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Semantic
Integration in Text

From Ambiguous Names
to Identifiable Entities

Xin Li, Paul Morie, and Dan Roth

B Semantic integration focuses on discovering, repre-
senting, and manipulating correspondences be-
tween entities in disparate data sources. The topic
has been widely studied in the context of struc-
tured data, with problems being considered includ-
ing ontology and schema matching, matching re-
lational tuples, and reconciling inconsistent data
values. In recent years, however, semantic integra-
tion over text has also received increasing atten-
tion. This article studies a key challenge in seman-
tic integration over text: identifying whether
different mentions of real-world entities, such as
“JFK” and “John Kennedy,” within and across nat-
ural language text documents, actually represent
the same concept.

We present a machine-learning study of this
problem. The first approach is a discriminative ap-
proach—a pairwise local classifier is trained in a su-
pervised way to determine whether two given
mentions represent the same real-world entity.
This is followed, potentially, by a global clustering
algorithm that uses the classifier as its similarity
metric. Our second approach is a global generative
model, at the heart of which is a view on how doc-
uments are generated and how names (of different
entity types) are “sprinkled” into them. In its most
general form, our model assumes (1) a joint distri-
bution over entities (for example, a document that
mentions “President Kennedy” is more likely to
mention “Oswald” or “White House” than “Roger
Clemens”), and (2) an “author” model that as-
sumes that at least one mention of an entity in a
document is easily identifiable and then generates
other mentions via (3) an “appearance” model that
governs how mentions are transformed from the
“representative” mention. We show that both ap-
proaches perform very accurately, in the range of
90-95 percent. F; measure for different entity
types, much better than previous approaches to
some aspects of this problem. Finally, we discuss

how our solution for mention matching in text
can be potentially applied to matching relational
tuples, as well as to linking entities across databases
and text.

vides a foundation for intelligent and effi-

cient access to heterogenous information.
Such sharing, however, raises many difficult se-
mantic-integration challenges. The Al and the
database communities have been actively
working on these challenges, focusing largely
on structured data sources (Rahm and Bernstein
2001; Ouksel and Seth 1999). For example, sig-
nificant research has been done on the prob-
lems of ontology and schema matching and on
matching relational tuples (see the other arti-
cles in this issue of AI Magazine, as well as a
forthcoming SIGMOD Record special issue on
semantic integration, edited by Doan, Noy, and
Halevy; Madhavan, Bernstein, and Rahm
[2001]; Doan, Domingos, and Halevy [2001];
Dhamankar et al. [2004]; Hernandez and Stolfo
[19935]; Tejada, Knoblock, and Minton [2002];
Andritsos, Miller, and Tsaparas [2004]; Doan et
al. [2003]).

In the past several years, however, semantic-
integration issues over natural language text
(such as news articles) and semistructured text
and web data (such as e-mail, hypertext mark-
up language [HTML] pages, and seminar an-
nouncements) have attracted increasing atten-
tion. Key challenges here include finding
relevant text fragments, identifying whether
different fragments refer to the same real-world

E ; haring data across disparate sources pro-
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entity, and, if so, merging them to obtain more
information about the entity.

Longstanding applications that require se-
mantic integration over text include informa-
tion extraction (Roth and Yih 2001) and ques-
tion-answering systems (Voorhees 2002; Roth
et al. 2002; Moldovan et al. 2002) from natural
language texts. Recent applications include, for
example, Citeseer, the well-known research pa-
per index. To construct the citation graph, giv-
en any two paper citations in text format, Cite-
seer must decide whether they refer to the same
real-world paper. Another key challenge in con-
structing a Citeseer-style application is to de-
cide whether two mentions of author names in
text (for example, “Michael Jordan” and “M.
Jordan”) refer to the same real-world author.
Another emerging application area is that of
personal information management (PIM)
(Jones and Maier 2004; Dong et al. 2004). In
PIM, disparate data sources are merged to con-
struct a network of interrelated entities (for ex-
ample, persons, projects, papers, and so on) so
that the data owner can easily browse and re-
trieve information about any particular entity.
Other applications include acquiring social
network information and performing other
name-related disambiguation tasks (Pasula et
al. 2002; Cohen, Ravikumar, and Fienberg
2003; Bilenko and Mooney 2003; Mann and
Yarowsky 2003; Gooi and Allan 2004; Culotta,
Bekkerman, and McCallum 2004).

As mentioned previously, the key challenge
in semantic integration over text is to automat-
ically identify concepts in text and link textual
segments representing “mentions” of concepts
to real-world objects. This problem is difficult
because most names of people, locations, orga-
nizations, events, and others entities have mul-
tiple writings that are being used freely within
and across documents. Consider, for example, a
user that attempts to acquire a concise answer,
“on May 29, 1917,” to the question “When was
President Kennedy born?” by accessing a large
collection of textual articles. The sentence, and
even the document that contains the answer,
may not contain the name “President
Kennedy”; it may refer to this entity as
“Kennedy,” “JFK,” or “John Fitzgerald Ken-
nedy.” Other documents may state that “John E.
Kennedy Jr. was born on November 25, 1960,”
but this fact refers to our target entity’s son.
Other mentions, such as “Senator Kennedy” or
“Mrs. Kennedy” are even “closer” to the writing
of the target entity, but clearly refer to different
entities. Even the statement “John Kennedy,
born 5-29-1941” turns out to refer to a different
entity, as one can tell by observing that the doc-
ument discusses Kennedy’s batting statistics. A

similar problem exists for other entity types,
such as locations and organizations.

