
■ The PROCESS SPECIFICATION LANGUAGE (PSL) has been
designed to facilitate correct and complete ex-
change of process information among manufac-
turing systems, such as scheduling, process model-
ing, process planning, production planning,
simulation, project management, work flow, and
business-process reengineering. We give an
overview of the theories within the PSL ontology,
discuss some of the design principles for the ontol-
ogy, and finish with examples of process specifica-
tions that are based on the ontology.

As the use of information technology in
manufacturing operations has matured,
the need to integrate software applica-

tions has become increasingly important.
However, interoperability among these manu-
facturing applications is hindered because the
applications use different terminology and rep-
resentations of the domain. These problems
arise most acutely for systems that must man-
age the heterogeneity inherent in various do-
mains and integrate models of different do-
mains into coherent frameworks (figure 1). For
example, such integration occurs in business-
process reengineering, where enterprise mod-
els integrate processes, organizations, goals,
and customers. Even when applications use the
same terminology, they often associate differ-
ent semantics with the terms. This clash over
the meaning of the terms prevents the seam-
less exchange of information among the appli-
cations. Typically, point-to-point translation
programs are written to enable communica-
tion from one specific application to another.
However, as the number of applications has in-

creased and the information has become more
complex, it has been more difficult for soft-
ware developers to provide translators between
every pair of applications that must cooperate.
What is needed is some way of explicitly spec-
ifying the terminology of the applications in
an unambiguous fashion.

The PROCESS SPECIFICATION LANGUAGE (PSL)
(Menzel and Gruninger 2001; Schlenoff,
Gruninger, and Ciocoiu 1999) has been de-
signed to facilitate correct and complete ex-
change of process information among manu-
facturing systems. Included in these
applications are scheduling, process modeling,
process planning, production planning, simu-
lation, project management, work flow, and
business-process reengineering. We give an
overview of the theories within the PSL ontol-
ogy, discuss some of the design principles for
the ontology, and finish with examples of
process specifications that are based on the on-
tology.

Architecture of PSL

The PSL ontology is organized into PSL-CORE and
a partially ordered set of extensions. All axioms
are first-order sentences and are written in the
KNOWLEDGE INTERCHANGE FORMAT (KIF).

There are two types of extensions within PSL:
(1) core theories and (2) definitional exten-
sions. Core theories introduce and axiomatize
new relations and functions that are primitive.
All terminology introduced in a definitional
extension has conservative definitions using
the terminology of the core theories. Thus, def-

Articles

FALL 2003 63

The Process
Specification

Language (PSL)
Theory and Applications

Michael Grüninger and Christopher Menzel

Copyright © 2003, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2003 / $2.00

AI Magazine Volume 24 Number 3 (2003) (© AAAI)

come necessary to describe all intuitions about
manufacturing processes. To supplement the
concepts of PSL-CORE, the ontology includes a
set of extensions that introduce new terminol-
ogy. Any PSL extension provides the logical ex-
pressiveness to axiomatize intuitions involving
concepts that are not explicitly specified in PSL-
CORE. All extensions within PSL are consistent
extensions of PSL-CORE and can be consistent
extensions of other PSL extensions. However,
not all extensions within PSL need be mutually
consistent. Also, the core theories need not be
conservative extensions of other core theories.

A particular set of theories is grouped togeth-
er to form the outer core; this distinction is
pragmatic because in practice, these theories
have been necessary for axiomatizing all other
concepts in the PSL ontology (figure 2).

Occurrence Trees An occurrence tree is the set
of all discrete sequences of activity occur-
rences. They are isomorphic to substructures of
the situation tree from situation calculus (Mc-
Carthy and Hayes 1969; Pinto 1994; Reiter
1991), the primary difference being that rather
than a unique initial situation, each occur-
rence tree has a unique initial activity occur-
rence. As in the situation calculus, the poss re-
lation is introduced to allow the statement of
constraints on activity occurrences within the
occurrence tree. Because the occurrence trees
include sequences that modelers of a domain

initional extensions add no new expressive
power to PSL-CORE.

Core Theories
All core theories within the ontology are con-
sistent extensions of PSL-CORE, although not all
extensions need be mutually consistent. Also,
the core theories need not be conservative ex-
tensions of other core theories. The relation-
ships among the core theories in the PSL ontol-
ogy are depicted in figure 2.

