allow students to dangle IR towers
over the playing field for remote-control ap-
proaches.

Teams used both local and remote RCXLisp
in the project. Student teams are encouraged to
explore a variety of navigation techniques and
play strategies. Navigation strategies employed
in past competitions have included landmark-
based navigation using the grid lines, hill-
climbing based on the strength of infrared bea-
cons hung over a goal square, and, most
recently, sonar-based particle filtering that used
the playing field’s walls to aid in position esti-
mation.

Student teams have developed many play

Articles

62 AI MAGAZINE

Figure 9. 2003 Capture-the-Balls Competition Setup.

reports this information over IR transmissions
to “ball gatherer” robots that react dynamically
to the news.

Because of the public attention the contest
draws, students become invested in the compe-
tition and try their best in designing their ro-
bots and control code. However, there was a
tendency during the first three competitions
for student teams to focus less on programming
general AI techniques into their contest entries
and to rely more on “contest engineering” ap-
proaches limited to reflexive agent designs. To
reduce this tendency, since last year students
are required to include in their final report a de-
scription of how their design uses at least one
AI technique discussed in class or adapted from
Internet research.

Student Experience Reports
The addition of robots with RCXLisp to CSC
4500 has had several noticeable impacts on stu-
dents’ quality of experience in the course.

Before 1999 the CSC 4500 course was offered
once every two years, with enrollments rarely
reaching the level of 10 students. Since the in-
troduction of robots, demand for the course
has necessitated annual offerings, with enroll-
ments typically over 15 students. The only
time this level was not achieved was in a semes-
ter when there were five electives scheduled
(usually there are only four electives scheduled)
and the course was scheduled as an evening
course—a time period avoided by most stu-
dents. Under those circumstances, the total en-
rollment was 8. Thus, one can argue that al-
though a robotics element in AI courses is
usually a strong interest generator, there are
some factors that it will not overcome! Four
course graduates have gone on to pursue grad-
uate work in artificial intelligence areas (two
Ph.D. candidates and two Master’s degree can-
didates, one of whom is applying this year for
admission to doctoral work in AI) since the ro-
botic element was added. While it can be de-
bated whether those students would have gone
on to graduate AI work even without exposure
to robotics projects, it is interesting to note that
prior to the robot projects’ addition no course
graduates had pursued graduate AI work.

The robotics component has definitely
added to department camaraderie. The Capture
the Balls Contest has been widely publicized in
the department, and each year some course
graduates attend the following year’s competi-
tion to regale current participants with tri-
umphs and tragedies from the past.

Although the RCX transceiver often picks up
IR signals reflected from walls, students have

Articles

SPRING 2006 63

Figure 10. Synchro-Drive Chassis Design That Allows RCXs
Mounted on Top to Face the Same Direction at All Times While the

Lower Wheels Turn on Their Own Axes.

agent design as an organizing princi-
ple for the study of intelligent arti-
facts, the increasing availability of
low-cost robotics platforms, and the
growing number of accessible robot
software libraries for undergraduates
are important trends in AI education.
Each trend has had a significant posi-
tive impact on student experience in
Villanova’s CSC 4500 AI course be-
cause of the adoption of RCXLisp.

The projects described in this article
demonstrate that students in the AI
course have been able to use RCXLisp
projects to explore the design of exam-
ple agents from every one of the class-
es described in Russell and Norvig’s in-
telligent agent taxonomy (Russell and
Norvig 2003), with the exception of
the utility-based agent class. This ex-
ception is due to the late coverage of
the topic in the course. Our depart-
ment has recently added a course on
machine learning. With the move-
ment of that material from the AI
course to the new course, we expect to
be able to start coverage of utility-
based agents early enough in the AI
course to permit work on utility-based
robotic agents.

