
■ We examine the design space of auction mecha-
nisms and identify three core activities that struc-
ture this space. Formal parameters qualifying the
performance of core activities enable precise spec-
ification of auction rules. This specification consti-
tutes an auction description language that can be
used in the implementation of configurable mar-
ketplaces. The specification also provides a frame-
work for organizing previous work and identifying
new possibilities in auction design. 

Economics is fundamentally about the
allocation of scarce resources. Given that
many multiagent systems involve the

allocation of resources, it is natural that the
connection between AI and economics has
become a common theme in AI. This emphasis
is also certainly influenced by the automation
of commercial activities on the internet and
the potential benefits of intelligent software
support for these economic activities. 

Auctions are central to this confluence of
research agendas because they represent a class
of basic mechanisms by which economic sys-
tems compute the outcome of social interac-
tions. At the same time, as a key component of
business-to-business internet marketplaces,
auctions pose computational and engineering
challenges both in the design of the auction
servers and in the construction of software to
support the decision tasks of auction partici-
pants. 

In economic literature, analysis of auction
protocols sometimes blurs the distinction
between the “rules of the game” (hereafter
called the mechanism) and the behavior of the
participants. This orientation is natural be-
cause the goal of the analysis is to predict the
performance of a particular mechanism in a

particular setting. A large body of literature
exists mapping combinations of mechanisms
and assumptions about participant types to
outcomes (Engelbrecht-Wiggans 1980; Fried-
man 1993; McAfee 1992; Milgrom and Weber
1982). 

However, as computer scientists interested
in building auction systems, we take an opera-
tional perspective on this corpus of knowl-
edge. Assumptions about the types of partici-
pants are critical to the analysis of an
economic model and the selection of a partic-
ular mechanism. However, they are largely
irrelevant to the operation of a particular
mechanism and often unknown to the design-
ers of generic auction platforms. 

This article has several goals: First, we draw
a sharp distinction between the mechanism
and the participants and discuss the latitude
that a designer might have depending on the
scope of control. Second, we present an opera-
tional parameterization of the space of auction
designs that lends itself to modular implemen-
tation in servers and precise descriptions of
auction rules. Finally, we want to convey a
sense of the complexity of the auction envi-
ronment and the challenges associated with
designing agents capable of participating in
markets. 

System, Auction, or Agent
Negotiation frameworks can broadly be classi-
fied by the manner in which the participants
communicate. In unmediated negotiation, the
participants send messages directly to each
other. Mediated mechanisms involve a third par-
ty who manages communication among the
participants. The mediator is more than a mes-
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used to mediate resources in multiagent sys-
tems (Durfee, Kiskis, and Birmingham 1996;
Tsvetovatyy 1997). 

When analyzing any multiagent system
involving negotiation, we must be very careful
to clearly state which elements of the system
are under the control of the designer. Figure 1
illustrates the following three cases:

First is agent scope: The designer controls a
single agent. Generally, the designer will be
concerned with maximizing the individual
agent’s utility. The agent designer does not get
to choose the rules of the game but will instead
look for ways to manipulate the game to the
benefit of his/her agent.

Second is mechanism scope: The designer

sage router; by determining what information
is reported to whom and when as a function of
messages received, it defines the rules of the
game and ultimately determines the outcome
of the negotiation. 

Auctions are mediators that facilitate the
negotiation of market-based exchanges. The
auction accepts messages in the form of bids,
which express a willingness to exchange partic-
ular quantities of resources for specified mone-
tary values. This definition includes a wide
variety of institutions in the modern economy,
including used car auctions, art auctions, the
stock market, and the competitive bidding
process used by companies and governments
to contract suppliers. Auctions have also been
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controls the mechanism but not the agents
that participate in it. The designer’s task is one
of incentive engineering—to select rules for
the game that induce the agents to play in a
manner that leads to the desirable social objec-
tives. Typically, the objective is to maximize
the overall quality of the allocation or achieve
some goal of a particular agent with authority
over the mechanism (for example, maximizing
revenue to a distinguished seller).

Third is system scope: There are some situa-
tions in which the designer has control over
both the mechanism and the agents. In such
cases, the designer has the freedom to choose
mechanisms and agent strategies in a way that
satisfies the design objectives. 