PSL Core The purpose of PSL-CORE is to axiom-
atize a set of intuitive semantic primitives that
is adequate for describing the fundamental
concepts of manufacturing processes. Conse-
quently, this characterization of basic processes
makes few assumptions about their nature be-
yond what is needed for describing these
processes, and the core is, therefore, rather
weak in terms of logical expressiveness. Specif-
ically, the core ontology consists of four dis-
joint classes: (1) activities, (2) activity occur-
rences, (3) time points, and (4) objects.
Activities can have zero or more occurrences,
activity occurrences begin and end at time
points, and time points constitute a linearly or-
dered set with end points at infinity. Objects are
simply those elements that are not activities,
occurrences, or time points.

PSL-CORE is not strong enough to provide de-
finitions of the many auxiliary notions that be-

Articles

64 AI MAGAZINE

Resource Manager
Capacity, Deadline

Logistics
Due Date, Delivery Schedule

Scheduler
Throughput, Process Plans

Figure 1. The Challenge of Interoperability.
Different departments within an enterprise often use their own terminology in referring to their business processes. The challenge of in-
teroperability is to determine the relationships between the meanings of the terms used by these departments: Is the concept of “deadline”
used by the resource manager semantically equivalent to the concept of “due date'” used by logistics? Is the concept of “throughput”
used by the scheduler semantically equivalent to the concept of “capacity” used by the resource manager?

will consider impossible, the poss relation
“prunes” away branches from the occurrences
tree that correspond to such impossible activi-
ty occurrences.

It should be noted that the occurrence tree
is not the structure that represents the occur-
rences of subactivities of an activity. The oc-
currence tree does not represent a particular
occurrence of an activity but, rather, all possi-
ble occurrences of all activities in the domain.

Discrete States The discrete-states core theo-
ry introduces the notion of state (fluents). Flu-
ents are changed only by the occurrence of ac-
tivities, and fluents do not change during the
occurrence of primitive activities. In addition,

activities have preconditions (fluents that must
hold before an occurrence) and effects (fluents
that always hold after an occurrence).

Subactivities This core theory axiomatizes
intuitions about subactivities. The only con-
straint imposed within this theory is that the
subactivity relation is isomorphic to a discrete
partial ordering. Other core theories impose
additional constraints.

Atomic Activities The core theory of atomic
activities axiomatizes intuitions about the con-
current aggregation of primitive activities. This
concurrent aggregation is represented by the
occurrence of concurrent activities rather than
concurrent-activity occurrences.

Articles

FALL 2003 65

Activity
Occurrences

Complex Activites

Atomic Activities

Subactivity

Discrete State

Occurrence Trees

PSL-Core

Figure 2. The Theories in the Outer Core of PSL.

Definitional Extensions
The definitional extensions are grouped into parts
according to the core theories that are required
for their definitions. Table 1 gives an overview
of these groups together with example concepts
that are defined in the extensions. The defini-
tional extensions in a group contain definitions
that are conservative with respect to the speci-
fied core theories; for example, all concepts in
the temporal and state extensions have conser-
vative definitions with respect to both the com-
plex activities and discrete-states theories.

Design Principles
The organization of the PSL ontology and the
properties of its extensions have been shaped
by several design principles. In presenting
these principles, we make a distinction be-
tween hypotheses (that constrain uses of the PSL

ontology) and criteria (that specify properties of
the PSL ontology itself).

Supporting Interoperability
Intuitively, two applications will be interoper-
able if they share the semantics of the termi-
nology in their corresponding theories. Shar-
ing semantics between applications is
equivalent to sharing models of their theories;
that is, the theories have isomorphic sets of
models. However, applications do not explicit-
ly share the models of their theories. Instead,
they exchange sentences in such a way that the
semantics of the terminology of these sen-
tences is preserved.

Complex Activities This core theory pro-
vides the foundation for representing and rea-
soning about complex activities and the rela-
tionship between occurrences of an activity
and occurrences of its subactivities. Within
models of the complex-activities theory, occur-
rences of complex activities correspond to sub-
trees of the occurrence tree. An activity can
have subactivities that do not occur; the only
constraint is that any subactivity occurrence
must correspond to a subtree of the activity
tree that characterizes the occurrence of the ac-
tivity. Not every occurrence of a subactivity is
a subactivity occurrence. There can be other
external activities that occur during an occur-
rence of an activity. Different subactivities can
occur on different branches of the activity tree
so that different occurrences of an activity can
have different subactivity occurrences.