In this article, we present a solution to the
mention-matching problem in natural lan-
guage texts, which we called the robust reading
problem (Li, Morie, and Roth 2004a), and then
discuss its potential application to record
matching and linking entities across text and
databases. Two conceptually different ma-
chine-learning approaches are presented (Lij,
Morie, and Roth 2004b) and compared to exist-
ing approaches. We conclude that an unsuper-
vised learning approach can be applied very
successfully to this problem, provided that it is
used along with strong but realistic assump-
tions on the usage of names in documents.

Our first model is a discriminative approach
that models the problem as that of deciding
whether any two names mentioned in a collec-
tion of documents represent the same entity.
This straightforward modeling of the problem
results in a classification problem—as has been
done by several other authors (Cohen, Raviku-
mar, and Fienberg 2003; Bilenko and Mooney
2003), allowing us to compare our results with
these. This is a standard pairwise classification
task, and a classifier for it can be trained in a su-
pervised manner; our main contribution in this
part is to show how relational (string and token
level) features and structural features, represent-
ing transformations between names, can im-
prove the performance of this classifier. Several
attempts have been made in the literature to
improve the results of a pairwise classifier of this
sort by performing some global clustering, with
the pairwise classifier as a similarity metric. The
results of these attempts were not conclusive,
and we provide some explanation for it. First,
we show that, in general, a clustering algorithm
used in this situation may in fact hurt the re-
sults achieved by the pairwise classifier. Then,
we argue that using a locally trained pairwise
classifier as a similarity metric might be the
wrong choice for this problem. Our experi-
ments concur with this. However, as we show,
splitting data in some coherent way—for exam-
ple, into groups of documents originated at
about the same time period—prevents some of
these problems and aids clustering significantly.

This observation motivates our second mod-
el, which better exploits structural and global
assumptions. The global probabilistic model
for mention matching is detailed in the paper
by Li, Morie, and Roth (2004b). Here we briefly
illustrate one of its instantiations and concen-
trate on its basic assumptions, the experimen-
tal study and a comparison to the discrimina-
tive model.

At the heart of our unsupervised approach is



a view of how documents are generated and
how names (of different types) are “sprinkled”
into them. In its most general form, our model
assumes (1) a joint distribution over entities, so
that a document that mentions “President
Kennedy” is more likely to mention “Oswald”
or “White House” than “Roger Clemens,” and
(2) an “author” model that makes sure that at
least one mention of a name in a document is
easily identifiable (after all, that is the author’s
goal) and then generates other mentions via (3)
an “appearance” model that governs how men-
tions are transformed from the “representa-
tive” mention. Under these assumptions, the
goal is to learn a model from a large corpus and
use it to support mention matching and track-
ing. Given a collection of documents, learning
proceeds in an unsupervised way; that is, the sys-
tem is not told during training whether two
mentions represent the same entity.

Both learning models assume the ability to
recognize names and their type using a named
entity recognizer as a preprocessor.

Our experimental results are somewhat sur-
prising; we show that the unsupervised ap-
proach can solve the problem accurately, giv-
ing accuracies (F,) above 90 percent, and better
than our discriminative classifier (obviously,
with a lot more data).

After discussing some related work, we first
present the experimental methodology in our
evaluation in order to present a more concrete
instantiation of the problem at hand. Next, we
describe the design of our pairwise name clas-
sifier, compare the design to other classifiers in
the literature, and discuss clustering on top of
a pairwise classifier. We then present the gener-
ative model and compare the discriminative
and generative approaches along several di-
mensions. Finally, we discuss how our solution
can potentially be applied to the record-match-
ing problem, as well as the problem of linking
entities across databases and text.

Previous Work

We discuss research related to our work from
several perspectives: schema and record match-
ing, coreference resolution, and mention
matching in text.

Schema and Record Matching

The mention-matching problem is related to tu-
ple matching and schema matching as studied
in the database domain (for example, Rahm
and Bernstein 2001; Hernandez and Stolfo
1995; Tejada, Knoblock, and Minton 2002; An-
dritsos, Miller, and Tsaparas 2004; and Doan et
al. 2003). Indeed, at an abstract level, the prob-

lem of semantic integration over structured in-
formation sources, as defined in the database
domain, can be phrased as follows: well-defined
concepts (in the case of schema matching) and
entities (in the case of tuple matching) are man-
ifested when put into databases in multiple,
ambiguous occurrences. The matching ap-
proaches attempt to identify concepts or enti-
ties from these occurrences and allow for the in-
tegration of information based on this semantic
connection. This abstract definition also cap-
tures the problem of mention matching, in the
context of semantic integration over text.

However, mention matching in text differs
from schema and record matching in at least
two important aspects. First, the information
that can be used to discriminate between two
names in text is not well defined. Even when
one can identify (in principle) the information,
it is still hard to extract it accurately from a doc-
ument and place it into a well-structured tuple.

Second, textual documents contain, in prin-
ciple, more information that might influence
the decision of whether to merge two men-
tions. For example, the notion of individual
documents might be very significant here.
While similar mentions that occur within and
across different documents may refer to differ-
ent entities, and very different (surface level)
mentions could refer to the same entity, these
variations are typically more restricted within
one document. And, learning those variations
within a document may contribute to better
decisions across documents. Moreover, there is
more contextual information for a given men-
tion than in a typical database tuple; this infor-
mation might include the syntactic structure of
the sentence as well as entities that cooccur in
the same document.