The third scope applies in closed systems in
which a single entity is controlling all elements
of the system. One example is a company
installing an agent-based factory control archi-
tecture in which the agents represent jobs and
machines and, through distributed computa-
tion, negotiate an allocation of machine time
to jobs. Because the designer controls all ele-
ments of the system, weaknesses in the select-
ed auction mechanism can be compensated for
in the agent strategies. However, if the agent
behaviors imposed are obviously irrational,
then one might question whether the system is
best viewed in agent terms at all. 

Most electronic-commerce applications en-
tail open systems; each participating entity is
in control of its own software representative.
The mechanism designer can define the com-
munication interfaces and select the mecha-
nism’s rules but cannot enforce particular
strategic behaviors. If there is real money at
stake, participants will search for strategies that
earn them a greater share of the pot. 

A designer working within any of these
scopes is necessarily concerned with the rules
of the auction. 

Parameterized Auction Rules
In the process of designing the MICHIGAN INTER-
NET AUCTIONBOT (Wurman, Wellman, and Walsh
1998), we studied many auctions described in
the literature and used on the world wide web.
In attempting to characterize their similarities
and differences, we found it convenient to
organize their features according to how they
perform three basic activities common to all
auctions. 

First is handle bid requests. The messages
agents send to the auction typically constitute
offers to participate in deals at specified terms.
We assume that agents can have at most one
active offer, or bid, in the system at any partic-

ular time. This assumption is without loss of
generality because the framework admits arbi-
trarily complex bids. A bid can be replaced sim-
ply by submitting a new bid. A withdraw is sim-
ply a request to turn an active bid into a null
bid. 

Second is compute exchanges. The outcome
of an auction is a set of deals, or exchanges, con-
sistent with the offers expressed in the bids
received. The task of computing exchanges is
called clearing because it typically leaves no
possible exchanges among the remaining bids. 

Third is generate intermediate information.
Many auctions reveal information about the
state of bidding during the process, intended to
help guide bidders toward a final outcome.
Often, the information takes the form of hypo-
thetical prices summarizing the potential deals
implicit in the current bid state. 

In the rest of this section, we provide an
overview of the range of policies governing
each of these tasks, followed by a discussion of
the scheduling of the tasks. A mathematical
treatment of these rules is provided in Wur-
man, Wellman, and Walsh (2001). 

It should be noted that the parameterization
is defined over multicommodity auctions, that is,
auctions whose purview might be more than
one type of resource. Thus, the parameteriza-
tion can usefully be applied to the recent work
in combinatorial auctions (auctions that per-
mit bids on combinations of items). In fact, it
was the attempt to map common auction rules
to these more complex domains that led to
many of the insights in this work. 

Bidding Rules
The bidding rules determine the semantic con-
tent of messages, the authority to place certain
types of bids, and admissibility criteria for sub-
mission and withdrawal of bids. 

In an auction for a single item, the content
of a bid is simply a price. In multiunit auctions,
the bid might specify a schedule of prices and
quantities indicating the amount of the
resource that the bidder is willing to buy or sell
at every price. In many cases, complex bid
expressions can be simplified by allowing bids
to be divisible. For example, the expression “I
will sell up to 100 units at $12 apiece” is much
more concise than listing all possible quantity
values between 1 and 100. More generally, a
bid is a collection of offers, each of which spec-
ifies a monetary value and a combination of
resource quantities. This  general definition
allows for expressions such as “I am willing to
pay $10 to supply one unit of A and receive
two units of B.” 

An auction might have rules that specify
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auctions for a single resource in which agents
submit bid schedules, it is often desirable to
require not only that an agent’s revised bid
increase its activity level but also that the agent
not decrease its demand (or increase its supply)
at other prices. Likewise, in the multicommod-
ity case, it is usually too restrictive to require
that an agent not decrease its activity level on
any commodity from one bid to the next. Such
a rule would, for example, prevent an agent
that is currently winning A from placing a bid
that would cause it to win B and not A. For
such situations, bid dominance combined with
a beat-the-quote rule that requires increased
activity on at least one resource (but permits
decreased activity on others) might be the right
combination. 