Activity Occurrences The complex-activities
theory only axiomatizes constraints on atomic
subactivity occurrences. The activity occurrences
theory generalizes these intuitions to arbitrary
complex subactivities.

Additional Core Theories The remaining
core theories in the PSL ontology include subac-
tivity occurrence ordering (axiomatizing different
partial orderings over subactivity occurrences),
iterated occurrence ordering (axioms necessary for
defining iterated activities), duration (augment-
ing PSL-CORE with a metric over the timeline),
and resource requirements (which specify the
conditions that must be satisfied by any object
that is a resource for an activity).

Articles

66 AI MAGAZINE

Definitional Extensions Core Theories Example Concepts

Activity Extensions Complex Activities Deterministic/Nondeterministic Activities

Concurrent Activities

Partially Ordered Activities

Temporal and State Extensions Complex Activities

Discrete States

Preconditions

Effects

Conditional Activities

Triggered Activities

Activity Ordering and Duration
Extensions

Subactivity Occurrence Ordering

Iterated Occurrence Ordering

Duration

Complex Sequences and Branching

Iterated Activities

Duration-based Constraints

Resource Role Extensions Resource Requirements Reusable, Consumable, Renewable,

Deteriorating Resources

Table 1. Definitional Extensions of PSL.

We say that a theory TA is shareable with a
theory TB if for any sentence ΦA in the language
of TA, there exists an exchange that maps to a
sentence ΦB such that there is a one-to-one
mapping between the set of models of TA that
satisfy ΦA and the set of models of TB that satis-
fy ΦB. We say that a theory TA is interoperable
with a theory TB if for any sentence Φ that is
provable from TA, there exists an exchange that
maps Φ to a sentence that is provable from TB.
We make the following hypothesis to restrict
our attention to domains in which shareability
and interoperability are equivalent:

Interoperability Hypothesis
We are considering interoperability
among complete first-order inference en-
gines that exchange first-order sentences.

The soundness and completeness of first-or-
der logic guarantees that the theorems of a de-
ductive inference engine are exactly those sen-
tences that are satisfied by all models and that
any truth assignment given by a consistency
checker is isomorphic to a model. If we move
beyond the expressiveness of first-order logic,
we lose completeness, so that for any deductive
inference engine, there will be sentences that
are entailed by a set of models but are not prov-
able by that engine. We could therefore have
two theories that are shareable but not interop-
erable.

Note that we are not imposing the require-
ment that the ontologies themselves be cate-
gorical or even complete. The two applications
must simply share the same set of models (to
isomorphism). Ambiguity does not arise from
the existence of multiple models for an ontol-
ogy; it arises because the two applications have
nonisomorphic models—the ontology for ap-
plication A has a model that is not isomorphic
to any model for the ontology of application B.

The Ontological Stance
When building translators, we are faced with
the additional challenge that almost no appli-
cation has an explicitly axiomatized ontology.
However, we can model a software application
as if it were an inference system with an axiom-
atized ontology and use this ontology to pre-
dict the set of sentences that the inference sys-
tem decides to be satisfiable. This is the
ontological stance, which is analogous to the in-
tentional stance (Dennet 1987), the strategy of
interpreting the behavior of an entity by treat-
ing it as if it were a rational agent who per-
forms activities in accordance with some set of
intentional constraints.

In practice, the ontological stance requires
the following assumption about the ontologies
that are attributed to an application:

Conformance Hypothesis
Every structure that is a model of the ap-
plication ontology is isomorphic to a
model of a foundational theory that is an
extension of PSL-CORE.

Although this hypothesis is rather strong be-
cause it entails that all application ontologies
are consistent with PSL-CORE, it also imposes
conditions on the PSL ontology, which must be
rich enough to axiomatize the application on-
tology.

Characterization of Models
Using the interoperability hypothesis, we im-
pose the following condition on the core theo-
ries of the PSL ontology:

Definability Criterion
Classes of structures for core theories
within the PSL ontology are axiomatized to
elementary equivalence—the core theo-
ries are satisfied by any model in the class,
and any model of the core theories is ele-
mentarily equivalent to a model in the
class. Further, each class of structures is
characterized to isomorphism.