Within the context of record matching, ma-
chine-learning approaches (Cohen and Rich-
man 2002; Bilenko and Mooney 2003) usually
consider a pair of records and extract from the
pair features that capture their similarity. The
classifier is thus a parameterized similarity func-
tion that is trained given a set of annotated ex-
amples. That is, the pairs are labeled as match-
ing or nonmatching tags, and training serves to
choose the parameters that optimize some loss
function. Learning-based similarity metrics vary
in their selection of features, hypotheses, and
learning algorithms. These approaches can be
viewed as addressing some aspects of the “ap-
pearance” model—a lower-level processing step
in our approach.

Coreference Resolution

The mention-matching problem is also related
to the general coreference-resolution problem
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in natural language processing (Soon, Ng, and
Lim 2001; Ng and Cardie 2002; Kehler 2002),
which attempts to determine whether two
forms of reference in a text, typically a name
(more generally, a noun phrase) and a pronoun,
actually refer to the same thing. This is typically
done among references that appear within a rel-
atively short distance in one document.

The problem we address here has a different
goal and a much wider scope. We aim at the
identification and disambiguation of real-world
concepts from its multiple and ambiguous
mentions both within and across documents.
Our problem has broader relevance to the prob-
lem of intelligent information access and se-
mantic integration across resources. Typically,
machine-learning approaches to the corefer-
ence problem first convert the local informa-
tion into a set of features and then make use of
a supervised-learning approach to determine
whether a given pronoun and a given noun
phrase corefer. Approaches differ in the algo-
rithm used and the features extracted. In con-
trast, one of our approaches is unsupervised,
which does require knowing, for training, the
entity referred by any mention. The approach is
based on a probabilistic model that integrates
the generation process of all mentions from
their original entities with the notion of indi-
vidual documents. Given the generative model,
model estimation and mention matching can
be solved simultaneously through an iterative
optimizing process.

Mention Matching in Text

Several works have addressed some aspects of
the mention-matching problem with text data
and studied it in a cross-document setting
(Mann and Yarowsky 2003; Bagga and Baldwin
1998; McCallum and Wellner 2003; Gooi and
Allan 2004). Mann and Yarowsky (2003) con-
sider one aspect of the problem, that of distin-
guishing occurrences of identical names in dif-
ferent documents, and for only one type of
entity—people. That is, they consider the ques-
tion of whether occurrences of “Jim Clark” in
different documents refer to the same person.
Their method makes use of “people-specific”
information and may not be applied easily to
other types of entities and other aspects of the
mention-matching problem. Bagga and Bald-
win (1998) build a cross-document system
based on an existing coreference resolution
tool, Camp. It extracts all the sentences con-
taining an entity as a representation of the en-
tity and then applies a vector space model to
compute the similarity between two such rep-
resentations. Clustering is used subsequently to
group entities in different documents into

global coreference chains. McCallum and Well-
ner (2003) use a conditional model to address
the problem of coreference across documents.
This work takes a more global view in that it de-
fines a conditional probability distribution
over partitions of mentions, given all observed
mentions. The derived pairwise classification
function that determines whether two names
match is learned in a supervised manner, based
on a maximum entropy model. However, this
model does not incorporate contextual infor-
mation and cannot resolve the ambiguity at
the level we expect it to.

The work by Pasula et al. (2002) considers
the problem of identity uncertainty in the con-
text of citation matching and suggests a rela-
tional probabilistic model, which is related to
our relational appearance model. This work al-
so exhibits a need to perform tuple matching in
a semistructured database with various textual
fields.

Experimental Methodology

In our experimental study we evaluated differ-
ent models on the problem of mention match-
ing for three entity types—people (Peop), loca-
tions (Loc) and organizations (Org). The
document segments shown in figure 1 exempli-
fy the preprocessed data given as input to the
evaluation. The learning approaches were eval-
uated on their ability to determine whether
items in a pair of entities (within or across doc-
uments) actually correspond to the same real-
world entity.

We collected 8,000 names from randomly
sampled 1998-2000 New York Times articles in
the TREC corpus (Voorhees 2002). These include
about 4,000 personal names,! 2,000 locations,
and 2,000 organizations. The documents were
annotated by a named entity tagger.? The anno-
tation was verified and manually corrected if
needed, and each name mention was labeled
with its corresponding entity by two annotators.
Tests were done by averaging over five pairs of
sets, each containing 600 names, that were ran-
domly chosen from the 8,000 names. For the
discriminative approach, given a training set of
600 names (each of the five test sets corresponds
to a different training set), we generated positive
training examples using all coreferring pairs of
names and negative examples by randomly se-
lecting pairs of names that do not refer to the
same entity. Since most pairs of names do not
corefer, to avoid excessive negative examples in
training sets, we use a ratio of 10:1 between neg-
ative examples and positive examples. The prob-
abilistic model is trained using a larger corpus.

The results in all the experiments in this ar-



Document One

The Justice Department has officially ended its inquiry into the as-
sassinations of President John F. Kennedy and Martin Luther
King Jr., finding “no persuasive evidence” to support conspiracy theo-
ries, according to department documents. The House Assassinations
Committee concluded in 1978 that Kennedy was “probably” as-
sassinated as the result of a conspiracy involving a second gunman, a
finding that broke from the Warren Commission’s belief that Lee

Harvey Oswald acted alone in

Document Two
David Kennedy was born in

1994 (Seren 1996).

nedy coedited The New Poetry (Bloodaxe Books 1993), and is the
author of New Relations: The Refashioning Of

on Nov. 22, 1963.

in 1959. .. Ken-

Poetry 1980-

Figure 1. Segments from Two Documents Preprocessed by Our Named Entity
Tagger as Input to the Mention-Matching Classifiers.

