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m This article describes the winning entries in the
2000 American Association for Artificial Intelli-
gence Mobile Robot Competition. The robots,
developed by Swarthmore College, all used a mod-
ular hybrid architecture designed to enable reflex-
ive responses to perceptual input. Within this
architecture, the robots integrated visual sensing,
speech synthesis and recognition, the display of an
animated face, navigation, and interrobot commu-
nication. In the Hors d’Oeuvres, Anyone? event, a
team of robots entertained the crowd while they
interactively served cookies; and in the Urban-
Search-and-Rescue event, a single robot autono-
mously explored a section of the test area, identi-
fied interesting features, built an annotated map,
and exited the test area within the allotted time.

in two events at the American Association

for Artificial Intelligence (AAAI) Mobile
Robot Competition. As any Al researcher
knows, developing one robot for a real-world
task such as serving hors d’oeuvres to a
crowded room can be a significant undertak-
ing. Our plan was to have a team of three
agents participate in the hors d’oeuvres-serv-
ing contest and have one mobile robot attempt
the Urban-Search-and-Rescue (USAR) event.

Even with 10 undergraduate students work-
ing on the project for 8 weeks, developing
robots that could accomplish both events at
the desired level of performance was difficult.
What made it possible, let alone successful, was
that each of the agents used the same overall
software architecture for integrating naviga-
tion and control with perceptual processing.
Furthermore, this architecture was largely plat-
form independent and modular, permitting
different agents, including nonmobile agents,
to use different capabilities with few changes
to the overall system.

I n 2000, Swarthmore College entered robots

Using the same architecture for each agent
meant we could distribute our efforts and focus
on common capabilities such as visual-infor-
mation-processing modules and facial anima-
tion modules that could be used on several
platforms. Thus, we were able to give each
agent a wide range of abilities and integrate
them effectively.

The unique aspects of our hors d’oeuvres
entry included the integration of multiple sen-
sors and modes of interaction in a single agent;
a powerful, general purpose, real-time color
vision module; fast, creative, entertaining, and
robust human-agent interactions; facial ani-
mation, including tracking faces with the eyes
in synchronization with spoken text; shirt-col-
or detection and identification; fast, safe navi-
gation in a crowded space using a reactive nav-
igation algorithm; and communication and
interaction between the agents.

The same architecture also managed our
USAR entry. The only difference between mARIO
the busboy robot and mario the rescue robot
were the controlling modules. Otherwise, the
vision, speech, and navigation modules were
identical. The strengths of our USAR entry
were completely autonomous function; a
robust, reactive wander mode and a get-out
mode using sonar and infrared sensors, provid-
ing a map built by the robot with connected
annotated images; and the vision module,
which could identify motion and skin color.

The theme for our 2000 Hors d’Oeuvres,
Anyone? entry was based on our previous
year’s entry. In 1999, Swarthmore’s waiter
robot, ALFReD, won the Hors d’Oeuvres, Any-
one? event. This year, ALFReD, graduated to Ital-
ian restaurant owner, changed his name to
ALFREDO and went back to the competition with
his sons saNTINO and MARIO. ALFREDO was the
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Figure 1.
Our Hors d’Oeuvres,
Anyone? Entry.

Top: MARIO in his search-
and-rescue uniform.
Bottom: aLFreDO. Right:
SANTINO ready to serve
hors d’oeuvres.
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maitre d’, sanTINO the waiter, and mARriIO the
busboy (figure 1).

This year ALFREDO was not a mobile robot but
a computer with a large monitor placed at the
waiter’s refill station. It had speakers and a
video camera and would respond to different
kinds of visual input. The monitor displayed a
talking face, whose lips moved in synchroniza-
tion with the speech. It had three special capa-
bilities: (1) it could tell when you held your
palm in front of the camera and would give
you a palm reading, (2) it would comment on
the color of your shirt (based on analysis of the
video image), and (3) it would comment if you
stayed in front of the camera too long. Other-
wise, ALFReDO would talk about various things,
responding to its visual input.

SANTINO, the waiter, was a Nomad SUPER sCOUT
I, a medium-size mobile robot with an on-
board computer. sanTINO was also outfitted
with two cameras, a microphone, speakers, a 6-
LCD display, and a mechanical arm that could
raise a tray up and down. sanTINO used the two
cameras to look for people, look for brightly
colored badges, and check when the tray was
empty. It would come up to a person, ask if
he/she wanted an hors d’oeuvre, and then lift
the tray if the person said yes. When its tray
was empty, it would make its way back to the
refill station. When sanTiNO was happy, a face
on the LCD screen would smile. When it was
grumpy or angry, it would frown.