Combined with the low cost and
adaptability of Mindstorms, RCXLisp
made it possible to add robotics-in-
spired projects to our AI course cost-ef-
fectively, without having to distract
students with many mechanical or
computer engineering issues. Student
feedback, enrollment levels, and grad-
uates’ continued interest in AI over
the last four years of using RCXLisp
and Mindstorms in our course lend
support to this claim. The RCXLisp li-
brary’s integration with Common Lisp
enabled students to adapt Lisp AI soft-
ware from the Internet and from Rus-
sell and Norvig’s sample code corpus
to robot applications with little diffi-
culty.

RCXLisp was first developed to ad-
dress needs of an AI course, but has
since been subsumed into a larger ini-
tiative—Thinking Outside the (Desk-
top) Box—to support the use of Mind-
storms in combination with other
programming languages across the full
computer science curriculum (Klass-
ner and Anderson 2003).8

Students’ imaginations are not the
only place where RCXLisp and Mind-

Since Common Lisp function declara-
tions are themselves merely formatted
linked lists, students can generate
plans as linked lists within a planner
and then download the same data to
the RCX as an immediately executable
form.

Students have reported that debug-
ging local RCXLisp programs involves
more effort than debugging remote
RCXLisp programs within Common
Lisp environments. They usually re-
sort to adding commands to a remote
RCXLisp program to play musical
tones or to light up LEDs in order to
debug program control flow problems.

Another recurring challenge stu-
dents have noted is that the library
does not provide built-in support for
synchronized message passing either
between threads on the RCX or be-
tween RCX threads and desktop
threads. At the start of each course of-
fering, computer science majors are
encouraged to develop their own
macros and functions for their team
for these purposes so as to reinforce
the process synchronization skills they
typically learn in the second semester
of their sophomore year. There is no
Common Lisp standard for process co-
ordination. Nevertheless, in an effort
to make RCXLisp more useful in a
wider array of computing curricula,
the next version of RCXLisp will in-
clude simple ad hoc synchronous mes-
sage-passing macros for local RCXLisp
threads. However, construction of a
general mechanism for synchronizing
desktop access to RCX registers on top
of RCXLisp’s var function will require
greater care. Any high-level synchro-
nization constructs added to remote
RCXLisp should be expected to inter-
face well with the threading con-
structs in whichever Common Lisp
environments they are used.

Conclusions and
Future Work

RCXLisp is the first open-source Com-
mon Lisp library for Mindstorms that
supports both remote control and on-
board programming of robots as well
as targeted communication between
multiple robots and command-center
desktops.

The growing role of intelligent

sometimes been frustrated in main-
taining wireless control of a robot
when it turns its transceiver away
from its control desktop PC’s IR tower.
To mitigate this problem (and the
problem of having nonengineering
students spend too much time on
complex chassis design) the course
supplies teams with a prebuilt synchro
drive chassis based on the Lego Mind-
storms Syncro Drive7 (see figure 10).
This chassis design can keep an RCX
mounted on it pointed in the same di-
rection since the base does not turn as
the wheel casings below it turn. Thus,
the chassis can keep its RCX units
aimed at an IR communication tower
as the robot maneuvers on the floor.

Regarding RCXLisp itself, several
cognitive science concentrators and
engineers have commented on how
they felt they could get past coding de-
tails faster in RCXLisp and Common
Lisp than in Java because of those lan-
guages’ lack of typing. The prominent
use of RCXLisp in our department’s AI
course has had the effect of raising stu-
dents’ interest in understanding how
to program in Lisp in our department’s
programming languages course.

Students have also commented on
the immediacy of working with RCXs
using the Common Lisp Listener: sim-
ply by invoking a function in the Lis-
tener, an RCX can be made to
respond. This is definitely an example
of satisfaction with being able to get
past the “hello robot” stage of pro-
gramming quickly.