In many auctions, participants can with-
draw bids or submit bids that are valid for only
a specified period of time or until the next
clearing event. Although most auctions either
allow withdrawals or not, some auctions can
permit bid withdrawals only if the bid is not
currently winning.

Activity rules—a recent innovation in multi-
commodity auction design—are also motivat-
ed by the desire to encourage progressive bid-
ding. Such rules typically restrict a bidder’s
allowable actions based on its activity level,
which might be measured by what it would
hypothetically exchange in the current state or
directly in terms of its bidding history. The
Federal Communications Commission spec-
trum license auctions (McMillan 1994; Mil-
grom 2000) are a well-known auction with
activity rules. To our knowledge, the range of
choices of activity rules has not been explored
systematically. 

Clearing Rules 
As noted earlier, the principal task of an auc-
tion is to compute exchanges based on bids
received. Generically, this task involves deter-
mining (1) which agents trade and (2) what
payment is associated with each transaction.
Many policies have been proposed for comput-
ing the exchange set and the transaction pay-
ments. We generically refer to these policies as
matching functions and identify some key attrib-
utes and candidate policies. 

A bidder’s surplus is the difference between the
amount that he/she is willing to pay (accept, if
selling) and the actual monetary amount of the
transaction. If a transaction generates nonneg-
ative surplus for both agents, it is considered
mutually beneficial. A matching function is lo-
cally efficient if it produces transactions that
generate as much surplus—with respect to will-
ingness expressed in the bids—as any other

which bidders are authorized to make which
types of bids. A classic English auction is an auc-
tion in which only the designated seller can
place a sell offer (which determines the reserve
price). In many B2B procurement auctions,
suppliers go through a prequalification process
that grants them the authority to participate.
In addition, in some B2B auctions, bidders
might be assigned to classes, some of which
might receive special consideration by the auc-
tion. In procurement situations, the buyer is
able to favor its most preferred suppliers while
it fosters a dynamic and competitive market-
place. 

The rules that govern bid admission and
withdrawal are more complex. Single-sided auc-
tions are usually designed with rules that re-
quire bidders to improve their bids as the auc-
tion progresses. The English auction achieves
its ascending nature by requiring that a new bid
be higher than the current highest bid, typical-
ly by some increment. In the more general mul-
ticommodity case, we find it useful to satisfy
this intent by combining two rules. 

First is bid dominance: This rule requires that
an agent’s replacement bid be an improvement
over its previous bid. Typically, offers to sell
(buy) improve by offering to sell (buy) at least
as many units at each price. 

Second is beat the quote: This rule requires
that an agent’s replacement bid cause it to be
more active—buying or selling more—than its
previous bid. Unlike the bid dominance rule,
the evaluation of activity is with respect to the
price information revealed by the auction
(price quotes are discussed in more detail later). 

The beat-the-quote rule is more directly
inspired by the English auction, but it is not
sufficient for complex settings. In multiunit
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Table 1. An Example Six Bids. 

Agent Offer Submission Time

a6 Buy 1 unit at $6 t1

a5 Sell 1 unit at $5 t3

a4 Buy 1 unit at $4 t4

a3 Buy 1 unit at $3 t6

a2 Sell 1 unit at $2 t5

a1 Sell 1 unit at $1 t2



consistent exchanges. Generally, there are
many ways to divide the surplus among the
agents for any given locally efficient allocation. 

Local efficiency serves as a proxy for global
efficiency when the auction has only the bids
on which to base its computation. 

Throughout this section and the next, we
present examples of a single-commodity auc-
tion with multiple buyers and sellers who place
divisible bids. Because of space limitations, we
provide only an overview of the application of
these concepts to more complex trading sce-
narios. We use the set of bids shown in table 1
to illustrate some common policies in the sin-
gle-commodity, divisible-bid case. 

The set of mutually beneficial individual
trades is a1 → a3, a1 → a4, a1 → a6, a2 → a3, a2
→ a4, a2 → a6, and a5 → a6. Of course, some of
these trades are mutually exclusive. A subset of
the feasible combinations of trades is shown in
table 2. The table is augmented with a column
indicating what total surplus was created by
the set of exchanges, whether the exchange set
is locally efficient, and whether it is support-
able by uniform prices (described later). 