MARIO, the busboy, was a Real World Inter-
faces (RWI) MAGELLAN PRO, a short mobile robot
with a camera and speakers. Its job was to pro-
vide entertainment by running around in the
crowd. During the competition, it also had a
plate of cookies on its back. In addition, it
would shuttle back and forth between sanTINO
and ALFREDO, attempting to strike up conversa-
tions with them. The two mobile robots could
identify one another by a red, white, and green
flag that each carried (one with the red side up,
one with the red side down).

This year, Swarthmore not only competed in
the Hors d’Oeuvres, Anyone? event but also in
the Urban-Search-and-Rescue (USAR) event on
a standard course prepared by the National
Institute of Standards and Technology [NIST].
The robot mario explored one section of the
course autonomously, built a map, and con-
nected annotated 360° panoramic images of
the scene to map locations. The annotations
identified image areas of interest by highlight-
ing motion and skin color. mario then made its
way out of the course within the allotted time
(25 minutes).

It’s worth taking a look at what was under
the hood, so the rest of this article examines
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Figure 2. Logical Diagram of the reaper Architecture.

the overall architecture and highlights the
most important pieces.

ReaPer: An Intelligent
Agent Architecture

The system architecture, hereafter referred to as
REAPER (reflexive architecture for perceptual
robotics), is based on a set of modules. The pur-
pose of each module is to handle one of the fol-
lowing tasks: sensing, reflexes, control, com-
munication, and debugging (figure 2). The
fundamental concept behind rearer is that the
central control module—whether it is a state
machine or other mechanism—does not want
a flood of sensory data, nor does it want to
have to make low-level decisions, such as how
fast to turn each wheel 10 times a second. At
the same time, it needs real-time updates of
symbolic information, indicating what the
world around it is doing. The sensor and reflex
modules gather and filter information, han-
dling all the preprocessing and intermediate
actions between high-level commands or
goals. This approach is similar to the way our

brain seems to deal with a request to pick up an
object. Although we consciously think about
picking up the object, our reflexes deal with
actually moving our hand to the proper loca-
tion and grasping it. Only then does our con-
scious mind take back control to decide what
to do next. This approach has some biological
justification (Bizzi et al. 1995). Each module
takes input from, and writes its output to, the
shared memory. The State module is the central
controlling unit.

The two sensing modules handle all vision-
and speech-based interaction. Their main task
is to act as filters between the sensory data and
the symbolic information required by the rest
of the system. The reflex modules—navigation
and face—handle the motion and appearance
of the robot. The navigation module also incor-
porates sensing (sonar and infrared sensors),
but its primary task is to control the motion of
the robot, not to filter and interpret the sensory
information for other modules. Central control
of the robot is handled through a state module,
and communication between robots is handled
through its own module. Finally, the architec-
ture has two modules for debugging purposes.
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One—the monitor—shows text fields that rep-
resent all the information available to the sys-
tem. The other—the visual monitor—is
designed to show graphically the information
being provided by the vision module.

The modules on a robot communicate
through a shared memory structure, which
provides a computationally efficient means of
sharing information. They use a common
framework for communicating and program-
ming, including a handshaking protocol to
ensure that information and commands are
passed and read correctly. Communication
between robots occurs through sockets
between the agents’ communication modules
over a—possibly wireless—ethernet system.

Central control of the robot is handled by a
controller module, or state module. This mod-
ule is started first, and it starts up all the other
modules it needs, each of which is its own pro-
gram. In our implementation, the state module
then initiates a state-machine process that
specifies how the robot will interact with the
world, the sensing and interaction modalities it
will use, and the navigational goals it needs to
achieve. To specify what the other modules
should do, it uses our handshaking protocol to
send information and commands. The other
modaules, in turn, maintain blocks of output
information that the state machine uses to
determine what to do next and when certain
actions are complete.

The state module is the most difficult to
develop because of timing and synchronization
issues. In particular, our state machine has to
avoid switching between states too quickly.
Because it does not include any of the low-level
sensing or interaction, it iterates extremely
quickly and can move between states before
other modules have any chance to react to the
previous state. Thus, it has to watch flags from
the other modules to determine when actions
are complete before moving on or making a
decision. The strength of this approach is that
the state machine can sit back and sample high-
level information asynchronously, reacting to
changes in the world smoothly and quickly.

