
■ Project Halo is a multistaged effort, sponsored
by Vulcan Inc, aimed at creating Digital Aristo-
tle, an application that will encompass much of
the world’s scientific knowledge and be capable
of applying sophisticated problem solving to
answer novel questions. Vulcan envisions two
primary roles for Digital Aristotle: as a tutor to
instruct students in the sciences and as an inter-
disciplinary research assistant to help scientists
in their work.

As a first step towards this goal, we have just
completed a six-month pilot phase designed to
assess the state of the art in applied knowledge
representation and reasoning (KR&R). Vulcan
selected three teams, each of which was to for-
mally represent 70 pages from the advanced
placement (AP) chemistry syllabus and deliver
knowledge-based systems capable of answering
questions on that syllabus. The evaluation
quantified each system’s coverage of the syl-
labus in terms of its ability to answer novel, pre-
viously unseen questions and to provide hu-
man-readable answer justifications. These
justifications will play a critical role in building
user trust in the question-answering capabilities
of Digital Aristotle.

Prior to the final evaluation, a “failure taxono-
my” was collaboratively developed in an at-
tempt to standardize failure analysis and to fa-
cilitate cross-platform comparisons. Despite
differences in approach, all three systems did
very well on the challenge, achieving perfor-
mance comparable to the human median. The
analysis also provided key insights into how the
approaches might be scaled, while at the same
time suggesting how the cost of producing such
systems might be reduced. This outcome leaves

us highly optimistic that the technical chal-
lenges facing this effort in the years to come can
be identified and overcome.

This article presents the motivation and long-
term goals of Project Halo, describes in detail
the six-month first phase of the project—the
Halo Pilot—its KR&R challenge, empirical eval-
uation, results, and failure analysis. The pilot’s
outcome is used to define challenges for the
next phase of the project and beyond.

Aristotle (384–322 BCE) was remarkable
for the depth and scope of his knowl-
edge, which included mastery of a wide

range of topics from medicine and philosophy
to physics and biology. Aristotle not only had
command over a significant portion of the
world’s knowledge, but he was also able to ex-
plain this knowledge to others, most famously,
though briefly, to Alexander the Great.

Today, the knowledge available to hu-
mankind is so extensive that it is not possible
for a single person to assimilate it all. This is
forcing us to become much more specialized,
further narrowing our worldview and making
interdisciplinary collaboration increasingly
difficult. Thus, researchers in one narrow field
may be completely unaware of relevant
progress being made in other neighboring dis-
ciplines. Even within a single discipline, re-
searchers often find themselves drowning in
new results. MEDLINE,1 for example, is an
archive of 4,600 medical publications in 30
languages, containing over 12 million publica-
tions, with 2,000 added daily. 
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knowledge that will form the foundation for
Digital Aristotle. 

The Halo Pilot
The pilot phase of Project Halo was a six-
month effort to set the stage for a long-term re-
search and development effort aimed at creat-
ing Digital Aristotle. The primary objective was
to evaluate the state of the art in applied KR&R
systems. Understanding the performance char-
acteristics of these technologies was considered
to be especially critical to DA, as they are ex-
pected to form the basis of its reasoning capa-
bilities. The first objectives were to identify and
engage leaders in the field and to develop suit-
able evaluation methodologies; the project was
also designed to help in the determination of a
research and development roadmap for KR&R
systems. Finally, the project adopted principles
of scientific transparency aimed at producing
understandable, reproducible results. 

Vulcan undertook a formal bidding process
to identify teams to participate in the pilot.
Criteria for selection included a well-estab-
lished and mature technology and a world-
class team with a track record of government
and private funding. Three teams were con-
tracted to participate in the evaluation: a team
led by SRI International with substantial con-
tributions from Boeing Phantom Works and
the University of Texas at Austin; a team from
Cycorp; and a team from Ontoprise. 

Significant attention was given to selecting a
proper domain for the evaluation. It was im-
portant, given the limited scope of this phase
of the project, to adapt an existing, well known
evaluation methodology with easily under-
stood and objective standards. First a decision
was made to focus on a “hard” science and,
more specifically, on a textbook presentation of
some part of that science. Several standardized
test formats were also examined. In the end, a
70-page subset of introductory college-level ad-
vanced placement (AP) chemistry was selected
because it was reasonably self-contained and
did not require solutions to other hard AI prob-
lems, such as representing and reasoning with
uncertainty, or understanding diagrams
(Brown, LeMay, and Bursten 2003). This latter
consideration, for example, argued against se-
lecting physics as a domain. 

Table 1 lists the topics in the chemistry syl-
labus. Topics included stoichiometry calcula-
tions with chemical formulas; aqueous reac-
tions and solution stoichiometry; and
chemical equilibrium. Background material
was also identified to make the selected chap-
ters more fully self-contained.2

This scope was large enough to support a

Making the full range of scientific knowl-
edge accessible and intelligible might involve
anything from simply retrieving facts to an-
swering a complex set of interdependent ques-
tions and providing appropriate justifications
for those answers. Retrieval of simple facts
might be achieved by information-extraction
systems searching and extracting information
from a large corpus of text, such as Voorheese
(2003). But aside from the simplicity of the
types of questions such advanced retrieval sys-
tems are designed to answer, they are only ca-
pable of retrieving “answers”—and justifica-
tions for those answers—that already exist in
the corpus. Knowledge-based question–an-
swering systems, by contrast, though generally
more computationally intense, are capable of
generating answers and appropriate justifica-
tions and explanations that are not found in
texts. This capability may be the only way to
bridge some interdisciplinary gaps where little
or no documentation currently exists. 

Project Halo is a multistaged effort aimed at
creating Digital Aristotle (DA), an application
encompassing much of the world’s scientific
knowledge and capable of answering novel
questions through advanced problem solving.
DA will act both as a tutor capable of instruct-
ing students in the sciences and as a research
assistant with broad interdisciplinary skills,
able to help scientists in their work. The final
DA will differ from classical expert systems in
four important ways.

First, in speed and ease of knowledge formu-
lation. Classical expert systems required years
to perfect and highly skilled knowledge engi-
neers to craft them; Digital Aristotle will pro-
vide tools to facilitate rapid knowledge formu-
lation by domain experts with little or no help
from knowledge engineers.

Second, in coverage. Classical expert systems
were narrowly focused on the single topic for
which they were specifically designed; DA will
over time encompass much of the world’s sci-
entific knowledge.

Third, in reasoning techniques. Classical ex-
pert systems mostly employed a single infer-
ence technology; DA will employ multiple
technologies and problem solving methods.

Fourth, in explanations. Classical expert sys-
tems produced explanations derived directly
from inference proof trees; DA will produce
concise explanations, appropriate to the do-
main and the user’s level of expertise. 