The library’s integration with low-
level system functions such as infrared
USB communication helps students
get past the uninteresting details of
port communication and instead con-
centrate on the AI-oriented problems
of environmental noise, sensor sensi-
tivity, and environmental nondeter-
minism. For most students, the library
and the robot projects gave them their
first experience with coordinating re-
sponses to real-time data sources (sen-
sors) whose values could change “even
when the program isn’t watching,” as
one student put it.

The library’s support for “on-the-
fly” program generation and down-
load helps students appreciate the
power of Common Lisp’s lack of differ-
entiation between code and data.

Articles

64 AI MAGAZINE

storms have had an October sky effect.
RCXLisp’s design team continues to
make improvements to the package.
In addition to the future work de-
scribed in the previous section, an im-
portant goal is to add call stack sup-
port and memory management
support to the Mnet firmware. This
would extend the Lisp functionality of
the on-board language for RCXs. A re-
lated possibility would be to eliminate
firmware and target the H8 processor
directly, as the C++ BrickOS library for
Mindstorms does.

Another future project is to inte-
grate the Lego vision command cam-
era into the RCXLisp library. This
would provide a low-cost tool for ex-
ploring machine vision problems. It
would also provide an additional data
channel for student teams to use in
the capture the balls contest in coordi-
nating robots’ coverage of playing
field areas.

The RCXLisp library already has
generic serial API functions, making it
a useful basis for Common Lisp solu-
tions for interfacing with serial de-
vices. However the library’s USB inter-
face functions currently only work
specifically with Mindstorms USB IR
towers. Work is underway to extend
Common Lisp streams to support
generic USB devices so that not only
the vision command camera but also
other USB-based sensors and devices
can be used in RCXLisp (Jacobs, Jor-
gage, and Klassner 2005).

In January, 2006, Lego announced a
new version of Mindstorms, NXT.
Based on released information about
the new platform, I expect that
RCXLisp will be portable to NXT.

Acknowledgments
I am grateful to Andrew Chang for his
graduate independent study work that
developed the Mnet firmware, my
graduate students Drew Jacobs and Er-
ic Clark for their work in the design of
reliable USB communication libraries
for RCXLisp, and my undergraduate
research assistant Christopher Conti-
nanza for his work in the design of ro-
bust Lego chassis for the AI course pro-
jects. I also thank the reviewers and
editors for comments that improved
this article.

Lego Mindstorms and RCX are

trademarks of the Lego Group, which
does not sponsor, authorize, endorse,
or support any of the third-party work
cited in this article. The author has no
financial relationship with the Lego
Group except for a discount purchase
plan for Mindstorms equipment for
training seminars run under NSF
Grant No. 0306096.

This material is based upon work
supported by the National Science
Foundation under Grant No. 0088884
and Grant No. 0306096. Any opin-
ions, findings, and conclusions or rec-
ommendations expressed in this ma-
terial are those of the author and do
not necessarily reflect the views of the
National Science Foundation.

Notes
1. Such as ActivMedia Robotics (www.ac-
tivrobots.com) and Lego Mindstorms,
www.legoMindstorms.com/. See also F.
Martin, The MIT HandyBoard Project, De-
cember 2005, http://lcs.www.media.mit.
edu/groups/el/Projects/handy-board.

2. See www.noga.de/legOS; lejos.sourceforge.
com; Not Quite C (NQC), bricxcc.source-
forge.net/nqc; and the LEGO/ Scheme com-
piler, Oct. 2005 (www.indiana.edu/~legob-
ots/legoscheme/), by A. Wick, K. Klipsch,
and M. Wagner.

3. See lejos.sourceforge.com.

4. See www.indiana.edu/~legobots/
legoscheme/.

5. www.hitechnic.com.

6. www.techno-stuff.com.

7. See www.visi.com/~dc/synchro.

8. Installation files for RCXLisp and hand-
outs for the assignments described in this
article are available for download from the
web site for this project at robotics.csc.vil-
lanova.edu.

References
Beer, R. D., Chiel, H. J., and Drushel, R. F.
1999. Using Autonomous Robotics to
Teach Science and Engineering. Communi-
cations of the ACM 42(6)(June): 85–92.