The rearer design methodology follows a
number of the lessons learned about robot
architectures over the past two decades. In par-
ticular, it follows the recommendations of
Bryson (2000) that autonomous agent architec-
tures need a modular structure, a means to con-
trol action and perception sequences for com-
plex tasks, and a mechanism for reacting
quickly to changes in the environment.

REAPER is related to behavior-based systems,
such as those proposed by Brooks (1986), in that
it distributes low-level interpretation and con-

trol of sensors and actuators to modules. These
modules run in parallel, and those connected to
actuators are designed to react to changes in the
environment on their own. Within the mod-
ules, a subsumption approach and a weighted
mixing of a set of behaviors are useful ways of
generating appropriate low-level actions.

REAPER iS Nnot a pure behavior-based system,
however, because it is designed to facilitate the
mixing of symbolic and subsymbolic, or reac-
tive strategies. In particular, the sensing and
acting modules receive symbolic commands
from a controller module that tells them their
current set of low-level goals. Thus, REAPER also
falls into the category of hierarchical architec-
tures, which facilitate the development of
action and perception sequences for complex
tasks. Although our implementation of ReAPER
has so far been a two-level architecture, our
fundamental approach can easily support a
three-level architecture with a knowledge rep-
resentation and reasoning system as the top
level. The overall controller, in this case, could
be either the middle level, as in Gat’s (1991)
ATLANTIS architecture or the top level as in
Bonasso et al.’s (1997) 3t architecture.

Finally, rRearer’s modular design facilitates
cross-platform and multiplatform develop-
ment and simplifies debugging and testing of
the individual modules, which is particularly
true with sensing modules, which we exten-
sively tested on their own before putting them
on the robot platform. As noted by Bryson
(2000), modularity in design has become a sta-
ple of robot architectures for just these reasons.

At the most fundamental level, however, the
REAPER approach evolved because it enables the
agent to gather—or reap—information at a
tremendous rate from a large number of sen-
sors and present this information in a useful,
symbolic form to the controlling module.
Because our concern was real-time interaction
between people and a robot integrating vision,
speech, sonar, infrared, and bump sensors, it
was essential that we offload the responsibility
for sensor interpretation to individual mod-
ules. These individual modules could then plan
and schedule processing according to their cur-
rent goals, providing the most information
possible given computational constraints.

Overall Module Structure

The modules other than the controller all con-
tain the same basic program structure. After
startup and initialization, each enters an event
loop—initially in an idle state. Each time
through the event loop, the module tests
whether the controller has issued a new com-
mand. If so, the transition to executing that



command take places. Otherwise, the module
processes the current command. When it com-
pletes the current command, the module tran-
sitions itself back to an idle state and indicates
to the controller using a flag that it is in an idle
state. In some cases, such as sensing com-
mands, the module continues to process and
update sensory information until told to do
something else.

The goal of all the modules is to make the
event loop as fast as possible. In the navigation
module, our goal was to maintain a control
loop of at least 10 hertz; in the vision module,
our goal was to maintain 30 hertz, or real-time
visual processing.

Reflexes: Navigation

The navigation modules on the scout and MAG-
ELLAN have to be platform specific because of
the differences between the two robot’s low-
level interfaces. From the point of view of the
controller modules, however, they appear sim-
ilar. Different groups developed the navigation
modules, so although they both use a reactive
architecture, they differ in the specifics.

Scout Navigation

The navigation requirements for the scout
were fairly simple for the hors d’oeuvres event.
It had to move slowly and safely, be able to get
to a goal location, and be able to avoid obsta-
cles on the way there. In addition, it had to
have a mode where it actually stopped for an
obstacle in case it was a person to serve.

The navigation module is set up as a two-lay-
er reactive system. The sensors available to the
navigation module are the sonar and bump
sensors, including five bump sensors on a low
front bumper we added to sanTINO. The bottom
layer contains a set of behaviors that react
directly to these input. These behaviors include
the following: goal achieving, obstacle avoid-
ance, wander, free-space finding, and front
bumper reaction.

Each of these behaviors returns a fuzzy prior-
ity, speed, and heading. The controller layer
combines the speed and heading values based
on its mode and the currently active behaviors.