Adoption by communities of subject matter
experts of the Project Halo tools and method-
ologies is critical to the success of DA. These
tools will empower scientists and educators to
build the peer-reviewed, machine-processable
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large variety of novel, and hence unanticipat-
ed, question types. One analysis of the syllabus
identified nearly 100 distinct chemistry laws,
suggesting that it was rich enough to require
complex inference. It was also small enough to
be represented relatively quickly—which was
essential because the three Halo teams were al-
located only four months to create formal en-
codings of the chemistry syllabus. This amount
of time was deemed sufficient to construct de-
tailed solutions that leveraged the existing
technologies, yet was too brief to allow signifi-
cant revisions to the teams’ platforms. Hence,
by design, we were able to avoid undue cus-
tomization to the task domain and thus to cre-
ate a true evaluation of the state of the art of
KR&R technologies.

Nevertheless, at the outset of the project it
was completely unclear whether competent
systems could be built. In fact, Vulcan’s secret
intent was to set such a high bar for success that
the experiment would expose the weaknesses
in KR&R technologies and determine whether
these technologies could form the foundation
of DA. The teams accepted the challenge with
trepidation caused by several factors, including
the mystery of working in a new domain with
the novel performance task of answering hard,
and highly varied, advanced placement ques-
tions; and generating coherent explanations in
English—all within four months. 

The Technology
The three teams had to address the same set of
issues: knowledge formation, question answer-
ing, and explanation generation (Barker et al.
2004; Angele et al. 2003; and Witbrock and
Matthews 2003.) They all built knowledge
bases in a formal language and relied on
knowledge engineers to encode the requisite
knowledge. Furthermore, all the teams used au-
tomated deductive inference to answer ques-
tions. Despite these high-level similarities, the
teams’ approaches differed in some interesting
ways, especially with respect to explanation
generation. 

Knowledge Formation
Each system achieved significant coverage of
the parts of the domain represented by the syl-
labus and was able to use that coverage to an-
swer substantial numbers of novel questions.
All three systems used class taxonomies, such
as the one illustrated in figure 1, to organize
concepts such as acids, physical constants, and
reactions; represented properties of classes us-
ing relations; and used rules to represent com-
plex relationships.

Domain-Driven Versus Question-
Driven Knowledge Formation
Recall that Vulcan released a course description
consisting of 70 pages of a chemistry textbook
and 50 sample questions. The teams had the
choice of building knowledge bases either start-
ing from the syllabus text or from the sample
questions or working from both in parallel.
Ontoprise and Cycorp approached knowledge
formation in a target-text-driven approach,
and SRI approached knowledge formation in a
question-driven approach. 

The Ontoprise team encoded knowledge in
three phases. During the first phase team mem-
bers encoded the knowledge within the corpus
into the ontology and rules without consider-
ing any sample test questions. They then tested
this knowledge on test questions that appeared
in the textbook—which were different from
the sample set released by Vulcan. In the sec-
ond phase, they tested the sample questions re-
leased by Vulcan. The initial coverage they ob-
served was around 30 percent. During this
phase, they refined the knowledge base until
coverage of around 70 percent was reached. In
the second phase, they also coded the explana-
tion rules. In the third phase, they refined the
encoding of the knowledge base and the expla-
nation rules.

Cycorp used a hybrid approach by first con-
centrating on representing the basic concepts
and principles of the corpus and gradually
shifting over to a question-driven approach.
The intent behind this approach was to avoid
overfitting the knowledge to the specifics of
the sample questions available. This strategy
met with mixed success: in the second phase,
considerable reengineering of the knowledge
was required to meet the requirements of the
questions without compromising the strategy’s
generality. This was partly because the text-
book adopted an example-based approach with
somewhat varied depth, whereas the process of
knowledge formation would have benefited
from a more systematic and uniform coverage.

The SRI team’s approach for knowledge for-
mation was highly question-driven. Starting
from the 50 sample questions, team members
worked backwards to identify what pieces of
knowledge would be needed to solve them. In-
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Subject Chapters Sections Pages
Stoichiometry: Calculations
with Chemical Formulas

3 3.1 – 3.2 75 - 83

Aqueous Reactions and Solution
Stoichiometry

4 4.1 – 4.4 113 - 133

Chemical Equilibrium 16 16.1 – 16.11 613 - 653

Table 1. Course Outline for the Halo Challenge.



building a library of representations of generic
entities, events, and roles (Barker, Porter, and
Clark 2001) and they were able to reuse parts of
this for the Project Halo pilot. In addition to
providing the types of information commonly
found in ontologies (class-subclass relations
and instance-level predicates), their representa-
tions include sets of axioms for reasoning
about instances of these classes. The portion of
the ontology dealing with properties and val-
ues was especially useful for the Halo pilot. It
includes representations for numerous dimen-
sions (for example, capacity, density, duration,
frequency, quantity) and values of three types:
scalars, cardinals, and categoricals. This ontol-
ogy also includes methods for converting
among units of measurement (Novak 1995),
which the SRI team’s system used to align the
representation of questions with representa-
tions of terms and laws, even if they are ex-
pressed with different units of measurement.

Cycorp publishes an open-source version of
Cyc3 that was used as a platform for the Open-
Halo system. Cyc’s knowledge consists of

terestingly, the initial set of questions was
found to require coverage of a substantial por-
tion of the syllabus. Once the coverage for the
sample set of questions was achieved, they
looked for additional sample questions from
the available AP tests. Working with this addi-
tional set of sample questions, they ensured
the robustness of their initial coverage.

Reliance on Domain-
Independent Ontologies
Both Cycorp and SRI relied on their preexisting
knowledge base content. Ontoprise started
from scratch. Not surprisingly, the top-level
classes in the Ontoprise knowledge base are
chemistry concepts such as elements, mixtures,
and reactions. Interestingly, the Ontoprise
knowledge base did not draw on well-known
ontological distinctions such as object type
versus stuff type. We describe here in more de-
tail how SRI and Cycorp leveraged their prior
knowledge base and the issues that arose in do-
ing so.

For several years the SRI team has been
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#$AmphotericSubstanceType

#$BaseType-Lewis

Figure 1. Extract from Cyc’s Ontology of Acids and Bases.
These nodes represent second-order collections for organizing specific substance types; edges represent subsuption relationships.



terms, relations, and assertions. The assertions
are organized into a hierarchy of microtheories
that permit the isolation of specific assump-
tions into a specific context. OpenHalo utilized
OpenCyc’s 6,000 concepts but was augmented
for Project Halo with 1,000 new concepts and
8,000 existing concepts selected from the full
Cyc knowledge base. A significant fraction of
the latter formed part of the compositional
explanation-generation system. 

Reliance on Domain Experts
Cycorp and Ontoprise relied on their knowl-
edge engineers to do all the knowledge forma-
tion, while SRI relied on a combined team of
knowledge engineers and chemistry domain
experts.