A general procedure for finding the set of
bids that entail the locally efficient allocation
when resources are discrete and bids are divisi-
ble is as follows: Rank all the bids (both buy
and sell offers) by bid value. Let M be the num-

ber of unit sell offers in the bid set. Counting
down from the highest bid in the ranked set,
identify the Mth and (M + 1)st bids and their
respective prices, pM and pM+1. Let m be the
number of sell offers at or below pM+1 and n be
the number of buy offers at or above pM. Let l
= min(m, n). The set of bids that belong in the
exchange set is then the l highest buy offers
and the l lowest sell offers. This procedure,
along with an analysis of its implications in
sealed bid auctions and an efficient algorithm
to implement it in iterative auctions, is pre-
sented in Wurman, Walsh, and Wellman
(1998). 

Applying this procedure to the example in
table 1 produces M = 3, pM = 4 and pM+1 = 3. The
set of buyers at or above pM is {a4, a6}, and the
set of sellers at or below pM+1 is { a1, a2}. In table
2, the exchanges e1 and e2 represent the two
permutations of the members of the locally
efficient exchange set. 

In the example, all bids are for a single unit.
The procedure also works when multiunit bids
are divisible. When bids are indivisible, we are
generally faced with a packing problem. In
practice, auction sites such as UBID use a greedy
algorithm to compute the exchange set. Re-
cently, computer scientists have investigated
algorithms to solve the winner determination
problem (that is, compute the locally efficient
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Table 2. Some of the Feasible Exchange Sets for the Six-Bid Example.

Exchange Trades Total
Surplus

Efficient Uniform
Price

e1 {a1→a6, a2→a4} 7 Y Y

e2 {a1→a4, a2→a6} 7 Y Y

e3 {a1→a6} 5 N Y

e4 {a1→a4, a2→a3, a5→a6 } 5 N N

e5 {a1→a3, a2→a4, a5→a6 } 5 N N

e6 {a1→a4, a2→a3} 4 N Y

e {a1→a3, a2→a4} 4 N Y

e8 {a1→a4, a5→a6} 4 N N

e9 {a2→a6} 4 N Y

e10 {a2→a4, a5→a6} 3 N N

7



Under discriminatory pricing, the price of
each transaction is bounded only by the bids
involved. Several methods present themselves
in this case. For example, we can set the price
of each transaction according to the bid of the
buyer, or always by the bid of the seller, or by
some linear combination thereof. An alterna-
tive is to base the price on the order the bids
were received typically but not necessarily,
using the price of the earlier bid. Table 3 shows
the prices resulting from each of these policies
when applied to exchange sets e1 and e2. The
prices are presented in the order of the two
transactions in the respective set. 

Notice that the payment that an individual
agent makes (receives) depends on which of
the two exchange sets is used. Under the buy-
er’s-bid policy, a1 receives 6 if the auction uses
exchange set e1 but only 4 in e2. This example
illustrates a key difference between the uni-
form price and discriminatory policies; in both
cases, an agent might be able to manipulate its
bid to affect the price it pays, but discriminato-
ry pricing can also give incentives to the agents
to consider the impact of their bid on their
pairing. 

When indivisible bids for multiple units are
permitted, equilibrium prices might not exist.
Most, if not all, internet auction sites that per-
mit indivisible bidding sidestep this problem
by adopting a buyer’s-bid pricing policy. 

The multicommodity case has even more
degrees of freedom and trade-offs that can be
made among desirable properties. For a more
detailed discussion of combinatorial auctions
and the manner in which they fit into the
parameterization framework, see Wurman,
Wellman, and Walsh (2001). 

Tie-breaking rules are the final component
of the matching function that must be speci-
fied. Common rules for breaking ties include
random choice, in favor of the earliest bid, or
in favor of the bid with the highest quantity. 

Before leaving the subject of transactions,
we should note that there are several methods
by which an auctioneer can generate income
for itself. An auction can charge one or more of
the following: an entrance fee, a fee for a  bid,
or a percentage of the transaction price either
at a fixed rate or at a rate that is a function of
the transaction quantity. These fees can be
levied against the buyer or the seller. 