The definability criterion can also be applied
as a methodology for evaluating the axiomati-
zation of an ontology (figure 3).

Articles

FALL 2003 67

Intuitions

Axiomatic
Theory

Axiomatizability Satisfiability

Structures

Figure 3. Methodology for the Evaluation of Axiomatic Theories.

states of affairs, then we intuitively have an in-
correct set of structures.

Once we specify the class of structures, we
can formally evaluate an axiomatic theory
with respect to this specification. In particular,
we want to prove two fundamental properties:
(1) satisfiability, where every structure in the
class is a model of the axiomatic theory, and (2)
axiomatizability, where every model of the ax-
iomatic theory is isomorphic to some structure
in the class.

Strictly speaking, we only need to show that
a model exists to demonstrate that a theory is
satisfiable. However, in the axiomatization of
domain theories, we need a complete charac-
terization of the possible models. For example,
because we are considering the domain of ac-
tivities, occurrences, and time points to show
that a theory is satisfiable, we need only specify
an occurrence of an activity that, together with
the axioms, is satisfied by some structure. The
problem with this approach is that we run the
risk of having demonstrated satisfiability only
for some restricted class of activities. For exam-
ple, a theory of activities that supports sched-
uling can be shown to be consistent by con-
structing a satisfying interpretation, but the
interpretation might require that resources
cannot be shared by multiple activities, or it
might require all activities to be deterministic.
Although such a model might be adequate for
such activities, it would in no way be general
enough for our purposes. We want to propose
a comprehensive theory of activities, so we
need to explicitly characterize the classes of ac-
tivities, time points, objects, and other as-
sumptions that are guaranteed to be satisfied
by the specified structures.

The purpose of the axiomatizability theorem
is to demonstrate that any unintended models
of the theory do not work, that is, any models
that are not specified in the class of structures.
With the interoperability hypothesis, we do
not need to restrict ourselves to elementary
classes of structures when we are axiomatizing
an ontology. Because the applications are
equivalent to first-order inference engines,
they cannot distinguish between structures
that are elementarily equivalent. Thus, the un-
intended models are only those that are not el-
ementarily equivalent to any model in the
class of structures.

The Role of Definitional Extensions
The terminology within the definitional exten-
sions intuitively corresponds to classes of activ-
ities and objects. Within the PSL ontology, the
terminology arises from the classification of
the models of the core theories with respect to

The first aspect of this approach is to identify
the primary intuitions in some domain. With-
in PSL, for example, we have intuitions about
concepts such as activity, activity occurrences,
and time points. These intuitions also restrict
the scope of the axiomatic theories, and they
serve as informal requirements that get formal-
ly specified in the classes of structures and later
axiomatized in the theory itself.

The objective of the second aspect of the
methodology is to identify each concept with
an element of some mathematical structure. In
particular, given a nonlogical lexicon in some
language, the specified structures are isomor-
phic to the extensions of the relations, func-
tions, and constants denoted by the predicate
symbols, function symbols, and constant sym-
bols of the lexicon. The class of structures cor-
responding to the intuitions of the ontology
will be defined either by specifying some class
of algebraic or combinatoric structures or ex-
tending classes of structures defined for other
theories within the ontology. Examples of
structures include graphs, linear orderings, par-
tial orderings, groups, fields, and vector spaces.

This relationship between the intuitions and
the structures is, of course, informal, but we
can consider the domain intuitions as
providing a physical interpretation of the
structures. In this sense, we can adopt an ex-
perimental or empirical approach to the evalu-
ation of the class of intended structures in
which we attempt to falsify these structures. If
we can find some objects or behavior within
the domain that do not correspond to an in-
tended structure, then we have provided a
counterexample to the class of structures. In re-
sponse, we can either redefine the scope of the
class of structures (that is, we do not include
the behavior within the characterization of the
structures), or we can modify the definition of
the class of structures so that they capture the
new behavior.