Different types of entities are annotated with different shades of gray. As shown, similar mentions within and
across documents may sometimes correspond to the same entities and sometimes to different entities.

ticle are evaluated using the same test sets, ex-
cept when comparing the clustering schemes.
For a comparative evaluation, the outcomes of
each approach on a test set of names are con-
verted to a classification over all possible pairs
of names (including nonmatching pairs). Since
most pairs are trivial negative examples, and
the classification accuracy can always reach
nearly 100 percent, the evaluation is done as
follows. Only examples in the set M, those
that are predicated to belong to the same entity
(positive predictions), are used in the evalua-
tion and are compared with the set M, of exam-
ples annotated as positive. The performance of
an approach is then evaluated by precision and
recall, defined respectively as:

po MMM, N
M|

p
and summarized by

Fl:2P~R‘
P+R

Only F, values are shown and compared in
this article.

A Discriminative Model

A natural way to formalize the mention match-
ing is as a pairwise classification problem: Find
a function f: N x N — {0, 1} that classifies two
strings (representing entity mentions) in the
name space N, as to whether they represent the
same entity (1) or not (0). Most prior work in
this line adopted fixed-string similarity metrics
and created the desired function by simply
thresholding the similarity between two
names. Cohen, Ravikumar, and Fienberg
(2003) compared experimentally a variety of
string similarity metrics on the task of match-
ing entity names and found that, overall, the
best-performing method is a hybrid scheme
(SoftTFIDF) combining a TFIDF weighting
scheme of tokens with the JaroWinkler string-
distance scheme. Although this is a fixed
scheme, the threshold used by the SoftTFIDF
classifier is trained. Bilenko and Mooney (2003)
proposed a learning framework (Marlin) for im-
proving entity matching using trainable mea-
sures of textual similarity. They compared a
learned edit distance measure and a learned
vector space-based measure that employs a
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Honorific Equal
Honorific Equivalence

Honorific Mismatch
Equality
Case-Insensitive Equal
Nickname

Prefix Equality

Substring
Abbreviation

Prefix Edit Distance
Edit Distance
Initial

Symbol Map

Active if both tokens are honorifics and identical. An honorific is a title
such as “Mr.,” “Mrs.,” “President,” “Senator,” or “Professor.”

Active if both tokens are honorifics, not identical, but equivalent
(“Professor,” “Prof.”).

Active for different honorifics.

Active if both tokens are identical.

Active if the tokens are case-insensitive equal.

Active if tokens have a “nickname” relation (“Thomas” and “Tom”).

Active if the prefixes of both tokens are equal. The prefix is defined as
a substring starting at the beginning of a token and going until the first
vowel (or the second if the first letter is a vowel).

Active if one of the tokens is a substring of the other.

Active if one of the tokens is an abbreviation of the other; for example,
“Corporation” and “Corp.”

Active if the prefixes of both tokens have an edit distance of 1.
Active if the tokens have an edit distance of 1.

Active if one of the tokens is an initial of another; that is, “Paul” and
“p»

Active if one token is a symbolic representative of the other (“and” and
“&).

Table 1. Thirteen Types of Token-Based Features.
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classifier (SVM) against fixed-distance measures
(but not the one mentioned above) and
showed some improvements in performance.
We propose a learning approach, LMR,3 that
focuses on representing a given pair of names
using a collection of relational (string and to-
ken level) and structural features. Over these
we learn a linear classifier for each entity type
using the sparse network of winnows (SNoW)
(Carlson et al. 1999) learning architecture. A
feature extractor* automatically extracts fea-
tures in a data-driven way for each pair of
names. Our decision is thus of the form:

f(m,m,)

= arg ;ggﬁff(n],nz)

k
=argmax > w, [ 9]
gce{orl}g oo

where w; s the weight of feature f(1 <i<k)in
the function f(n,, n,).

Feature Extraction

An example is generated by extracting features
from a pair of names. Two types of features are
used: relational features, representing mappings
between tokens in the two names, and structur-
al features, representing the structural transfor-
mations of tokens in one name into tokens of
the other.

Each name is modeled as a partition in a bi-
partite graph, with each token in that name as
a vertex (see figure 2), and there is a solid di-
rected edge between two tokens (from the ver-
tex in the smaller partition to the vertex in the
larger one), which activates a token-based fea-
ture for the two names. At most one token-
based relational feature is extracted for each

edge in the graph, by traversing a prioritized
list of feature types until a feature is activated;
if no active features are found, the feature ex-
tractor goes to the next pair of tokens. This
scheme guarantees that only the most impor-
tant (expressive) feature is activated for each
pair of tokens. An additional constraint is that
each token in the smaller partition can activate
only one feature. Table 1 defines 13 types of to-
ken-based features, shown in the priority order
as described previously.

Relational features are not sufficient, since a
nonmatching pair of names could activate ex-
actly the same set of features as a matching
pair. Consider, for example, two names that are
all the same except that one has an additional
token. Our structural features were designed to
distinguish between these cases. These features
encode information on the relative order of to-
kens between the two names, by recording the
location of the participating tokens in the par-
tition. for example, for the pairs (“John
Kennedy,” “John Kennedy”) and (“John
Kennedy,” “John Kennedy Davis”), the active
relational features are identical; but, the first
pair activates the structural features “(1, 2)”
and “(1, 2),” while the second pair activates
“(1, 3)” and “(1, 2, 0/).”

Experimental Comparison

Figure 3 presents the average F, for three differ-
ent pairwise classifiers on the five test sets de-
scribed in the experimental methodology sec-
tion. The LMR classifier outperforms the
SoftTFIDF classifier and the Marlin classifier
when trained and tested on the same data sets.