Information Rules
Many auctions reveal intermediate informa-
tion to the bidders (auctions that do not reveal
any information are designated sealed bid).
This information can come in several forms: 

Order book: An order book is the paper-based

combination of bids) in combinatorial auc-
tions (Andersson, Tenhunen, and Ygge 2000;
Fujishima, Leyton-Brown, and Shoham 1999;
Sandholm et al. 2001). 

Matching policies can also be classified by
the manner in which they set the transaction
price(s). Clearly, the price associated with any
particular transaction must be no more than
the buyer’s bid and no less than the seller’s bid.
A uniform price policy uses the same price for
all trades computed during a single clear event.
In contrast, discriminatory policies can charge
different prices to different agents. This dis-
crimination is not necessarily tied to the
agent’s identity; rather, it is often induced by
attributes of the agent’s bid. 

In exchanges e1 and e2, any price p such that
4 ≥ p ≥ 2 satisfies the conditions of being a uni-
form price for both transactions. Most uniform
price policies, however, select an equilibrium
price. In the single-unit case, pM and pM+1 define
the range of equilibrium prices. By picking a
price within this range, we guarantee not only
that the agents in the exchange set are willing
to trade at the computed price but also that the
agents not in the exchange set do not want to
trade. 

Other pricing schemes are present in the lit-
erature that generate uniform prices but do not
use the locally efficient exchange set. For exam-
ple, McAfee’s (1992) DUAL PRICE mechanism
computes an equilibrium price but then re-
moves the lowest buyer and highest seller from
the exchange set if one of their bids helps deter-
mine the transaction price. The dual-price poli-
cy would result in exchange set e3. This scheme
sacrifices efficiency to ensure that truth telling is
a weakly dominant strategy (that is, an agent
could do no better than to place an offer repre-
senting its true value). Although McAfee studied
only a sealed- bid version of the auction, the
matching function can be isolated as a compo-
nent in the parameterization framework. 
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Policy e1 Prices e2 Prices

Buyer's Bid 6, 4 4, 6

Seller's Bid 1, 2 1, 2

Earliest Bid 6, 4 1, 2

Latest Bid 1, 2 4, 6

Table 3. Prices Paid under Four Discriminatory Policies.



method traditionally used on the floor of the
New York Stock Exchange to keep track of bids.
We use the term more generally to refer to a list
of the current bids. Many online auction sites
have a policy of revealing all the bids. Alterna-
tively, the auction can reveal the bid values,
the quantities, or the bidders’ identities. 

Transaction history: An auction can publi-
cize information about past transactions,
including the prices, quantities, or identities of
the traders. 

Price quotes: A price quote serves two pur-
poses. First, it informs bidders of the range of
bids that would have been in the exchange set
at the time of the quote. Second, it guides bid-
ders to make new bids that will become part of
the exchange set. 

The rest of this section is dedicated to dis-
cussing some of the features of price quotes. We
refer to the policy that an auction uses to com-
pute price information as the quote function.
Often the quote function is simply an impotent
version of the matching function. To generate
a quote, the auction simply runs the matching
function and announces the computed prices
but does not announce the transactions. 

For example, when bids are divisible and
when resources are discrete, the procedure
described earlier to compute equilibrium
prices for the transactions can also be used to
compute quotes. The prices pM and pM+1 are
referred to as the ask quote and bid quote, re-
spectively. 

Notice that in the example, the information

provided by the bid-ask quote satisfies both of
the properties of price quotes. First, all buyers
who have bid greater than or equal to the ask
quote (a6 and a4) are currently winning, and all
sellers who have bid less than or equal to the
bid quote (a1 and a2) are currently winning.
Note that this is not necessarily so; the result is
ambiguous when the bid quote, ask quote, and
the agent’s bid are all equal. 

The quote also correctly informs a new bid-
der of the range they must bid to become a
member of the exchange set. In this case, a new
or nonwinning buyer would have to offer at
least 4 to displace buyer a4, and a nonwinning
seller would have to offer less than 3 to match
with buyer a3. 

We say a quote is separating if all agents can
correctly determine their tentative allocation.
The quote is noisy otherwise. Naturally, the
possibility of noisy quotes complicates the
application of the beat-the-quote rule. To
avoid the potential ambiguity, we require that
to satisfy the beat-the-quote rule, a bid must
increase the bidder’s activity level as entailed
by the price quote (in contrast to the bidder’s
actual activity level). Intuitively, this defini-
tion makes sense because we can expect a bid-
der to improve his/her activity level with re-
spect only to the information provided. 