For example, physicists use various classes of
differential equations to model different phe-
nomena. However, they do not use ordinary
linear differential equations to model heat dif-
fusion, and they do not use second-order par-
tial differential equations to model the kine-
matics of springs. If we want to model some
phenomena using a class of differential equa-
tions, we can use the equations to predict be-
havior of the physical system; if the predic-
tions are falsified by observations, then we
have an incorrect set of equations. Similarly, in
our case, we can use some class of structures to
predict behavior or characterize states of af-
fairs; if there is no physical scenario in the do-
main that corresponds to these behaviors or

Articles

68 AI MAGAZINE

sets of invariants. Invariants are properties of
models that are preserved by isomorphism. A
set of invariants is complete for a class of struc-
tures if and only if it can be used to classify the
structures to isomorphism. For example, a fi-
nite abelian group can be classified to isomor-
phism by the subgroups whose orders are fac-
tors of the group’s order. In general, it is not
possible to formulate a complete set of invari-
ants; for example, there is no known set of in-
variants that can be used to classify graphs to
isomorphism. However, even without a com-
plete set, invariants can still be used to provide
a classification of the models of a core theory
in PSL, which leads to the classification criteri-
on and the definitional extension criterion:

Classification Criterion
The set of models for the core theories of
PSL is partitioned into equivalence classes
defined with respect to the set of invari-
ants of the models.

Definitional Extension Criterion
Each equivalence class in the classification
of PSL models can be axiomatized within a
definitional extension of PSL.

In particular, each definitional extension in
the PSL ontology is associated with a unique in-
variant; the different classes of activities or ob-
jects that are defined in an extension corre-
spond to different properties of the invariant.

PSL in Action: A Foundation for
Process Modeling

In this section, we present simple examples to
illustrate one of the uses that PSL can be put to,
namely, as a foundation for the semantics and,
hence, integration, of business-process models.

Processes are patterns of activities. Process
modeling is the linguistic, diagrammatic, or nu-
meric representation of such patterns. Process
models, in these various forms, are ubiquitous
in industry: There is a plethora of business and
engineering applications—work flow, schedul-
ing, discrete-event simulation, process plan-
ning, business-process modeling, and
others—that are designed explicitly for the
construction of process models of various sorts.
The vision of enterprise integration, therefore,
will be realized only if it is possible to integrate
business-process models. It is somewhat scan-
dalous that so little work on this rather practi-
cal issue has been done.

As is widely recognized, process-model inte-
gration will be possible only if there is a com-
mon semantics of process information to draw
on. Among potential semantic frameworks, the
theory of Petri nets is perhaps the most power-

ful. However, we find Petri nets undesirable as
a formal foundation for process modeling for
at least two reasons: First, there is still no stan-
dard, widely agreed-on semantics for Petri nets,
and those semantic systems that exist are high-
ly complex and require a sophisticated knowl-
edge of certain areas of mathematics. (The
most common approach to providing a seman-
tics for Petri nets is to map the apparatus into
linear logic and then exploit one of several se-
mantic theories for linear logic; see, for exam-
ple, Marti-Oliet and Meseguer [1991]). Second,
Petri nets do not provide any sort of axiomatic
theory of processes. It is therefore rather diffi-
cult to gain any insight, from Petri nets alone,
into the nature of the things that process mod-
els are about and, hence, difficult to see how it
can serve as a basis for process-model sharing
and integration.

By contrast, PSL scores well on both these
counts. The language of PSL has a rigorous se-
mantics that draws on familiar model-theoretic
and algebraic structures. This semantics, in
turn, is fully captured in a complete set of ax-
ioms. We illustrate how it can be used as a
foundation for process modeling with a simple
example.

In general, business and engineering
processes are described at the type level: A
process model characterizes a certain general, re-
peatable process structure. This structure, in
turn, might admit to many instances that, de-
pending on how constrained the structure is,
might differ considerably from one another. A
robust foundation for process modeling, there-
fore, should be able to characterize both the
general process structure described by a model
as well as the class of possible instances of that
structure. Moreover, such a foundation must
clearly be able to represent the constraints that
a process model places on something’s count-
ing as an instance of the process, the con-
straints, as we might say, on process realiza-
tion.

A typical process is best thought of informal-
ly as a structured collection of activities that
are related to one another in a manner that re-
flects the process flow and temporal relations
that can appear in any given occurrence of the
process. For example, consider the painting
process depicted in figure 4 (we use the graphic
notation of the IDEF3 process-description cap-
ture method to illustrate the intuitive process).
This diagram depicts a general process that
must begin with an occurrence of Paint Widget
(represented by the Paint Widget box with no
predecessor), followed by an occurrence of Test
Coverage. At this point, depending on the out-
come of the test, an occurrence of the process

Articles

FALL 2003 69

known as D’s preconditions and postconditions,
respectively.