Figure 4 shows the contribution of different
feature types to the performance of the LMR
classifier. The baseline classifier in this experi-
ment makes use only of string-edit-distance
features and “Equality” features. The token-
based classifier uses all relational token-based
features, while the structural classifier uses, in
addition, the structural features. Adding rela-
tional and structural feature types is very signif-
icant, and more so to the people entity type due
to a larger number of overlapping tokens be-
tween entities.

Does Clustering Help?

There is a long-held intuition that the perfor-
mance of a pairwise classifier can be improved
if it is used as a similarity metric and a global
clustering is performed on top of it. Several
works (Cohen, Ravikumar, and Fienberg 2003;
Cohen and Richman 2002; McCallum and
Wellner 2003) have thus applied clustering in
similar tasks, using their pairwise classifiers as
the metric. However, we show here that this



may not be the case; we provide theoretical ar-
guments as well as experimental evidence that
show that global clustering applied on the pair-
wise classifier might in fact degrade its perfor-
mance. Specifically, we show that while opti-
mal clustering always helps to reduce the error
of a pairwise classifier when there are two clus-
ters (corresponding to two entities), in general,
for k > 2 classes, this is not the case. We sketch
these arguments below.

A typical clustering algorithm views data
points nn € N to be clustered as feature vectors n
=(f1, [y --- [ in a d-dimensional feature space.
A data point n is in one of k classes C = {C,, C,,
..., C; }. From a generative perspective, the ob-
served data points D = {n,, n,, ..., n,} are sam-
pled independently, and identically distributed
from a joint probability distribution P defined
over tuples (n, ¢) € N x C. (P is a mixture of k
models.) A distance metric dist(n,, n,) is used to
quantify the distance between two points.
Clustering algorithms differ in how they ap-
proximate the hidden generative models given
D.

In the following definitions, we assume that
P =P, . is adistribution over N x C and that
(ny, ¢y), (n,, c,) € N x C are sampled indepen-
dently, and identically distributed according to
it, with n,, n, observed and c,, ¢, hidden.

Definition 1
The problem of mention matching is that of
finding a function f: N x N — {0, 1} that satis-
fies:

f(ny, ny)=1iffc;=¢, (2)

Definition 2
Let dist : N x N — R be a distance metric, and T
> 0 be a constant threshold. The pairwise clas-
sification function }; in this setting is defined
by:

fp(nl, n,) = 1 iff dist(n,, n,) <T A3)
The clustering-based decision f, is defined by:

fuiny, ny) = 1iff argmax,Prin | C}

= argmax;Prin, | C} 4)

Definition 3
Define I(n,, n,) to be 1 when ¢, = ¢, and 0 oth-
erwise. The error rate of the function /: Nx N
— {0, 1} is defined as:

err(f) = E(Pr{f(n,, n,) # I(n,, n,)}) %)
where the expectation is taken over indepen-
dent samples, according to P, of pairs of
points {(n,, ¢,), (n,, ¢,)}.
Theorem 1 (Proof Omitted)
Assume data is generated according to a uni-
form mixture of k Gaussians G = {g, 5, ..., §J
with the same covariance matrix. Namely, a da-
ta point is generated by first choosing one of k
models with probability p, = 1/k, and then sam-

x C?

Articles

Kennedy

Figure 2. There are Two Possible Features (Equality and
Initial) for Token 1 in the Smaller Partition, but Only the
Higher Priority Equality Feature Is Activated.

Performance of our pairwise classifier (LMR)

Il Marlin
[ 1 SoftTFIDF
Hl MR

1007,

95

F, (%)

80r

Baseline

70

Peoxple Location Organization
Different Entity Types

Figure 3. Performance of Different Pairwise Classifiers.

Results are evaluated using the F, value and are averaged over five test sets of 600
names each, for each entity type. Our LMR classifier is compared with Marlin
(Bilenko and Mooney 2003) and SoftTFIDF (Cohen, Ravikumar, and Fienberg
2003). The learned classifiers are trained using corresponding training sets with
600 names. The baseline performance in the experiment is 70.7 percent given by
a classifier that predicts only identical names as positive examples, and it is aver-
aged over the three entity types.
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Performance of our pairwise classifier (LMR)

1007,

Il Baseline
954 [ ] Token-based
Il Structural

90r

50

Peo_ple

Location Organization
Different Feature Sets

Figure 4. The Contribution of Different Feature Sets.

The LMR classifier is trained with different feature sets using the five training sets.
Results are evaluated using the F, value and are averaged over the five test sets for
each entity type with 600 names in each of them.
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pling according to the ith Gaussian chosen.
Suppose further that the clustering algorithm
yields the correct k Gaussian distributions;
then, V threshold T > 0, if k = 2 then

err(f) < err(fp). 6)
However, this doesn’t hold in general for k > 2.

For k > 2, we can show cases where err(fp) <
err(f,). Specifically, this holds when the centers
of the Gaussians are close, and T — 0.