The modes-commands for the navigation
system include Idle, Stop now, Stop slowly,
Goto Avoid, Goto Attend (stop for obstacles),
Arm Up, Arm Down, Wander, Track Attend,
Track Avoid, and a set of commands for reset-
ting the odometry and controlling orientation.

The most interesting of these modes is the
track modes. Their purpose is to directly con-
nect the vision system and the navigation sys-
tem without controller intervention. They can
be used to follow a judge’s name-tag badge or

track a target in real time. Once the vision
module finds a badge or target, the controller
initiates the mode in both the vision and nav-
igation modules. Once initiated, the vision
module continues to track the object and
update the object’s position. The navigation
module, in turn, reacts as quickly as possible to
the visual information and tries to orient and
follow the target. The two modules continue to
track the target until either the target is lost,
the controller ends the tracking, or an obstacle
appears (in the case of Track Attend mode).

MagGELLAN Navigation

The MAGELLAN PRO, MARIO is a small, round robot
with symmetrically opposed wheels that allow it
to rotate on its axis. The basic sensor array con-
sists of 3 rings of 16 bump (contact), sonar, and
infrared sensors mounted around the sides of
the robot. In addition, mario has a Sony DV30
pan-tilt camera and external speakers. The on-
board computer is a PENTIUM Il running LINUX
2.2.10, and it communicates with the robot’s
RFLEX controller over a 9600-baud serial line.

Because of the lack of a low-level software
library, we developed an interface for the maG-
ELLAN that we called MAGE. MAGE coOmmunicates
directly with the rFLEX controller of the robot.
The rFLEX accepts a simple set of motor-control
commands and is also responsible for transmit-
ting the sensor data of the robot back over the
serial line. We were able to extract or deduce
most of the protocol for this communication
from some example code that RWI provides for
updating the internal memory on the rRFLEX. At
our request, RWI sent us code snippets contain-
ing information relevant to the infrared sen-
sors, which allowed us to enable and read the
infrared range values. During this time, we also
developed and integrated a controller for the
Sony pan-tilt-zoom camera on the robot,
which was controlled over a separate serial line.

In general, the mace application program-
ming interface (API) closely resembles the API
for the Nomad suprer scouTt—because we have
extensive experience with the scouTts—
although it has a simplified command set and
uses thousandths of meters as the units of dis-
tance and thousandths of radians as the units
of rotation (as opposed to tenths of an inch
and tenths of a degree on the scours).

In keeping with the Nomad API, all sensor-
and motor-control data are maintained in a large
state vector. For example, the statement
State[STATE_SONAR_0] returns the most recent
value of the forward-pointing sonar sensor. This
state vector is updated continuously by a thread
that handles new data passed from the robot
controller. Although the rFLEX controller sup-
ports a request-based protocol, the simpler
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method is to ask it to continuously stream data
from the sensors as fast as it can. This approach
ensures that the sensor data are as up to date as
possible. To send motor commands, the API
includes a method that sets the contents of an
output buffer. The same thread that handles
incoming data also watches this buffer and
transmits its contents to the rFLEX controller. As
a note, these motor data are transmitted imme-
diately if they change and then transmitted peri-
odically to keep the rFLEX controller alive. Serial
communication with the pan-tilt-zoom mount
of the camera is implemented in the same way.

The navigation module sits on top of the
MAGE API and is responsible for reporting the
basic sensor data and actually getting the robot
from point A to point B without running into
obstacles. The MAGELLAN navigation module has
several different modes, but they are all based
on a reactive kernel. The robot decides how
much to translate and rotate based on the fol-
lowing four lines of code:

Translate = Translate — Distance to nearest
object in front

Translate = Translate + Distance to nearest
object behind

Rotate = Rotate - Distance to nearest
object to the right (assuming clockwise
rotation)

Rotate = Rotate + Distance to nearest
object to the left

To make the robot wander, we give Translate
a forward bias. To go to a goal point, we calcu-
late the translation and rotation biases
required to push the robot toward the goal
point. To track an object, the navigation mod-
ule monitors the relative position of the
object—stored in the vision module—and
feeds this information straight into the biases.
This approach proves to be robust as long as
the biases do not exceed the maximum repul-
sion of obstacles.