ARDs correspond roughly to IDEF3 boxes, as
seen in figures 4 and 5. Thus, in the context of
a process model, an ARD represents the struc-
tural role that the indicated activity plays in
the process represented by the model. An ARD
has both name (:name) and identifier (:id)
fields because the same activity can play differ-
ent roles in the same process. In such cases, we
typically have two or more distinct declara-
tions with the same activity name but with dis-
tinct activity identifiers because it is the iden-
tifiers that indicate the distinct structural roles
being played by the activity in the overarching
process. The successor field will contain the
identifiers of other ARDs (or possibly the same
ARD) in the model and the precondition and
postcondition PSL sentences that express condi-
tions that must hold before and after an occur-
rence of the given activity—in the indicated
role—in a realization of the model.

In addition to activity constraints, one also
has to be able to express information about the
objects that participate in the activity occur-
rences that jointly realize the model. Such in-
formation is often relegated to text in a graphic
model but is just as critical as the process-struc-
ture information represented explicitly by the
boxes and arrows of IDEF3. Hence, we introduce
a similar mechanism—object declarations—for
introducing the participating objects into
process models:

(define-object
:name <KIF constant>
:constraints <PSL sentence>*)

The :name field of an object declaration, of
course, specifies the constant to be introduced,

can either loop back to another occurrence of
Paint Widget (wherein our current widget is re-
painted) or continue to have the widget dried.
Thus, there are, in principle, infinitely many
possible ways this single process can be instan-
tiated by a particular series of activity occur-
rences, depending on how many times such a
series loops back to produce another occur-
rence of the Paint Widget activity.

The PSL ontology axiomatizes the classes of
activities and resources that are used when
defining a process. However, when using PSL,
software applications are not exchanging defi-
nitions of classes of activities; rather, they are
exchanging sentences that are satisfied by ac-
tivities that belong to these classes. Such sen-
tences are known as process specifications, and
they include preconditions and effects, tempo-
ral constraints on occurrences, and ordering
constraints on subactivity occurrences. In the
remainder of this article, we present several ex-
amples of processes and a simplified syntax
that can be used for process specifications.

The first step is the notion of an activity role
declaration (ARD), characterized generally as
follows:

(define-activity-role
:id <number>
:name <string>
:successors <number>*
:preconditions <PSL sentence>*
:postconditions <PSL sentence>*)

The value of the :id field in an ARD D is
known as its role identifier, and the value of the
:name field of D is its activity name. The values
of the :subactivity-successor field are known as
D’s successor identifiers, and the values of the
:preconditions and :postconditions fields are

Articles

70 AI MAGAZINE

X
2

Test
Coverage

Paint
Widget

1 3

Dry
Widget

Figure 4. Paint, Test, and Dry Process.

and the :axioms field consists of PSL sentences
that characterize the indicated object. Identi-
fiers are unnecessary because the same object
does not play different structural roles in a
process the way that activities do.

Given this apparatus then, we can capture
both the structural information indicated by
the earlier IDEF3 diagram as well as implicit con-
tent about participating objects. Note that a
general background ontology characterizing
the relevant properties and relations in this
model (Widget, In, Paint_Coverage) is being as-
sumed (figure 6).

Note that the preconditions and postcondi-
tions all contain a free activity occurrence vari-
able ?occ. Say that an activity occurrence e sat-
isfies an ARD if e is an occurrence of the activity
named in the ARD, and the preconditions and
postconditions are true, relative to some vari-
able assignment that assigns e as the value of
the occurrence variable (?occ is the only vari-
able in the previous ARDs). Because of the pres-
ence of the occurrence variable, many different
occurrences of the activity can satisfy the same
ARD, which is critical because looping can lead
to a situation where the same ARD is satisfied
by many different occurrences—as happens in
the case of our example if the same widget is re-
painted because of inadequate coverage.