To study this issue experimentally, we de-
signed and compared several clustering schemes
for the mention-matching task. These clustering
approaches are designed based on the learned
pairwise classifier LMR. Given the activation val-
ues of the classifier—the values output by the
linear functions for the classes, we define a sim-
ilarity metric (instead of a distance metric) as fol-
lows: Let p, n be the activation values for class 1
and class 0, respectively, for two names n, and
n,; then,

. e’
sim(m,, n,) = o

In our direct clustering approach, we cluster
names from a collection of documents with re-
gard to the entities they refer to. That is, enti-
ties are viewed as the hidden classes that gen-

erate the observed named entities in text. We
have experimented with several clustering al-
gorithms and show here the best performing
one, a standard agglomerative clustering algo-
rithm based on completelink.> The basic idea of
this algorithm is as follows: it first constructs a
cluster for each name in the initial step. In the
following iterations, these small clusters are
merged together step by step until some condi-
tion is satisfied (for example, if there are only k
clusters left). The two clusters with the maxi-
mum average similarity between their elements
are merged in each step. The evaluation, pre-
sented in figure 5, shows degradation in the re-
sults relative to pairwise classification.

Although, as we show, clustering does not
help when applied directly, we attempted to
see if clustering can be helped by exploiting
some structural properties of the domain. We
split the set of documents into three groups,
each containing documents from the same
time period. We then cluster first names be-
longing to each group and then choose a rep-
resentative for the names in each cluster and,
hierarchically, cluster these representatives
across groups into final clusters. The com-
pletelink algorithm is applied again in each of
the clustering stages. In this case (Hier
(Date)—hierarchically clustering according to
dates), the results are better than in direct clus-
tering. We also performed a control experiment
(Hier (Random)), in which we split the docu-
ment set randomly into three sets of the same
size; the deterioration in the results in this case
indicates that the gain was due to exploiting
the structure. The data set used here was slight-
ly different from the one used in other experi-
ments. It was created by randomly selecting
names from documents of the years 1998-
2000, 600 names from each year and for each
entity type. The 1,800 names for each entity
type were randomly split into equal training
and test sets. We trained the LMR pairwise clas-
sifier for each entity type using the correspond-
ing labeled training set and clustered the test
set with LMR as a similarity metric.

One reason for the lack of gain from cluster-
ing is the fact that the pairwise classification
function learned here is local—without using
any information except for the names them-
selves—and thus suffers from noise. This is be-
cause, in training, each pair of names is anno-
tated with regard to the entities to which they
refer rather than their similarity in writing.
Specifically, identical names might be labeled
as negative examples, since they correspond to
different entities, and vice versa. Our conclu-
sion, reinforced by the slight improvement we
got when we started to exploit structure in the



hierarchical clustering experiment, is that the
mention-matching problem necessitates better
exploitation of global and structural aspects of
data. Our next model was design to address this
issue.

A Generative Model for
Mention Matching

Motivated by the above observation, we de-
scribe next a generative model for mention
matching, designed to exploit the structure of
documents and assumptions on how they are
generated. The details of this model are de-
scribed in the paper by Li, Morie, and Roth
(2004b). Here we briefly describe one instanti-
ation of the model (Model II there), focusing
on discussing the key assumptions and their
advantages and on its experimental study and
a comparison to the discriminative model.

We define a probability distribution over
documents d = {E9, RY, M? by describing how
documents are being generated. In its most
general form the model has the following three
components: (1) A joint probability distribu-
tion P(EY) governs how entities (of different
types) are distributed into a document and
reflects their cooccurrence dependencies.
(When initializing the model described here,
we assume that entities are chosen indepen-
dently of each other.) (2) An “author” model
makes sure that at least one mention of an en-
tity in a document—a representative r“—is eas-
ily identifiable and that other mentions are
generated from it. The number of entities in a
document, size(E%), and the number of men-
tions of each entity, size(M‘l.’), are assumed in
the current evaluation to be distributed uni-
formly over a small plausible range so that they
can be ignored in later inference. (3) The ap-
pearance probability of a name generated (trans-
formed) from its representative is modeled as a
product distribution over relational transfor-
mations of attribute values. This model cap-
tures the similarity between appearances of two
names. In the current evaluation the same ap-
pearance model is used to calculate both the
probability P(rle) that generates a representative
r given an entity e and the probability P(mlr)
that generates a mention m given a representa-
tive r. Attribute transformations are relational
in the sense that the distribution is over trans-
formation types and independent of the specif-
ic names.

Figure 6 depicts the generation process of a
document d. Thus, in order to generate a docu-
ment d, after picking size(E?) and {size(MY{),
size(M}), ...}, each entity e4is selected into d in-
dependently of others, according to P(e). Next,
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Figure 5. Best Performance of Different Clustering Approaches.

Various parameter settings, including different numbers of clusters were experi-
mented with in direct clustering and the hierarchical clustering. LMR represents
our pairwise classifier. It is compared with different clustering schemes, based on
it as a similairty metric. Results are evaluated using F, values. The test set has 900

names for each entity type.

the representative r¢ for each entity e4 is select-
ed according to P(r?| e9), and for each represen-
tative the actual mentions are selected inde-
pendently according to P(mf{lrf). Assuming
independence between M? and E given RY, the
probability distribution over documents is
therefore that shown in figure 7 after we ignore
the size components.

Given a mention m in a document d (M? is
the set of observed mentions in d), the key in-
ference problem is to determine the most likely
entity e, that corresponds to it. This is done by
computing:

E! = argmaxE,gEP(E', Rd,Md‘e) )
where 6 is the learned model’s parameters. This
gives the assignment of the most likely entity
e’ for m. And the probability of the document
collection D is

P(D) = I, P(d)

Learning the Models

Confined by the labor of annotating data, we
learn the probabilistic models in an unsuper-
vised way given a collection of documents; that
is, the system is not told during training
whether two mentions represent the same en-
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Step 2: P(rle)

President

John F. Kennedy

Step 3: P(mlr)

House of
Representatives

{President Kennedy, Kennedy, JFK}

{House of Representatives}

Figure 6. Generating a Document.