To build a map used in the USAR event, the
navigation module uses an evidence-grid
approach (Moravec and Elfes 1985). We inte-
grate sonar readings into a probabilistic map
that can then be classified into free space and
obstacles for interpretation by a person. The
evidence-grid technique worked well in our
test runs, but in the actual event, small objects
on the floor and tight paths between obstacles
caused sufficient wheel slip to significantly
throw off the odometry. Thus, local areas of the
map were correct, but globally, it did not reflect
the test situation. This problem is common
with evidence grids and suggests that for this
task, we either need alternative means of local-
ization, or we need to take a topological
approach to map building.

Reflexes: Face

Robot-human interaction is the key compo-
nent that distinguishes the Hors d’Oeuvres,
Anyone? competition from other robot compe-
titions. The goal of creating a fully functional
intelligent agent with the capabilities of any
average human is far from realized. Our robot
team this year began to make strides in devel-
oping our own synthetic characters to better
solve the difficult task of the competition by
incorporating an animated, three-dimensional
graphic model of a human head with interac-
tive capabilities.

A growing amount of work has been dedicat-
ed to the creation of synthetic characters with
interesting interactive abilities. Each year, the
competitors in the robot contest find better
ways to explicitly display complex interactions
with humans. We considered a number of
graphic models with the capability to display
emotion and the flexibility to add increasingly
more complex abilities. The bRAGON wING, for
example, is a facial modeling and animation
system that uses hierarchical b-splines for the
generation of complex surfaces (Forsey and
Bartels 1988). The technique provides an
incredible amount of flexibility but was too
complicated for our needs. Instead, we used a
muscle model for facial animation and facial
geometry data available on the web (Parke and
Waters 1996). We ported the system to OPeENGL
(Neider, Davis, and Woo0 1993) on LINUX.

The facial model is a simple polygon repre-
sentation that uses 876 polygons. Only half the
face is actually described in the input data file
because symmetry is assumed between the right
and left sides. Reading the data and rendering it
is straightforward in OpeNGL. The system per-
mits the user to view the face data in a number
of ways, including transparent, wire frame, flat
shading, and smooth shading. In addition, the
user can orient and rotate the face.

The model we used includes a simple muscle
model to animate the face. The muscles are
defined by specifying the beginning and end-
ing points as well as a zone of influence. Each
muscle can be relaxed or contracted, affecting
all those vertexes within its specific zone of
influence. The face module has a set of prede-
fined expressions that consist of a set of con-
tractions for each muscle in the facial structure.
We move between expressions by interpolating
the differences in the expression vectors. Our
system uses a total of 18 different muscles and
6 unique expressions (figure 3).

Beyond the structure of the face, we added a
couple of features to increase the interactivity of
the system. First, the jaw has the ability to move
to synchronize the mouth with speech genera-



tion. The jaw is able to rotate vertically by spec-
ifying jaw polygons and then rotating them
about a central horizontal axis. The mouth is
also able to move horizontally from puckered
lips to a wide mouth through the addition of a
virtual muscle that contracts the polygons of
the mouth. Our speech-generation program,
IBM’s ViaVoice OuTLOUD, generates a mouth
data structure, containing mouth height and
width, in parallel to the sound synthesis (IBM
1999). We pass this information to the face
module and use it to update the mouth state in
synchronization with the robot’s speech.

The second capability we added was to give
the face eyes, half-spheres colored appropriate-
ly with an iris and a pupil. In addition, the face
module orients the eyes according to the out-
put of the vision module, which simulates the
effect of the eyes tracking people’s faces or
focusing on their conference badges.

We presented the faces on saNTINO and MARIO
using color LCD displays at a resolution of 640
X 480 in 8-bit color. On ALFREDO, a dual-proces-
sor workstation, we presented the face on a 17-
inch monitor with 8-bit color at a resolution of
800 x 600 pixels. The complete animation
capabilities were only used on ALFREDO because
of the more limited processing power on the
mobile robots. On ALFrReDO, with the full capa-
bilities—and the vision module running simul-
taneously—the rendering system was able to
run at approximately 9 hertz, which was at the
low end of acceptable quality.

Overall, the facial animation system greatly
enhances the interactive capability of the trio
of intelligent agents. It gives people a central
focus when interacting with the robots and
helps to keep their interest throughout an
interaction.

Senses: Speech

To serve people, a server must be capable of
interacting with those being served. The server
must signal his/her presence and offer the
objects being served, the servee must be able to
signal acceptance, and the server must serve.
On sanTINO, we chose to make speech the main
modality of communication and wanted SANTI-
No to be capable of asking people if they want-
ed an hors d’oeuvre and responding correctly
to their response.