An auction has anonymous quotes if it reports
the same quote to each agent. The alternative is
to customize quotes for each agent. When
anonymous quotes are ambiguous, we can com-
plement the message with the agent’s exact ten-
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and Amazon closes when a period of inactivity
expires. The difference in this single rule great-
ly impacts the bidding strategies used by the
bidders (Roth and Ockenfels 2000). In eBay
auctions, sniping—bidding high at the last
moment—is such a common strategy that soft-
ware programs have been built to facilitate it.
In contrast, sniping is of little value in Ama-
zon’s auctions. 

Concluding Remarks
To a great extent, the rules described herein are
orthogonal and can be combined in many per-
mutations. The parameters shed light on the
commonality among auction types and provide
descriptive structure to the space of designs.
This structure provides the basis for a language
to communicate auction rules to software
agents. We have created such a language in XML

and have made it available on a web page.1

By charting the design space, we also illumi-
nate some of the darker corners and expose
new auction types for inspection. For example,
defining price quotes in terms of information
content enables us to apply the same policy
that is used in the CDA (continuous double
auction) to a much broader range of uniform
price auctions. Similarly, by reflecting on the
purpose of the beat-the-quote rule in the Eng-
lish auction, we are able to generate multicom-
modity versions of the rules. 

The structure also focuses attention on the
key elements of the auctions: the matching
and quote functions. By separating out the
ancillary parameters, we can focus on defining
new matching functions for the most general
cases (two sided, unrestricted bids, and so on).
Special cases are implemented by appropriately
setting the supporting parameters. This modu-
larity pays dividends in the auction implemen-
tation and is easier to extend over time. 
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tative allocation without resorting to discrimi-
natory pricing. 

When multiunit, indivisible bids are allowed,
separating prices might not exist. In such cases,
we need to resort to nonlinear pricing (let the
price for each unit vary with quantity). 

The issues become more complex in the mul-
ticommodity case. In Wurman and Wellman
(2000), we showed that a lattice of separating
bundle prices always exists in one-sided combi-
natorial auctions. Our A1BA mechanism is based
on this method of constructing prices. IBUNDLE

is a combinatorial auction that permits discrim-
inatory bundle pricing (Parkes 1999). RSB (Ras-
senti, Smith, and Bulfin 1982) and RAD (DeMar-
tini et al. 1998) use approximation techniques
to generate (noisy) quotes. AUSM (Banks, Led-
yard, and Porter 1989) avoids generating price
quotes by revealing the order book. 

Sequencing Auction Tasks
The enforcement of bidding rules occurs when
the auction receives a bid. However, the gener-
ation of price information and the computa-
tion of exchanges can be triggered in a variety
of ways. The result is that an auction can inter-
leave these three activities in complex ways
governed by the associated rules and the
sequence of bids received. Figure 2 illustrates
the possible transitions between activities. A
specific auction will be represented by a subset
of this graph, depending on the particular
rules.

Clear events can be initiated by the admit-
tance of a new bid, tied to a fixed schedule, or
triggered randomly or by a lack of bidding
activity. Similarly, the generation of price
quotes can immediately follow a clear event or
the admission of a new bid or can occur on a
fixed schedule, at random times, or after a peri-
od of inactivity. 

In addition, some auctions are organized
into rounds. The parameters described herein
precisely specify the rules of each round, and
activity rules link the rounds together by tying
permissible actions in one round to outcomes
or actions in previous rounds. 

Finally, the auction design must specify the
logical conditions that close the auction. Auc-
tions can close at a fixed time, after a period of
inactivity, at the time of a transaction, or at a
random time. 

Although the choices controlling timing
seem relatively minor compared to issues such
as which matching function to use, they can
have a tremendous impact on the auction. For
example, the versions of the English auction
used by eBay and Amazon are essentially the
same except that eBay closes at fixed times,
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systems. Finally, we thank David Tay-
lor for creating the XML schema imple-
mentation of the parameterization.