Team SRI used four chemists to help with the
knowledge formation process, which was done
in the following steps. First, ontological engi-
neers designed representations for chemistry
content, including the basic structure for terms
and laws, chemical equations, reactions, and
solutions. Second, chemists consolidated the
domain knowledge into a 35-page compendi-
um of terms and laws summarizing the rele-
vant material from 70 pages of a textbook.
While doing this, the chemists were asked to
start from the premise to be proven and trace
the reasoning in a backward-chaining manner
to make it easy for knowledge engineers to en-
code this in the knowledge base. Third, knowl-
edge engineers implemented that knowledge
in the KM frame language, creating representa-
tions of about 150 laws and 65 terms. While
doing so, they compiled a large suite of test cas-
es for individual terms and laws as well as com-
binations of them. This test suite was run daily.
Fourth, the “explanation engineer” augmented
the representation of terms and laws to gener-
ate English explanations. Finally, the domain
experts reviewed the output of the system for
correctness and understandability.

Ontoprise knowledge engineers learned the
domain and built the knowledge base—mostly
starting with understanding and modeling the
examples given in the textbook. They com-
piled a set of 41 domain concepts, 582 domain
instances, 47 domain relations, and 345 ax-
ioms used for answering the questions. In addi-
tion, they added 138 rules in order to provide
explanations for the answers produced.

Explanation Generation
The three teams took quite different approach-
es to explanation generation. These differences
were based on the teams’ available technolo-
gies (recall that the project allowed little time
to develop new technologies), their longer-

term goals, and their instincts of what might
work. 

The Ontoprise System. OntoNova, the Onto-
prise system, was based on the representation
language F(rame)-Logic (Kifer, Lausen, and Wu
1995) and the logic programming-based infer-
encing system OntoBroker (Angele et al. 2003).
For answer justification, OntoNova used
metainferencing, as follows. While processing
a query OntoBroker produced a log file of the
proof tree for any given answer. This proof tree,
which was represented in F-Logic and con-
tained the instantiated rules that were success-
fully applied to derive an answer, acted as in-
put for a second inference run to produce
English answer justifications. 

We illustrate this approach with a sample
question. The question asks for the Ka value of
a substance, given its quantity in moles and its
pH. The following is an extract from the log file
of the proof tree:

a15106:Instantiation[ofRule->>kavalueMPhKa;
instantiatedVars->>{i(M,0.2),i(PH,3.0),…].

This log file extract states that the rule kaval-
ueMPhKa was applied at the point in time
logged here. Then, the variables M and PH were
instantiated by 0.2 and 3.0 respectively. Rules
important for justifying results, for example
“kavalueMPhKa,” were applied in the second,
meta-inference run. Explanation rules were
specified by their reference to an inference rule
used to derive the answer, the instantiations of
the variables of that rule, and a human-au-
thored explanation template referring to those
variables. These explanation rules resembled
the explanation templates of the SRI system.
The corresponding explanation rule for kaval-
ueMPhKa was:

FORALL I,M1,PH1 explain(EX1,I) <-
I:Instantiation[ofRule->>kavalueMPhKa; 
instantiatedVars->>{i(M,M1),i(PH,PH1)}] and
EX1 is (“The equation for calculating the acid-
dissociation.”).

These explanation rules were applied to the
proof tree for the example to produce the fol-
lowing justification output:

The equation for calculating the acid-dissocia-
tion constant Ka for monoprotic acids is
Ka=[H+][A-]/[HA]. For monoprotic acids the
concentrations for hydrogen [H+] and for the
anion [A-] are the same: [H+]=[A-]. Thus, we get
Ka= 0.0010 * 0.0010 / 0.2 = 5.0E-6 for a solu-
tion concentration [HA] = 0.2 M. 

The equation for calculating the pH-value
is ph=-log[H+]. Thus we get the pH-value,
ph = 3, H+ concentration [H+] = 0.0010.

This two-step process for creating explanations
allowed the application of OntoBroker to gen-
erate explanations. For OntoNova, the Onto-
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and displayed, followed by the nested explana-
tion of dependent facts, followed by the exit
text. The explanation generated for the compu-
tation of concentration of ions in NaOH is as
follows:

If a solute is a strong electrolyte, the concen-
tration of ions is maximal
Checking the electrolyte status of NaOH. 

Strong acids and bases are strong elec-
trolytes. 

NaOH is a strong base and is therefore a
strong electrolyte. 

NaOH is thus a strong electrolyte. 
The concentration of ions in NaOH is 1.00
molar.

A more complete description of team SRI’s sys-
tem can be found in Barker et al. (2004).

The Cycorp System. All the systems generated
their explanations by appropriate filtering and
transformation of the inference proof tree. The
primary difference in Cycorp’s approach was
that Cyc was already capable of providing nat-
ural language explanations for any detail, how-
ever minor, whereas the other systems required
the addition of template responses for each
rule and fact deemed important. The result of
this was that much of the effort expended on
explanations by Cycorp concerned judicious
strengthening of the filters, and Cyc’s output
consequently erred on the side of verbosity.
Moreover, Cyc’s English, being built up compo-
sitionally by automatic techniques rather than
being handcrafted for a specific project, ex-
hibits a certain clumsiness of expression.

A specific example of where Cyc had a lot of
trouble generating readable explanations was
when the use of a mathematical equation re-
quired a lot of arithmetic. While a step-by-step
exposition of every mathematical step in-
volved is technically correct, it makes most
readers recoil in horror. Cyc’s lower scores for
explanations may therefore be ascribed not to
any errors contained within, nor to the com-
plete absence of an explanation, but to the fact
that the key chemistry principles involved
tended to be buried amid more trivial reason-
ing. In the Halo pilot challenge, the graders ap-
peared to value conciseness of expression over
either correctness or completeness. 

In the Halo pilot challenge, Cyc produced
explanations for every question it answered
correctly, and it was rare for any of the graders
to find any fault with the explanations’ correct-
ness. Comments like “calculations are correct
but once again buried” and “not well focused”
were common. It was clear at the end of the pi-
lot phase that Cyc required significant work in
explanation filtering; substantial progress has
been made during subsequent projects. 

prise team developed an entire knowledge base
for this purpose. Running short of time, they
could not fully exploit the flexibility of this ap-
proach and thus mostly restricted it to an ap-
proach similar to template matching. In the fu-
ture, however, they plan to apply additional
inference rules to (1) integrate additional
knowledge, (2) reduce redundancies of expla-
nations, (3) abstract from fine-grained explana-
tions, and (4) provide personalized explana-
tions.

Team SRI’s System. Team SRI’s system was
based on KM, a frame language with some sim-
ilarities to KRL and KL-ONE systems.4 During
reasoning, KM records which rules are used in
the derivation of ground facts. These proof tree
fragments could be presented as an “explana-
tion” of the derivation of a fact. Experience
with expert systems, however, has taught us
that proof trees and inference traces are not
comprehensible explanations for most users.

To provide better explanations, KM allows
the knowledge engineer to supply explanation
templates for each knowledge base rule. These
explanation templates provide control over
which proof tree fragments are presented in
the explanation and what English text is used
to describe them. In particular, the knowledge
engineer specifies what text to display when a
rule is invoked (“entry text”), what text is dis-
played when the rule has been successfully ap-
plied (“exit text”), and a list of any other facts
that should be explained in support of the cur-
rent rule (dependent facts). The three parts of
the explanation template can contain arbitrary
KM expressions, allowing the knowledge engi-
neer considerable control over explanation
generation.