A collection of activity occurrences can be
said to realize a process model M if (1) the tem-
poral-ordering overoccurrences in the collec-
tion can be mapped into the ordering deter-
mined by the successor fields of the ARDs in M
in a structure-preserving way (that is, homo-
morphically) and (2) each activity occurrence in
the collection satisfies the ARD to which it is
mapped. Given this definition, we see that any
series of activity occurrences in which a widget
is painted and then, if necessary, repeatedly re-
painted until its coverage is adequate and then
dried will realize the process model.

This example, of course, is rather simplistic.
In particular, most iterative processes involve
not simply the same object undergoing a pro-

cedure numerous times, as with the widget in
the previous process, but many objects of the
same sort undergoing the same procedure, as
in a typical manufacturing process.

For example, the IDEF3 diagram in figure 5
contains both sorts of looping. In this process,
a widget is painted until coverage is adequate
and then queued, at which point either anoth-
er widget is painted or, if the queue is full, all
the queued widgets are dried en masse. Thus,
the first loop, as in the first example, “carries”
a single widget back to undergo an earlier ac-
tivity, whereas the second indicates the begin-
ning of a new paint job with a new widget;
there is, so to speak, no “object flow” in the
second loop.

The flexibility of variables in the PSL lan-
guage enables us to capture this semantics sim-
ply and easily. Their meanings, unlike ordinary
names, can shift, and we can use this fact to al-
low them to refer to different widgets in differ-
ent events in a process realization. Like ordi-
nary names, however, we can put constraints
on the values of these variables. Following a
similar notion in situation theory (Barwise and
Etchemendy 1987; Devlin 1991), we refer to
such constrained variables (and occasionally,
ambiguously, their values) as parameters, and
we introduce a concomitant declaration tem-
plate:

(define-parameter
:variable <KIF variable>
:constraints <PSL sentence>*)

We now say that an occurrence e satisfies an
ARD D if it satisfies it in the previous sense; in
addition, for any parameter V occurring in the
preconditions or postconditions of D, there is
an object a participating in e such that the pa-
rameter’s constraints are true when V is as-
signed a as its value.

Armed with this construct, we can capture
the detailed semantics of the process indicat-
ed in figure 5 by adding the declarations in
figure 7.

Articles

FALL 2003 71

Figure 5. Paint, Test, Queue, and Dry Process.

X
2

TestPaint
Widget

1 3

Queue
Widget X

4

Dry
Widget

maintained in different software applications,
standards for the exchange of this informa-
tion must address not only the syntax but also
the semantics of process concepts. PSL draws
on well-known mathematical tools and tech-
niques to provide a robust semantic founda-
tion for the representation of process informa-
tion. This foundation includes first-order
theories for concepts together with complete
characterizations of the satisfiability and ax-
iomatizabilty of the models of these theories.

Because variables can be assigned different
values relative to an interpretation of the
names and predicates of a language, we are
able to capture the intended semantics of the
complex looping of figure 5.

Summary

Within the increasingly complex manufactur-
ing environment where process models are

Articles

72 AI MAGAZINE

Figure 6. Process Declarations for the Point, Test, and Dry Process.

(define-object
 :name widget
 :constraints (Widget widget))

(define-object
 :name painter
 :constraints (Paint_Sprayer painter))

(define-object
 :name oven
 :constraints (Oven oven))

(define-activity-role
 :id Act-1
 :name Paint_Widget
 :successors 2
 :preconditions
 (or (not (Painted widget (beginof ?occ)))
 (not (Adequate (Paint_Coverage widget (beginof ?occ)))))
 :postconditions
 (Painted widget (endof ?occ)))

(define-activity-role
 :id Act-2
 :name Test_Coverage
 :successors 1 3
 :preconditions (Painted widget (beginof ?occ))
 :postconditions (Adequate (Paint_Coverage widget) (endof ?occ)))

(define-activity-role
 :id Act-3
 :name Dry_Widget
 :successors
 :preconditions (Adequate (Paint_Coverage widget) (beginof ?occ))
 :postconditions (Dry widget (endof ?occ))

Moreover, the modular organization of PSL en-
ables the flexible support of interoperability,
even when the applications involved do not
have explicit ontologies.

References
Barwise, J., and Etchemendy, J. 1987. The Liar: An Es-
say on Truth and Circularity. New York: Oxford Uni-
versity Press.