Note
1.www.csc.ncsu.edu/faculty/wurman/Auc-
tion-xsd/ParamAuction.html. 
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CALL FOR PAPERS
The Sixteenth International Conference on Industrial & Engineering Applications of 

Artificial Intelligence & Expert Systems (IEA/AIE-2003) – Loughborough, UK – June 23-26, 2003

Sponsored by: International Society of Applied Intelligence – Organized in Cooperation with: AAAI, ACM/SIGART, CSC-
SI/SCEIO, ECCAI, IEE, ENNS, INNS, JSAI, LU, and SWT

IEA/AIE-2003 continues the tradition of emphasizing applications of artificial intelligence and expert/knowledge-based sys-
tem to engineering and industrial problems as well as application of intelligent systems technology to solve real-life problems.
Numerous related topics are considered and are listed on the conference URL http://gradients.lboro.ac.uk/iea2003aie

Authors are invited to submit by email to iea2003aie@lboro.ac.uk (1) a key word listing, and (2) their paper, written in Eng-
lish, of up to 10 single spaced pages, presenting the results of original research or innovative practical applications relevant
to the conference.  Practical experiences with state-of the art AI methodologies are also acceptable when they reflect lessons
of unique value.  Shorter works, up to 6 pages, may be submitted as “short papers” representing work in progress or suggest-
ing research directions.  Submissions are due by November 12, 2002, to iea2003aie@lboro.ac.uk.  Additional details may be
obtained from the web site http://gradients.lboro.ac.uk/iea2003aie or Dr. Paul Chung, IEA/AIE Program Chair, Department
of Computer Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, UK; FAX +44 0 1509
211586

General conference information can be sought from the General Chair at the following address:  Dr. Moonis Ali, General
Chair of IEA/AIE-2003, Southwest Texas State University, Department of Computer Science, 601 University Drive, San Mar-
cos TX 78666-4616 USA; E-mail: ma04@swt.edu

The International Conference on Intelligent User Interfaces is the principal international forum for 
reporting outstanding research and development in intelligent user interfaces. IUI '03 solicits 
submissions of original papers, posters, and system demonstrations on significant progress and new 
directions in all aspects of intelligent user interfaces. In addition to showcasing methods for 
intelligently reasoning and adapting to fit user needs, IUI '03 aims to highlight interfaces whose focus 
goes beyond rational "intelligence'' to address psychological concerns such as emotion, personality, 
and motivation. 

Topics of interest include, but are not limited to: 

          

IUI '03 solicits three types of submissions: full papers, short papers, and demonstration abstracts.  
Full papers must be at most 8 pages long, short papers at most 3 pages long, and demonstrations 1 
page long in the CHI paper format.  All submissions will be reviewed by an international program 
committee.  Full details are available from http://www.iuiconf.org.

Knowledge-based approaches to user 
interface design 
Multi-modal interfaces 
Novel application-specific interfaces and 
interactions 
Novel interaction paradigms 
Personalization and adaptation of behavior 
Proactive and agent-based paradigms for user 
interaction 
Support for collaboration in multi-user 
environments 
User modeling for intelligent interfaces 
User studies of relevant techniques

ORGANIZING COMMITTEE

CONFERENCE CHAIR
David Leake, Indiana University (US) 

PROGRAM CO-CHAIRS
Lewis Johnson, USC/Information Sciences Institute (US)
Elisabeth Andre, University of Augsburg (GE) 

POSTER AND DEMONSTRATION CHAIR
John Domingue, The Open University (UK) 

Adaptive hypermedia 
Affective interfaces 
Conversational interfaces 
Evaluations of implemented systems 
Intelligent information and knowledge 
management systems 
Intelligent support for pervasive 
computing 
Intelligent systems for multimedia 
presentation 
Intelligent visualization tools 
Interface agents 
Interfaces for the semantic web 

PAPER ABSTRACTS DUE: 
September 30, 2002

FINAL PAPERS AND DEMONSTRATION ABSTRACTS DUE: 
October 4, 2002

Sponsors:
IUI is sponsored by ACM through SIGCHI and SIGART in 
cooperation with AAAI and the British HCI Group.

RedWhale
Software

Corporate Sponsors:
IUI's corporate sponsors include RedWhale Software, Mitsubishi
Electric Research Laboratories, and Microsoft Research.