Consider the law for computing the concen-
tration of ions in a chemical solution, shown
in figure 2. When the explanation of a rule ap-
plication is requested, the entry text is formed
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ComputeConcentrationOfIons(C)
   if C is a strong electrolyte

      return(Max) [expl-tag-1]
   else

      …      [expl-tag-2]

[expl-tag-1]
   entry: "If a solute is a strong electrolyte, the

               concentration of ions is maximal"
   exit: "The concentration of ions in" C "is" Max
   dependencies: electrolyte-status(C)

Figure 2. The Law for Computing the Concentration of Ions in a Chemical.



Evaluation
At the end of four months, knowledge formu-
lation was stopped, even though the teams had
not completed the task. All three systems were
sequestered on identical servers at Vulcan.
Then the challenge exam, consisting of 100
novel AP-style English questions, was released
to the teams. The exam consisted of three sec-
tions: 50 multiple choice questions and two
sets of 25 multipart questions—the detailed an-
swer and free-form sections. The detailed an-
swer section consisted mainly of quantitative
questions requiring a “fill in the blank” (with
explanation) or short essay response. The free-
form section consisted of qualitative, compre-
hension questions, which exercised additional
reasoning tasks such as metareasoning, and re-
lied more, if only in a limited way, on com-
monsense knowledge and reasoning.

Due to the limited scope of the pilot, there
was no requirement that questions be input in
their original, natural language form. Thus,
two weeks were allocated to the teams for the
translation of the exam questions into their re-
spective formal languages. Upon completion of
the encoding effort, the formal question en-
codings of each team were evaluated by a pro-
gramwide committee to guarantee high fidelity
to the original English. The criterion of fidelity
was as follows:

Assume that a student was fluent in both Eng-
lish and the formal language in question. If she
is able to infer additional facts from the formal
encodings either through omission of detail or
because new material details were provided that
were not available in the English description of
the question, then a fidelity violation had oc-
curred. 

Once the encodings were evaluated, Vulcan
personnel submitted them to the sequestered
systems. The evaluations ran in batch mode.
The Ontoprise system completed its processing
in 2 hours, the SRI system in 5 hours and the
Cycorp system in a little over 12 hours. Each of
the three systems produced an output file in ac-
cordance with a predefined specification. For
each question, the format required the specifi-
cation of the question number; the full English
text of the question; a clear answer, either in
prose or letter form for multiple choice ques-
tions; and an explanation of how the answer
was derived—even for multiple choice ques-
tions. See the sidebar “Examples of System
Outputs and Grader Comments” for more de-
tails.

Vulcan engaged three chemistry professors
to evaluate the exams. Adopting an AP-style
evaluation methodology, they graded each
question for both correctness and the quality

of the explanation. The exam encompassed
168 distinct gradable components consisting of
questions and question subparts. Each of these
received marks, ranging from 0 to 1 point each
for correctness and separately for explanation
quality, for a maximum high score of 336. All
three experts graded all three exams. The scor-
ing of all three chemistry experts was aggregat-
ed for a maximum high score of 1008. 

Empirical Results 
Vulcan was able to run all of the applications
during the challenge despite minor problems
associated with each of the three systems.5 Re-
sults were compiled for the three exam sections
separately and then aggregated to form the to-
tal scores. Despite significant differences in ap-
proach, all three systems performed remark-
ably well, above 40 percent for correctness for
most of the graders—a score comparable to an
AP-3 (out of 5)—close to the mean human
score of AP-2.82!

The multiple choice (MC) section consisted
of 50 questions, MC1 through MC50. Each of
these questions featured five choices, lettered
“a” through “e.” The evaluation required both
an answer and a justification for full credit,
even for MC questions. Figure 3 provides an ex-
ample of one of the multiple choice questions,
MC3.

Figure 4 depicts the correctness (on the left)
and answer-justification (on the right) scores
for the multiple choice section as a percentage
of the 50-point maximum. The Cycorp, Onto-
prise, and SRI scores are depicted by the differ-
ent gray bars. Bars are grouped by the grading
chemistry professors, SME1 through SME3,
where SME stands for subject matter expert. SRI
and Ontoprise both scored about 70 percent
correct in this section, while Cycorp scored
slightly above 50 percent. Cycorp applied a
metareasoning technique to evaluate multiple
choice questions. First, Cycorp’s OpenHalo at-
tempted to find a correct answer among the
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Sodium azide is used in air bags to rapidly produce
gas to inflate the bag. The products of the decomposition
reaction are:

(a) Na and water;
(b) Ammonia and sodium metal;
(c) N2 and O2;
(d) Sodium and nitrogen gas;
(e) Sodium oxide and nitrogen gas.

Figure 3. An Example of a Multiple Choice Section Question, MC3.



siderably lower than the correctness scores.
Note that these two measurements were not in-
dependent. Systems that were unable to pro-
duce an answer did not produce a justification,
and systems that produced incorrect answers
were rarely able to produce convincing answer
justifications. The answer justification scores
were also far less uniform than the correctness
scores,6 with the scoring for SRI appearing to be
the most consistent across the three evaluators.
All the evaluators found the SRI justifications
to be the best, while the Cycorp generative-
English was the least comprehensible to the
subject matter experts. 

The detailed answer (DA) section had 25
multipart essay questions, DA1–DA25, repre-
senting a total of 80 gradable answer compo-
nents. Figure 5 depicts an example of a DA sec-
tion question, DA1. Figure 6 depicts the
correctness and answer-justification scores for
the DA section. The correctness assessment
shows a slight advantage to the Cycorp system
in this section. OpenHalo may have fared bet-
ter here because it was not penalized by its
multiple choice strategy in this section. 

The free-form (FF) section also had 25 multi-
part essay questions, FF1–FF25, representing 38
gradable answer components. Figure 7 depicts
an example of a FF question, FF2. Figure 8
shows the correctness and answer-justification
scores for the FF section. This section was de-
signed to include questions that were some-
what beyond the scope of the defined syllabus.
Some required metareasoning and, in some
cases, limited commonsense knowledge. The
objective was to see how well the systems per-
formed faced with such challenges and
whether the additional knowledge constructs
available to SRI and Cycorp would translate in-
to better results. The outcome of this section
showed a marked advantage to the SRI system,
both for correctness and for justification. We
were surprised that the Cycorp system did not
do better, given its many thousands of con-
cepts and relations and the rich expressivity of
CycL. This result may reflect the inability of
their knowledge engineering team to leverage
knowledge in Cyc for this particular challenge. 

Figure 9 provides the total challenge results,
as percentages of the 168-point maximum
scores, for answer correctness and justifica-
tions. The correctness scores show a similar
trend for the three subject matter experts, with
team SRI slightly outperforming Ontoprise and
Ontoprise slightly outperforming Cycorp. By
contrast, the justification scores display a sig-
nificant amount of variability. We are consider-
ing changes in our methodology to address this
issue, including training future subject matter

five. If it failed to do so, it would attempt to de-
termine which of the five options were prov-
ably wrong. This led to some questions return-
ing more than one letter answer, none of
which received credit from the subject matter
experts. In contrast, the other two teams hard-
coded the approach to be used—direct proof
versus elimination of obvious wrong an-
swers—and appeared to fare better.