Dennet, D. C. 1987. The Intentional Stance. Cam-
bridge, Mass.: MIT Press.

Devlin, K. 1991. Logic and Information. Cambridge,
U.K.: Cambridge University Press.

McCarthy, J., and Hayes, P. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelli-
gence. In Machine Intelligence 4, eds. B. Meltzer and
D. Michie, 463–502. Edinburgh, U.K.: Edinburgh
University Press.

Articles

FALL 2003 73

(define-parameter
 :variable ?w
 :constraints (Widget ?w))

(define-activity-role
 :id Act-1
 :name Paint_Widget
 :successors 2
 :preconditions
 (or (not (Painted ?w (beginof ?occ)))
 (not (Adequate (Paint_Coverage ?w (beginof ?occ)))))
 :postconditions
 (Painted widget (endof ?occ)))

(define-activity-role
 :id Act-2
 :name Test_Coverage
 :successors 1 3
 :preconditions (Painted ?w (beginof ?occ))
 :postconditions (Adequate (Paint_Coverage widget) (endof ?occ)))

 (define-activity-role
 :id Act-3
 :name Queue_Widget
 :successors 1 4
 :preconditions
 (Adequate (Paint_Coverage ?w (beginof ?occ)))
 :postconditions
 (Painted widget (endof ?occ)))

(define-activity-role
 :id Act-4
 :name Dry_Widget
 :successors
 :preconditions (Adequate (Paint_Coverage ?w) (beginof ?occ))
 :postconditions (Dry ?w (endof ?occ))

Figure 7. Process Declarations for the Point, Test, Queue, and Dry Process.

Marti-Oliet, N., and Meseguer, J. 1991. From Petri
Nets to Linear Logic. Mathematical Structures in Com-
puter Science 1(1): 69–101.

Menzel, C., and Gruninger, M. 2001. A Formal Foun-
dation for Process Modeling. In Formal Ontology in
Information Systems, eds. C. Welty and B. Smith,
256–269. New York: Association of Computing Ma-
chinery.

Pinto, J. 1994. Temporal Reasoning in the Situation
Calculus, Technical Report, KRR-TR-94-1, Depart-
ment of Computer Science, University of Toronto.

Reiter, R. 1991. The Frame Problem in the Situation
Calculus: A Simple Solution (Sometimes) and a Com-
pleteness Result for Goal Regression. In Artificial In-
telligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, ed. Vladimir Lifschitz,
418–440. San Diego, Calif.: Academic.

Schlenoff, C.; Gruninger, M.; and Ciocoiu, M.. 1999.
The Essence of the Process-Specification Language.
Transactions of the Society for Computer Simulation
16(4): 204–216.

Michael Gruninger is currently a research scientist
at the Institute for Systems Research at the University
of Maryland at College Park and also a guest re-
searcher at the National Institute for Standards and
Technology (NIST). He received his Ph.D. and M.Sc.
in computer science at the University of Toronto and
his B.Sc. in computer science at the University of Al-
berta. His current research focuses on the design and
formal characterization of ontologies and their appli-
cation to problems in manufacturing and enterprise
engineering. Gruninger is also the project leader for
ISO 18629 (PROCESS SPECIFICATION LANGUAGE) within the
International Standards Organization.

Chris Menzel is an associate professor in the Philos-
ophy Department at Texas A&M University. His re-
search interests include metaphysics and philosoph-
ical logic, but he has been known to get his hands
dirty studying the application of these ideas to prob-
lems of representing and managing information in
engineering and manufacturing systems. He holds a
Ph.D. in philosophy from the University of Notre
Dame.

Articles

74 AI MAGAZINE

The New International
AI Web Site Could

Use Your Help!

AAAI, in cooperation with IJCAI and other international

AI organizations, has launched a new international AI web

site. Launched initially as a finding aid to other AI sites

around the world, this new site contains links to national

AI societies, nonuniversity laboratories and research sites,

and university AI departments and laboratories.

Please visit us at www.aiinternational.org and if you find

that your university or company is not listed (and you

think it should be!), please use the contact form to submit

your suggested link.

By putting all these links together in one maintained site,

we hope this site will provide useful information to you

and the entire international AI community.

Reminder:
AAAI-04 / IAAI-04

Submissions are Due
January 20, 2004. For

details, follow the link
at AAAI’s home page.