Real-world entities are denoted by pictures. Mentions in a document d are generated in three steps according to underlying probabilities.

P(d) = P(E,R', M") = P(E")P(Rd|E")P(Md|Rd)

Figure 7. Probability Distribution over Documents.
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tity. A greedy search algorithm modified from
the standard EM algorithm (we call it the trun-
cated EM algorithm) is adopted here to avoid
complex computation.

Given a set of documents D to be studied
and the observed mentions M? in each docu-
ment, this algorithm iteratively updates the
model parameter 6 (several underlying proba-
bilistic distributions described before) and the
structure (that is, £ and RY) of each document
d. Different from the standard EM algorithm,
in the E-step, it seeks the most likely E and R?
for each document rather than the expected as-
signment.

Truncated EM Algorithm

The basic framework of the truncated EM algo-
rithm is shown in figure 8. It usually takes 310
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1. In the initial (I-) step, an initial (E%, R%) is assigned to each document d by an initialization
algorithm. After this step, we can assume that the documents are annotated with D, = {(E% R%, M,)}.

2. In the M-step, we seek the model parameter 6,, that maximizes P(D,|6). Given the “labels”
supplied in the previous I- or E-step, this amounts to the maximum likelihood estimation (to be
described later in this section).

3. In the E-step, we seek (E%,, RY,) for each document d that maximizes P(D,,0,,) where D, =
{(E%,, R, MY)}. Tt’s the same inference problem as in equation 7.

4. Stoping Criterion: If no increase is achieved over P(D, | 6,), the algorithm exits. Otherwise the
algorithm will iterate over the M-step and the E-step.

Figure 8. Basic Framework of the Truncated EM Algorithm.

iterations before the algorithms stop in our ex-
periments.

Initialization

The purpose of the initial step is to acquire an
initial guess of document structures and the set
of entities E in a closed collection of documents
D. The hope is to find all entities without loss,
so duplicate entities are allowed. For all the
models, we use the same algorithm. A local
clustering is performed to group mentions in-
side each document: simple heuristics are ap-
plied to calculating the initial similarity be-
tween mentions,® and pairs of mentions with
similarity above a threshold are then clustered
together. The first mention in each group is
chosen as the representative, and an entity
having the same writing with the representa-
tive is created for each cluster. The goal we try
to achieve with this simple initialization is
high precision, even if the recall is low.” For all
the models, the set of entities created in differ-
ent documents becomes the global entity set E
in the following M- and E-steps.

Estimating the Model Parameters

In the learning process, assuming documents
have already been annotated D = {(e, 1, m)}",
from the previous I- or E-step, several underly-
ing probability distributions of the relaxed
models are estimated by maximum likelihood
estimation in each M-step. The model parame-
ters include a set of prior probabilities for enti-
ties P, and the appearance probabilities P, of
each name in the name space W being trans-
formed from another.

The prior distribution P, is modeled as a multi-
nomial distribution. Given a set of labeled en-
tity-mention pairs {(e, m,)}},

e = 251

where freg(e) denotes the number of pairs con-
taining entity e.

Appearance probability, the probability of one
name being transformed from another, denot-

ed as P(n,ln,) (n,, n, € W), is modeled as a prod-
uct of the transformation probabilities over at-
tribute values. The transformation probability
for each attribute is further modeled as a multi-
nomial distribution over a set of predetermined
transformation types: TT = {copy, missing, typi-
cal, nontypical}.®

Suppose 1, = (a; = vy, A, = V,, ..., a,=v,) and
n,=(a, =V, a, =V, ..., a,=Vv,) are two names
belonging to the same entity type; the transfor-
mation probabilities P, P, and P, are all
modeled as a product distribution (naive Bayes)
over attributes:

%)

P(”Z‘nl) = H f:lp(vé

We manually collected typical and nontypi-
cal transformations for attributes such as titles,
first names, last names, organizations, and loca-
tions from multiple sources such as the U.S.
government census and online dictionaries.
For other attributes, such as gender, only copy
transformation is allowed. The maximum like-
lihood estimation of the transformation prob-
ability P(t, k) (t € TT, a, € A) from annotated
representative-mention pairs {(r, m)}"} is:

Pl = Eelrm) v ®
vi —, V% denotes the transformation from at-
tribute a, of r to that of m is of type t. Simple
smoothing is performed here for unseen trans-
formations.

A Comparison between the Models

We trained the generative model in an unsu-
pervised way with all 8,000 names. The some-
what surprising results are shown in figure 9.
The generative model outperformed the super-
vised classifier for the people and organizations
entity types. That is, by incorporating a lot of
unannotated data, the unsupervised learning
could do better. To understand this better, and
to compare our discriminative and generative
approaches further, we addressed the following
two issues: learning protocol and structural as-
sumptions.
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Performance of Different Models
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Figure 9. Discriminative and Generative Models’ Results Are Evaluated
by the Average F, Values over the Five Test Sets for Each Entity Type.

Marlin, SoftTFIDF, and LMR are the three pairwise classifiers; generative is the
generative model. The baseline performance is 70.7 percent, given by a classifier
that predicts only identical names as positive examples, and it is averaged over
the three entity types.

F,(%) LMR  Generative Generative
(AlD) (Unseen Data)
Peop 90.5 95.1 88.8
Loc 92.5 87.8 78.2
Org 93.0 96.7 84.2

Table 2. Results of Different Learning Protocols for the Generative Model.

This table shows the results of our supervised classifier (LMR) trained with 600
names, the generative model trained with all the 8,000 names, and the generative
model trained with the part of 8,000 names not used in the corresponding test
set. Results are evaluated and averaged over five test sets for each entity type.