The answer-justification scores were all con-
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Figure 4. Correctness and Answer-Justification Scores for the Multiple 
Choice Section as a Percentage of the Maximum Score of 50 Points. 

Balance the following reactions, and indicate whether they 
are examples of combustion, decomposition, or combination
(a)C4H10 + O2 → CO2 + H2O
(b)KClO3 → KCl + O2

(c)CH3CH2OH + O2 → CO2 + H2O
(d)P4 + O2 → P2O5

(e)N2O5 + H2O → HNO3

Figure 5. An Example of a Detailed Answer Section Question, DA1.



experts to produce more consistent scoring.
All subject matter experts found some an-

swer justifications that they liked. The subject
matter experts provided high-level comments,
mostly focused on the organization and con-
ciseness of the justifications. In some instances,
justifications were quite long. For example, Cy-
corp’s generative English produced some justi-
fications in excess of 16 pages in length. The
subject matter experts also complained that
many arguments were used repetitively and
that proofs took a long time to “get to the
point.” In some multiple choice questions,
proofs involved invalidating all wrong answers
rather than proving the right one. All the
teams appeared to rely on instance-based solu-
tions to prove generalized comprehension-ori-
ented questions, indicating a limited ability to
reason with concepts. Gaps in knowledge cov-
erage were also evident. For example, many of
the teams had significant gaps in their knowl-
edge of net ionic equations. Detailed question-
by-question scores are available on the project
Web site.

Problematic Questions 
Despite the impressive overall performance of
the three systems, there were questions on
which each of them failed. Most interestingly,
there were questions on which all three sys-
tems failed dramatically. Five prominent and
interesting cases—DA10, DA22, FF1, FF8, and
FF22—are shown in figure 10. We examine
these questions more closely. 

The first issue to address is whether these
questions share properties that explain their
difficulty. An initial hypothesis is that all five
questions require that a system be able to rep-
resent and reason about its own problem-solv-
ing procedures and data structures—that is,
that it be reflective or capable of metarepresen-
tation and metareasoning. That property
would explain the difficulty all three systems
had, at least to the extent that the systems can
be said to lack such reflective capabilities. 

DA10 seems to probe a system’s strategy for
solving any of a general class of problems; in-
deed, it seems to ask for an explicit description
of that strategy. DA22 implies that the pH cal-
culation that a problem solver is likely to use
will generate an unacceptable result in this case
(a value of greater than 7 for an acid) and then
asks for an explanation of what went wrong,
that is, of why the normal pH calculation leads
to an anomalous result here. These two ques-
tions both seem to require the system to repre-
sent and reason about, indeed to explain the
workings of, its own problem-solving proce-
dures. 

FF22 seems similar in that it asks about the
applicability of approximate solutions for a cer-
tain class of problems and about the reasons
for the limits to that applicability. On reflec-
tion, though, it is really probing the system’s
knowledge of certain methodological princi-
ples used in chemistry rather than the system’s
knowledge of its own inner workings. What
seems to be missing is knowledge about chem-
istry—not about chemical compounds but
rather about methods used in chemistry, in
particular about approximate methods and
their scope and limits. And, of course, these lat-
ter methods may or may not be built into the
system’s own problem-solving routines.
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Figure 6. Correctness and Answer-Justification Scores for the Detailed 
Answer Section as a Percentage of the Maximum Score of 80 Points.

Pure water is a poor conductor of electricity, yet ordinary 
tap water is a good conductor. Account for this difference. 

Figure 7. An Example of a Free-Form Section Question, FF2.



systems. The Ontoprise system proved to be
the fastest and most reliable, taking approxi-
mately 2 hours to complete its batch run. The
SRI system ran the challenge in approximately
5 hours, and the Cycorp system completed its
processing in over 12 hours. In this latter case,
a memory leak on the sequestered platform
caused the server to crash, and the system was
rebooted and run until the evaluation time
limit expired.

All three teams undertook modifications and
improvements to the sequestered systems and
ran the challenges again. In this case the Onto-
prise system was able to complete the chal-
lenge in 9 minutes, the SRI system took 30
minutes, and the Cycorp system took approxi-
mately 27 hours to process the challenge. Both
the sequestered and the improved systems are
freely available for download off the Project
Halo Web site. 

Analysis
The three systems did well—better than Vulcan
expected. Nevertheless, their performance was
far from perfect, and the goal of the pilot pro-
ject was to go beyond evaluations of KR&R sys-
tems to an analysis of them. Therefore, we
wanted to understand why these systems failed
when they did, the relative frequency of each
type of failure, and the ways these failures
might be avoided or mitigated.

Based on our collective experience building
KR&R systems, at the beginning of Project Halo
we designed a taxonomy of failures that fielded
systems might experience. Then, at the end of
the project, we analyzed every point lost on the
evaluation in an attempt to identify the failure
and place it within the taxonomy. We studied
the resulting data to draw lessons about the
taxonomy, the systems, and (by extrapolation)
the current state of KR&R technologies for
building fielded systems. See Friedland et al.
(2004) for a comprehensive report of this
study.

In particular, our failure analysis suggests
three broad lessons that can be drawn across
the board for the three systems: modeling, an-
swer justification, and scalability for speed and
reuse.

Modeling. A common theme in the modeling
problems across the systems was that the incor-
rect knowledge was represented, or some do-
main assumption was not adequately factored-
in, or the knowledge was not captured at the
right level of abstraction. Addressing these
problems requires us to have direct involve-
ment of the domain experts in the knowledge-
engineering process. The teams involved such

FF1 and FF8 are similar in that one asks for
similarities and the other for differences, and
in both cases, the systems did represent the
knowledge but did not support the reasoning
method to compute them.

FF1 is a question about the language of
chemistry, in particular about the abstract syn-
tax or type conventions of terms for chemical
compounds. All three systems had some
knowledge encoded so that the differences
could be computed but lacked the necessary
reasoning method to compute them.

A Note on Performance
The Halo pilot challenge was run over the
course of a day and a half on sequestered sys-
tems at Vulcan, by Vulcan personnel. As noted
above, we did encounter minor problems with
all three systems that were resolved over this
period of time. Among other issues, the batch
files containing the formal encodings of the
challenge questions needed to be broken into
two to facilitate their processing on all three
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Figure 8. Correctness and Answer Justification Scores for the Free-Form 
Section as a Percentage of the Maximum Score of 38 Points. 