Brooks, R. A. L. 1993. A Subset of Common
Lisp. Technical Report, Massachusetts Insti-
tute of Technology Artificial Intelligence
Laboratory, Cambridge, MA.

Carver, N., and Lesser, V. 1993. A Planner
for the Control of Problem Solving Sys-
tems. IEEE Transactions on Systems, Man,
and Cybernetics, Special Issue on Planning,
Scheduling, and Control 23(6): 1519–1536.

Cohen, P. 1995. Empirical Methods for Arti-
ficial Intelligence. Cambridge, MA: The MIT
Press.

Jacobs, D.; Jorgage, B.; and Klassner, F.
2005. A Common Lisp USB Communica-
tion Library. Paper presented at the 2005
International Lisp Conference, Stanford,
CA, June 19–22.

Klassner, F., and Anderson, S. 2003. Lego
Mindstorms: Not Just for K–12 Anymore.
IEEE Transactions on Robotics and Automa-
tion Magazine 19(3): 12–18.

Klassner, F. 2002. A Case Study of Lego
Mindstorms’™ Suitability for Artificial In-
telligence and Robotics Courses at the Col-
lege Level. In Proceedings of the Thirty-Third
Special Interest Group on Computer Science
Education Technical Symposium on Computer
Science Education, 8–12. New York: Associa-
tion for Computing Machinery.

Kumar, D., and Meeden, L. 1998. A Robot
Laboratory for Teaching Artificial Intelli-
gence. In Proceedings of the Twenty-Ninth
Special Interest Group on Computer Science
Education Technical Symposium on Computer
Science Education. New York: Association for
Computing Machinery.

Mazur, N., and Kuhrt, M. 1997. Teaching
Programming Concepts Using a Robot Sim-
ulation. Journal of Computing in Small Col-
leges 12(5): 4–11.

Russell, S., and Norvig, P. 2003. Artificial In-
telligence: A Modern Approach, 2nd ed. En-
glewood Cliffs, NJ: Prentice Hall.

Steele, G. 1990. Common Lisp: The Lan-
guage, 2nd ed. Woburn, MA: Digital Press.

Stein, L. 1996. Interactive Programming:
Revolutionizing Introductory Computer
Science. ACM Computing Surveys
28(4es)(December): 103.

Yuasa, T. 2003. XS: Lisp on Lego Mind-
storms. Paper presented at the 2003 Inter-
national Lisp Conference, New York, Octo-
ber 12–15.

Frank Klassner earned
B.S. degrees in computer
science and in electron-
ics engineering from the
University of Scranton.
He earned his M.S. and
Ph.D. in computer sci-
ence from the University
of Massachusetts at

Amherst. He is an associate professor in Vil-
lanova University’s Department of Com-
puting Sciences. In addition to AI and ro-
botics, his interests include adaptive signal
processing and Lisp modernization for the
twenty-first century. He can be reached at
Frank.Klassner@villanova.edu.

Articles

SPRING 2006 65

Articles

66 AI MAGAZINE

We invite you
to participate in the
Fifteenth Annual AAAI
Mobile Robot Competition
and Exhibition

Sponsored by the American
Association for Artificial Intelligence,
the Competition brings together teams
from universities, colleges, and research
laboratories to compete and to
demonstrate cutting edge, state of
the art research in robotics
and artificial intelligence.

The 2006 AAAI Mobile Robot Competition
and Exhibition will be held in Boston,
Massachusetts, as part of AAAI-06,
from July 16–20, 2006.

The program will include
the Robot Challenge,
the Open Interaction Task,
the Scavenger Hunt,
the Robot Exhibition, and the
Mobile Robot Workshop.

Registration and information is available
at palantir.swarthmore.edu/aaai06/.

AAAI-06 conference details:
www.aaai.org/Conferences/
AAAI/aaai06.php