Learning Protocol. A supervised learning ap-
proach is trained on a training corpus and test-
ed on a different one, resulting, necessarily, in
some degradation in performance. An unsuper-
vised method learns directly on the target cor-
pus.

This, as we show, can be significant. In a sec-
ond experiment, in which we do not train the
generative model on the names it will see in
the test set, results clearly degrade (table 2).
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Structural Assumptions. Our generative mod-
el benefits from the structural assumptions
made in designing the model. For instance, the
document structural information prevents the
model from disambiguating mentions from
different documents directly. This is done via
the representatives—yielding a more robust
comparison, since representatives are typically
the full names of the entities. We exhibit this
by evaluating a fairly weak initialization of the
model and showing that, nevertheless, this re-
sults in a mention-matching model with re-
spectable results. Table 3 shows that after ini-
tializing the model parameters with the
heuristics used in the EM-like algorithm, and
without further training (but with the infer-
ence of the probabilistic model), the generative
model can perform reasonably well. Note, how-
ever, that the structural assumptions in the
generative model did not help locations very
much as shown in figure 9. The reason is that
entities of this type are relatively easy to disam-
biguate even without structural information,
since those that correspond to the same entity
typically have similar mentions.

Conclusions and Future Work

While semantic integration of structured infor-
mation has been widely studied, little attention
has been paid to a similar problem in unstruc-
tured and semistructured data. This article de-
scribes one of the first efforts towards semantic
integration in unstructured textual data, pro-
viding a promising perspective on the integra-
tion of structured databases with unstructured
or semistructured information.

In this article, we present two learning ap-
proaches to the mention-matching problem—
the problem of cross-document identification
and tracing of names of different types, over-
coming their ambiguous appearance in texts.
In addition to a standard modeling of the prob-
lem as a classification task, we developed a
model that aims at better exploiting the natural
generation process of documents and the
process of how names are “sprinkled” into
them, taking into account dependencies
among entities across types and an “author”
model. We have shown that both models gain
significantly from incorporating structural and
relational information—features in the classifi-
cation model; coherent data splits for cluster-
ing and the natural generation process in the
the probabilistic model.

In addition to further improving the dis-
criminative and generative approaches to the
mention-matching problem, there are several
other critical issues we would like to address



F,; (%) Generative Initial
Peop 95.1 84.1
Loc 87.8 85.0
Org 96.7 92.1

Table 3. Performance of
Simple Initialization.

Generative—the generative model learned
in a normal way. Initial—the parameters of
the generative model initialized using
some simple heuristics and used to cluster
names. Results are evaluated by the aver-
age F, values over the five test sets for each
entity type.

from the semantic-integration per-
spective.

The first issue is application of cur-
rent approaches to record matching
on structured and semistructured data,
which shares many properties with
the problem we addressed here. The
reliable and accurate results provided
by the generative model on texts sug-
gest its potential success on structured
data. Also important is the fact that
our unsupervised model performs so
well, since the availability of annotat-
ed data is, in many cases, a significant
obstacle to good performance in se-
mantic integration. The generative
model can be applied almost directly
to the problem of integrating ambigu-
ous entity mentions across database
records, by simply treating each record
as a document and entity names in
the record as mentions. Our model is
more general in the sense that existing
record-matching solutions can be in-
corporated to initialize the EM algo-
rithm in the model.

The second issue is semantic inte-
gration of structured information with
unstructured information. Relational
databases are usually well structured
and thus are able to provide users effi-
cient and accurate access to a large col-
lection of information. However, most
available information resources are in
textual form—including news articles,
books, and online web pages. Lack of
well-defined structure makes these re-
sources much harder to access and ex-
ploit at the level this can be done on
databases, both in terms of efficiency
and accuracy. There is a need to access
textual information efficiently and in-

telligently and a need to automatically
build or augment databases from tex-
tual information. As more and more
textual information becomes available
online, this need becomes more and
more urgent. A significant barrier to-
wards the aforementioned goal is the
problem of integrating mentions in
database tuples and mentions in texts
according to the entities they refer to.
Although our current approaches can
be directly applied to this problem,
our target is to develop a unified solu-
tion that is competitive with both
state-of-the-art record-matching and
mention-matching techniques but
will work better on databases if we
have text, and vice versa.

Acknowledgment

We are grateful to AnHai Doan for nu-
merous useful comments on this arti-
cle. This research is supported by NSF
grants 1IS9801638 and ITR IISO085
836, an ONR MURI Award, and an
equipment donation from AMD.

Notes

1. Honorifics and suffixes like “Jr.” are con-
sidered part of a personal name.

2. The named entity tagger was developed
by the Cognitive Computation Group at
UIUC. A demo of this tool is available at
http://L2R.cs.uiuc.edu/?cogcomp/eoh/ne.
html.

3. Named after the initials of the authors’
last names.

4. We use FEX, a feature extractor tool
available from http://L2R.cs.uiuc.edu/~cog-
comp/cc-software.html.

5. See Jain and Dubes (1988).

6. One example of a heuristic is: If mention
n, is a substring of mention n,, then their
similarity is 0.8.

7. Note that the performance of the initial-
ization algorithm is 97.3 percent precision
and 10.1 percent recall.

8. The copy transformation type denotes
that v/, is exactly the same as v,; missing de-
notes a “missing value” for v/;; typical de-
notes that v, is a typical variation of v, for
example, “Prof.” for “Professor,” “Andy”
for “Andrew”; nontypical denotes a nontyp-
ical transformation.
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