Note that SRI fared significantly better both in the correctness and justification
scoring.



experts to different extents and at different
times during the course of the project. The SRI
team, which involved professional chemists
from the beginning of the project, appeared to
benefit substantially. This presents a research
challenge, since it suggests that the expositions
of chemistry in current texts are not sufficient
for building or training knowledge-based sys-
tems. Instead, a high-level domain expert must
be involved in formulating the knowledge ap-
propriately for system use. Two approaches to
ameliorating this problem being pursued by
participants are (1) providing tools that sup-
port direct manipulation and testing of KR&R
systems by such experts, and (2) providing the
background knowledge required by a system to
make appropriate use of specialized knowledge
as it is presented in texts. 

Answer Justification. Explanation, or, more
generally, response interpretability, is funda-
mental to the acceptance of a knowledge-based
system, yet for all three state-of-the-art sys-
tems, it proved to be a substantial challenge.
Since the utility of the system will be evaluated
end to end, it is to a large degree immaterial
whether its answers are correct, if they cannot
be understood. Reaching the goals of projects
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Figure 9. Total Correctness and Justification Scores 
as a Percentage of the Maximum Score of 168 Points.

DA10: HCl, H2SO4, HClO4, and HNO3 are all examples of strong acids and are 
100% ionized in water. This is known as the “leveling effect” of the solvent. 
Explain how you would establish the relative strengths of these acids. That is, 
how would you answer a question such as “which of these acids is the strongest?”  

DA22. Phenol, C6H5OH, is a very weak acid with an acid equilibrium constant of 
Ka = 1.3 x 10-10. Determine the pH of a very dilute, 1 x 10-5 M, solution of 
phenol. Is the value acceptable? If not, give a possible explanation for the 
unreasonable pH value.

FF1. What is the difference between the subscript 3 in HNO3 and a coefficient 3 in 
front of HNO3? 

FF8. Although nitric acid and phosphoric acid have very different properties as pure 
substances, their aqueous solutions possess many common properties. List some 
general properties of these solutions and explain their common behavior in terms of 
the species present.

FF22. When we solve equilibrium expressions for the [H3O+] approximations are 
often made to reduce the complexity of the equation thus making it easier to solve. 
Why can we make these approximations? Would these approximations ever lead to 
significant errors in the answer? If so give an example of an equilibrium problem that 
would require use of the quadratic equation.

Figure 10. Examples of Chemistry Questions That Proved to Be Problematic for All Three Teams.



A Brief History of 
Evaluating Knowledge Systems

One unique aspect of the Halo pilot is its rigorous scheme
of evaluation. It uses an independently defined and
well-understood test, specifically, the advanced place-

ment test for chemistry, on a well-defined scope, specifically, 70
pages of a chemistry textbook. Though such rigorous evalua-
tion schemes have been developed in the areas of shallow in-
formation extraction (the MUC conferences) information re-
trieval and simple question answering (the TREC conferences)
for quite a while, the corresponding task of evaluating the kind
of knowledge-based systems deployed in the Halo Pilot had ap-
peared to be too difficult to be approached in one step. 

Thus, previous efforts at measuring the performance of
knowledge-based systems such as in high-performance knowl-
edge bases (HPKB) and rapid knowledge formation (RKF) con-
stituted important stepping stones towards rigorous evaluation
of knowledge-based systems, but the Halo pilot represents a sig-
nificant advance. To substantiate this summary, we shall review
some of the details of developments in these various areas. 

Retrieving Answers from Texts
Question-answering via information retrieval and extraction
from texts has been an active area of research, with a progres-
sion of annual competitions and conferences, especially the 7
message-understanding conferences (MUCs) and the 12 text-re-
trieval conferences (TRECs) from 1992–2003, sponsored by
NIST, IAD, DARPA, and ARDA. TRECs were initially aimed at re-
trieving relevant texts from large collections and then at ex-
tracting relevant passages from texts (Voorheese 2003). The ear-
lier systems had virtually no need for inference-capable
knowledge bases and reasoning capabilities. In recent years the
question-answering tasks have become more challenging, for
example, requiring a direct answer to a question rather than a
passage containing the answer. The evaluation schemes are
very well defined, including well worked out definitions of the
tasks and answer keys that are used to compute evaluation mea-
sures including precision and recall.

Recently there has been a surge of interest in the use of do-
main knowledge in question answering (for example, see
Chaudhri and Fikes [1999]). ARDA’s current advanced question
and answering for intelligence program (AQUAINT), started in
2001, is pushing text-based question-answering technology fur-
ther, seeking to address a typical intelligence-gathering scenario
in which multiple, interrelated questions are used to fulfill an
overall information need rather than answer just single, isolat-
ed, fact-based questions. AQUAINT has both adopted TREC’s
approach to the evaluation of question-answering and tried to
extend it to encompass more complex question types, for ex-
ample biographical questions of the form “Tell me all the im-
portant things you know about Osama bin Laden.” The funda-
mental difference between the Halo evaluation and the
AQUAINT evaluation is that the AQUAINT evaluations are de-

signed to test the question-answering capability on huge bodies
of text on widely ranging subjects using very limited reasoning
capabilities. In contrast, the Halo evaluation is focused on eval-
uating deep reasoning in the field of sciences. The eventual goal
of Halo is to do significant coverage of sciences, but the current
phase was limited to only 70 pages of a chemistry textbook. 

Building and Running 
Knowledge-Based Systems
In the area of knowledge-based systems, DARPA, AFOSR, NRI,
and NSF jointly funded the knowledge sharing effort in 1991
(Neches et al. 1991). This was a three-year collaborative pro-
gram to develop “knowledge sharing” technologies to facilitate
the exchange and reuse of inference-capable knowledge bases
among different groups. The aim was to help reduce costs and
promote development of knowledge-based applications. This
was followed by DARPA’s High Performance Knowledge Base
(HPKB) program (1996–2000), designed to push knowledge-
based technology further and demonstrate that very large
(100k+ axiom) systems could be built quickly and be usefully
applied to question-answering tasks (Cohen et al. 1998). The
evaluation in HPKB was aimed simply at the hypothesis that
large knowledge-based systems can be built at all, that they can
accomplish interesting tasks, and that they do not break—as a
toy system would and as many of the initial knowledge-based
systems did—when working with a realistically sized knowl-
edge base.

Evaluating Knowledge-Based Systems
There have been few efforts so far at documenting and analyz-
ing the quality of fielded KR&R systems (Brachman et al. 1999;
Keyes 1989; and Batanov and Brezillon 1996). RKF made signif-
icant efforts to analyze and document the quality of knowledge
base performance (Pool et al. 2003). Specifically, an evaluation
in DARPA’s Rapid Knowledge Formation project, which was
roughly comparable to the one used in Project Halo, was based
on approximately 10 pages from a biology textbook and a set
of test questions—however, this was not an independently es-
tablished test. The Halo pilot, reported on here, improves upon
these evaluations by being more systematic and usable for
cross-system comparisons. The Halo pilot has adopted an eval-
uation standard that is comparable to the rigor of the chal-
lenges for retrieving answers from texts. It provides an exact de-
finition of the scope of the domain—an AP chemistry test
setting that has proven its validity in many years with many
students—as well as an objective evaluation by independent
graders. We conjecture that the Halo evaluation scheme is ex-
tensible enough to support a coherent long-term development
program.
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like Digital Aristotle will require an investment
of considerably more resources into this aspect
of systems to realize robust gains in their com-
petence. Constructing explanations directly
from the system’s proof strategy is neither
straightforward nor particularly successful, es-
pecially if that strategy has not been designed
with explanation in mind. One alternative is to
use explicit representations of problem-solving
methods (PSMs) so that explanations can in-
clude statements of problem-solving strategy as
well as statements of facts and rules (Clancey
1983). Another is to perform more metareason-
ing over the proof tree to construct a more
readable explanation.