SANTINO’S speech-generation and -recogni-
tion capability comes from commercially avail-
able development software. For recognition, it
uses the ViaVoice SDK for Linux, which we also
used in our 1999 robot entry (Maxwell et al.
1999a). For speech synthesis, the robots use
ViaVoice OuTtLoup, which provides the capabil-
ity to adapt voices and intonation, in addition

to being easy to integrate with the ViaVoice
recognition system (IBM 1999).

The major difficulty in using the ViaVoice
software is that it is designed to be used with a
single person speaking clearly into a micro-
phone in a mostly quiet room. The hors d’oeu-
vres competition does not meet these criteria.
Instead, we expect several hundred people chat-
ting among themselves and some people not
knowing to speak directly into the microphone.
Building on our experience in 1999, this year’s
module keeps recognition interactions brief and
includes some additional filtering to remove
unnecessary noise, as we describe later.

To complement the minimal recognition
ability, the robots have as much personality as
we can give them, including writing humorous
and sometimes outrageous expositions, using
different voices for each robot, and using the
phrasing abilities of the OutLoup software. All
three of the agents—sANTINO, MARIO, and ALFRE-
po—use the same basic software. ALFREDO and
MARIO do not try to recognize speech but
engage in a monologue that responds to differ-
ent input. sANTINO engages in short interactions
involving both recognition and synthesis.

SANTINO’s Speech Module

SANTINO’S speech module integrates both
ViaVoice and ViaVoice OutLoup for recognition
and synthesis, respectively. One of the major
improvements on the speech system suggested
by last year’s hors d’oeuvres competition is that
our robotic waiter agent can detect when the
background noise exceeds a threshold, thus
making speech recognition undesirable. When
the environment is too noisy, the speech mod-
ule shuts down its speech-recognition compo-
nent and switches into a different mode that
uses only speech synthesis. This noise-detec-
tion ability greatly improves speech-recogni-
tion rates because the robot attempts recogni-
tion only in reasonable environments.

The noise level-detection function calculates
the average power of a 10-second sound record-
ing from an omnidirectional microphone and
compares it to a threshold value (Ifeachor and
Jervis 1995). The threshold value is determined
at the conference hall just prior to the compe-
tition. In determining appropriate threshold
values, the function uses the peak power of a
sound waveform as a guide to prevent us from
specifying a threshold that would never be
exceeded. The threshold value is set so that
speech recognition will still occur with some
background noise.

In addition to making the speech module
more robust through the noise-level detector,
the module uses a simple finite impulse
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Figure 3. The Faces of sanTINO.
Top (left to right): anger, disgust, fear. Bottom (left to right): happy, sad, surprised.

response band-pass filter to eliminate frequen-
cies that are beyond a specified range (~200
hertz to 2 kilohertz) (Ifeachor and Jervis 1995).
Mechanical objects—such as ventilation fans
in a conference hall—mainly produce low fre-
quencies, but high frequencies occur from
electrical interference in the sound card,
which is integrated on the single-board com-
puter on the robot. To ensure module indepen-
dence and speed, the band-pass filter is inte-
grated into the ViaVoice speech-recognition
audio library, thus bypassing the necessity to
first record the speech utterance to a pulse-
code-modulated (PCM) wave file, perform fil-
tration, and then pass the output to the recog-
nition engine.

The most important part of the competition
for saNTINO was interacting with a person dur-
ing a serving scenario. There are several classes
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of spoken phrases used during each serving
scenario. When the state machine signals
speech to begin an interaction, it says some-
thing that asks the person if they would like
something to eat, usually in an interesting and
occasionally rude way. When the robot finish-
es speaking, the recognition engine gets con-
trol of the sound device to record the response
of the person. If the recognition engine regis-
ters a yes or no response, the speech module
reports the response to the controller module,
which then instructs speech to respond appro-
priately and end the interaction.

If the recognition fails, the robot will either
say something about the color of the person’s
shirt—if vision has managed to detect shirt
color—or something noncommittal. saANTINO
will then ask the person again if he/she want
an hors d’oeuvre and listen for a response. A



second failure causes speech to say something
to just get out of the interaction, and state
starts to look for someone else to serve. If the
robot hears nothing at all, the speech module
will comment that the person is probably a box
being mistakenly served and move on.