Scalability for Speed and Reuse. There has
been substantial work in the literature on the
trade-off between expressiveness and tractabil-
ity, yet managing this trade-off, or even pre-
dicting its effect in the design of fielded sys-
tems over real domains, is still not at all
straightforward. To move from a theoretical to
an engineering model of scalability, the KR
community would benefit from a more system-
atic exploration of this area driven by the em-
pirical requirements of problems at a wide
range of scales. For example, the three Halo
systems, and more generally, the Halo develop-
ment and testing corpora, can provide an ex-
cellent test bed to enable KR&R researchers to
pursue experimental research in the trade-off
between expressiveness and tractability. 

Discussion
All three logical languages, KM, F-Logic, and
CycL, were expressive enough to represent
most of the knowledge in this domain. F-Logic
was by far the most concise and easy to read,
with syntax most resembling an object-orient-
ed language. F-Logic also yielded very high-fi-
delity representations that appear to be easier
and more intuitive to construct. Ontoprise was
the only team to conduct a sensitivity study of
the impact of different question encodings on
system performance. In the case of the two
questions they examined, their system pro-
duced similar answers with slightly different
justifications. For the most part, the encoding
process and its impact on question-answering
stability remain an open research topic. 

SRI and Ontoprise yielded comparably sized
knowledge bases. OntoNova was built from
scratch using no predefined primitives, while
SRI’s system leveraged the Component Library,
though not as extensively as the team had ini-
tially hoped. SRI’s use of professional chemists
in the knowledge-formulation process was a
huge advantage, and the quality of their out-
come is reflected by this fact. The other teams

have conceded that, if they had the opportuni-
ty to revisit the challenge, they would adopt
the use of subject matter experts in knowledge
formation. Cycorp’s OpenHalo knowledge base
was two orders of magnitude larger than the
other teams’. They were unable to demonstrate
any measurable advantage in using this addi-
tional knowledge, even in example-based ques-
tions, where they exhibited metareasoning
brittleness similar to that observed in the other
systems. The size of Cycorp’s knowledge base
does, however, explain some of the significant
run-time differences. They have also yet to
demonstrate successful, effective reintegration
of Halo knowledge into the extended Cyc plat-
form. Reuse and integration appear to remain
open questions for all three Halo teams. 

The most novel aspect of the Halo pilot was
the great emphasis put on answer explana-
tions, which served two primary purposes: first,
to exhibit and thereby verify that deep reason-
ing was occurring, and second, to validate that
appropriate domain explanations can be gener-
ated. This is an area that is still open to signifi-
cant improvement. SRI’s approach produced
the best-quality results, but it leaves open
many questions regarding how well it might be
scaled, generalized, and reused. Cycorp’s gener-
ative approach may eventually scale and gener-
alize, but the current results were extremely
verbose and often unintelligible to domain ex-
perts. Ontoprise’s approach of running a sec-
ond inference process appears to be very
promising in the near term.

Vulcan Inc. and the pilot participants have
invested considerable efforts in promoting the
scientific transparency of the Halo pilot. The
project Web site provides all the scientifically
relevant documentation and tutorials, includ-
ing an interactive results browser and fully doc-
umented downloads representing both the se-
questered systems and improved Halo pilot
chemistry knowledge bases. We eagerly antici-
pate comment from the AI community and
look forward to its use by universities and other
researchers.

Finally, the issue of cost must be considered.
We estimate that the per page expense for each
of the three Halo teams was on the order of
$10,000 per page for the 70-page syllabus. This
cost must be significantly reduced before this
technology can be considered viable for Digital
Aristotle. 

In summary, all of the Halo systems scored
well on a very difficult challenge: extrapolating
the results of team SRI’s system on the limited
70-page syllabus to the entire AP syllabus yield-
ed the equivalent of an AP-3 score for answer
correctness—good enough to earn course cred-

Articles

WINTER 2004   41



Articles

42 AI MAGAZINE

The Halo pilot evaluation was intended to as-
sess deep-reasoning capabilities of the three
competing systems in the context of a well-
known evaluation methodology. Seventy
pages of the advance placement (AP) chem-
istry syllabus were selected. Systems were re-
quired to produce coherent answers and an-
swer justifications in English to each of the
100 AP-style questions posed. In the case of
multiple choice questions, a letter response
was required. The evaluation team consisted
of three chemistry professors, who were in-
structed to grade the exams using AP guide-
lines. Answer justifications were thus re-
quired to conform to AP guidelines to receive
full credit.

System outputs were required to conform
to strict formats. The question number need-
ed to be clearly indicated, followed by the
original English text of the question. This was
to be followed by the answer. Multiple choice
questions required a letter answer. Finally,
the answer justification was required. Justifi-
cation guidelines required that the answers
be clear, concise, and appropriate for AP ex-
ams. 

The system outputs were rendered into
hardcopy and distributed to three chemistry
professors for evaluation. These subject mat-
ter experts were asked to apply AP grading
guidelines to assess the system outputs and to
provide lots of written comments. 

Question examples 1 through 3 present
Ontoprise, SRI, and Cycorp system outputs,
respectively. Examples 1 and 2 depict re-
sponses to multiple choice question 20, while
example 3 depicts the response to multiple
choice question 34. These figures also contain
graders’ remarks.

Question Example 2. SRI’s SHAKEN Output. 
Human-authored templates associated with chem-
ical methods were combined during the back-
chaining process to produce the English text. The
templates specify the salient subgoals to be elabo-
rated as indented “sub explanations.” This result-
ed in generally superior answer justifications. 

Question Example 1. Ontoprise’s OntoNova 
Application’s Output for Multiple Choice Question 20. 

Note the output’s format: the question number is indicated at the top; fol-
lowed by the full English text of the original question; next, the letter answer
is indicated; finally, the answer justification is presented. The graders written
remarks are included. OntoNova employed a second inference step to derive
the answer justification, using human-authored templates, the proof tree, and
combination rules to assemble the English text.

Examples of System Outputs and
Grader Comments
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Comments on SRI Output

Well done, and to the point

In general, the program appears to take a quantitative approach when
answering questions and does not know how to take a qualitative
approach.  For example, when the activity series was part of a question, 
the program would use cell potentials

The “reasoning” are much, much, much too long. A sufficient “reasoning” 
to any of the questions on the exam never requires more than the 1/2 page.

A good approach for replacing the “reasoning” used in this program is
to use “Show Method of Calculation” (for all questions which involve the 
calculation of a numerical answer) and “Explain Reasoning” (for all
questions which do not involve a calculated answer)

Main strength of the program is that it did a fairly good job of arriving at 
the correct answers

There was a common error in the use of significant figures.  Answers are
often given in as many figures as the program could generate.  This is also a 
common problem with students so I guess we could claim that the com-
puter is being more human-like in these responses

The logic is more readable (and shorter!) than the KB justifications, but it 
often seems to be presented backwards — arguing from the answer as 
opposed to arguing to the answer.

Good logical flow, set up with substitutions shown

Generally, when a calculation was required, the program did not 
follow what I would expect from a student: namely, a setup, 
substituted numbers, followed by a solution to the problem. 

Very good, brief presentation in logical order 
Good use of selective elimination
This is a good first effort, but still looks a little like what would be 
expected from a student taking this exam.

Comments on Ontoprise Output

Comments on Cycorp Output

Comments on Output.
This figure shows a small, if representative, sub-
set of verbatim comments that subject matter
experts made on the answers to the questions
produced by the system. The subject matter ex-
perts had well-defined expectations of system
behavior, for example setting up a problem be-
fore actually presenting its solution or the
number of significant digits used in the output.
These comments did not reflect, for the most
part, on the correctness of the computation,
but rather were indicators of “how things were
to be done on an AP chemistry exam.” This
highlights the importance of understanding
domain-specific requirements in answer and
answer-justification formation and generation
by question-answering systems.

Question Example 3. The Output of 
Cycorp’s OpenHalo Application for

Multiple Choice Question 34. 
Note the grader’s remarks. OpenHalo used the
proof tree and Cyc’s generative English capabil-
ities to produce the English answer. This exam-
ple illustrates one of the better outcomes—
some questions produced many pages of gener-
ative English, which were far less intelligible to
the graders. 



portions of the syllabi would be best suited to
demonstrate the broadest proof of concept,
given our resources, and better understand the
ways in which the content requirements of the
different disciplines can be mutually leveraged;
and finally, (4) produce a coherent, well moti-
vated design.

A 15-month implementation stage will fol-
low. Here, the detailed designs will be rendered
into working systems, and these systems will
be subject to a comprehensive user evaluation
to understand their viability and the degree to
which the empirical data from actual use by
domain experts fits the models developed dur-
ing the design stage. Finally, a nine-month re-
finement stage will attempt to correct the
shortcomings detected in the implementation
stage evaluation, and a second evaluation will
be undertaken to validate the refinements. 

Future work will focus on tactical research to
fill gaps identified in Halo 2 that will lead to
greater coverage of the scientific domains.
These efforts will investigate both automated
and semiautomated methods to facilitate for-
mulation of knowledge and posing of ques-
tions and provide better tools for evaluation
and inspection of the knowledge-formulation
and question-answering processes. We will also
be focusing on reducing brittleness and other
systemic failures of the Halo phase-two systems
that will be identified by a comprehensive fail-
ure analysis of the sort we developed for phase
one. We will be seeking the assistance of the
KR&R community to standardize our extended
failure taxonomy for use in a wide variety of
knowledge-based applications.

Throughout phase two, Project Halo will be
conducting an ongoing dialogue with domain
experts and educators, especially those from
the three target scientific disciplines. Our aims
are to better understand their needs and to ex-
plain the potential benefits of the availability
of high-quality machine-processable knowl-
edge to both research and education. For exam-
ple, once a proof of concept for our knowledge
formulation approach has been established,
Project Halo will consider how knowledge
modules might be integrated into interactive
tutoring applications. We will also examine
how such modules might assist knowledge-dri-
ven discovery, as part of the functionality of a
digital research assistant.
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Notes
1. MEDLINE is the National Library of Medicine’s

it at many top universities. The Halo teams be-
lieve that with additional, limited effort they
would be able to improve the scores to the AP-
4 level and beyond. Vulcan Inc. has developed
two additional challenge question sets to vali-
date these claims at a future date.

Conclusions and Next Steps 
As we noted at the beginning of this article,
Project Halo is a multistaged effort. In the fore-
going, we have described phase one, which as-
sessed the capability of knowledge-based sys-
tems to answer a wide variety of unanticipated
questions with coherent explanations. Phase
two of Project Halo will examine whether tools
can be built to enable domain experts to build
such with an ever-decreasing reliance on
knowledge engineers—a goal that was pursued
in DARPA’s Rapid Knowledge Formation pro-
ject. Empowering domain experts to build ro-
bust knowledge bases with little or no assis-
tance from knowledge engineers will (1)
dramatically decrease the cost of knowledge
formulation; (2) greatly reduce the type of er-
rors observed in the Halo Pilot that resulted
from lack of understanding of the domain on
the part of knowledge engineers; and (3) facili-
tate a growing, peer-reviewed body of ma-
chine-processable knowledge that will form
the basis for Digital Aristotle. A critical measure
of success is the degree to which the relevant
scientific communities are willing to adopt
these tools, especially in their pedagogies. 

At the core of the knowledge formulation
approach envisioned in phase two is a docu-
ment-rooted methodology in which the do-
main expert uses an existing document such as
a textbook as the basis for the formulation of a
knowledge module. Tying knowledge modules
to documents in this way will help determine
the scope and context of each module, the
types of questions they can be expected to an-
swer, and the appropriate depth and resolution
of the answers. The 30-month phase-two effort
will be undertaken in three stages. First, a six-
month, analysis-driven design process will ex-
amine the complete AP syllabi for chemistry,
biology, and physics (B). The objective of this
analysis will be to determine requirements on
effective use by domain experts of a range of
knowledge-acquisition technologies. The re-
sults of this study should allow us to (1) deter-
mine the gaps in “coverage” of current state-of-
the-art knowledge-acquisition techniques and
define targeted research to fill those gaps; (2)
understand and prioritize the methods, tech-
niques, and technologies that will be central to
the Halo 2 application; (3) understand which
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premier bibliographic database covering the fields of
medicine, nursing, dentistry, veterinary medicine,
the health care system, and the preclinical sciences.

2. Sections 2.6–2.9 in chapter 2 provide detailed in-
formation. Chapter 16 also requires the definition of
moles, which appears in section 3.4, pages 87–89,
and molarity, which can be found on page 134. The
form of the equilibrium expression can be found on
page 580, and buffer solutions can be found in sec-
tion 17.2.

3. Available from http://www.opencyc.org/.

4 The system code and documentation are available
at http://www.cs.utexas.edu/users/mfkb/km.html.

5. After the challenge evaluation was complete, the
teams put in a considerable effort to make improved
versions of their application for use by the general
public. These improved versions address many of the
problems encountered on the sequestered versions.
Vulcan Inc has made both the sequestered and im-
proved versions available for download on the pro-
ject Halo Web site.

6. One explanation for this is that, although agreed
guidelines exist for marking human justifications,
the Halo systems can create justifications unlike any
that the graders have seen before (for example, with
extensive verbatim repetition), and for which no
agreed scoring protocol has been established.
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