During the competition, we found this
shortened interaction to be better than the
long interactions we used in the 1999 compe-
tition. People did not lose interest or become
confused about what to say, which seemed to
make the robot more personable and desirable
to interact with.

When saNTINO is not in an interaction, it
mutters, which is a running commentary
about whatever the robot is doing at that
moment. When the robot is in the GOTO_
SERVE state and not serving anyone, it mutters
about all the food that it has to give out. In the
GOTO_REFILL state, it mutters and tells people
to not bother it; there is no food to be had. To
get this functioning properly on the actual
robot, we had to make synchronous calls to
both ViaVoice programs telling them to stop
controlling the audio device to deal with a slow
turnaround time switching from input to out-
put on the sound card.

The speech module acquitted itself very well
at the competition. Recognition rates in the
crowded hall were fairly high, at about 70 to 75
percent, which included misrecognitions of
people not talking into the microphone or say-
ing something with absolutely no resemblance
to a yes-no response. Given the loudness and
the large numbers of people, the robot did just
a little worse than a human might have in the
same circumstance. Its worst mistakes were
when it appeared that a variable was not get-
ting properly cleared, causing the robot to
respond to a no response as if it were a yes
response, but this mistake only occurred once
or twice. We attribute the strong performance
of the speech module to the fact that we could
run it and debug it as a stand-alone program
prior to incorporating it into the overall REAPER
architecture, which, in itself, is one of the
strengths of the Rearer approach.

Mario’s Speech Module

Because MARIO does not attempt speech recog-
nition, its speech module is a simplified ver-
sion of sanTINO’s. The speech module serves a
mainly diagnostic function, encoding informa-
tion about the internal state of the robot into
natural-sounding phrases, as well as a means
for the robot to communicate its goals and
interact with humans. The speech output is
expressed as strings and then we render the
speech using IBM’s ViaVoice OuTLOUD.
Although the speech module does have the

functions to read and speak a phrase directly
from the state module, we often used a more
flexible mutter mode. In the mutter mode, the
speech module monitors the shared memory
information fields and makes its own decisions
about what to say. Once properly configured,
the mutter mode picks an appropriate phrase
out of a pool of possibilities every few seconds.
To a practiced ear, the robot’s muttering is
informative about the robot’s internal state,
but at the same time, it reduces the risk of hear-
ing the same boring phrase over and over.

Senses: Vision

Being able to sense the visual world gives
numerous advantages to a robot, especially one
involved in human interaction. Visual capabili-
ty allows the robot to find and locate objects,
detect motion, and identify visual object charac-
teristics. One of our goals in both contests was
to make the robots react to their world as quick-
ly as possible. Thus, the navigation module
maximized the number of times a second it exe-
cuted the control loop. Likewise, our goal in the
vision module was to maximize the frame rate
and still provide a rich array of information.

The structure of the vision module is similar
to the others. After initialization, the event
loop checks if there is a pending command
from the controller. If so, it transitions to the
new state according to the command.
Otherwise, it continues to execute the current
command set.

The vision module includes a rich set of
operators for converting images into symbolic
information. The three general classes of oper-
ators are (1) object detection, (2) motion detec-
tion, and (3) object characteristic analysis. Each
command to the vision module indicates a
general mode and the set of operators that
should be turned on. The controller can then
scan the relevant output fields of the vision
module for positive detections, motion, or
object characteristics. Each output field
includes information about where an object
was detected in the image and when it was
detected as determined by a time stamp. The
controller can then decide what information
requires a response.

The set of operators provided by the vision
module include (1) person detection based on
skin color and gradients; (2) motion detection
across multiple frames; (3) color-blob detec-
tion, focused on conference badge detection;
(4) p-similar pattern detection; (5) red, white,
and green flag detection; (6) palm detection;
(7) orange-arrow detection; (8) shirt-color
analysis (dependent on detecting a person); (9)
person identification (dependent on detecting
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a person); (10) calculation of how much food
was on the robot’s tray (using the tray camera);
and (11) the taking of a panoramic image (on
MARIO only).

Which operators are available depends on
the mode the controller selects. The modes rel-
evant to the competition are IDLE, LOOK,
TRAY, and PANO. The LOOK mode is the pri-
mary mode of operation and permits all but
the last two operators to be active. The TRAY
mode activates the second-camera input and
analyzes how much of the tray is filled. The
PANO mode works with the pan-tilt-zoom
camera on MARIO to generate a 180-degree
panoramic image that concatenates 8 frames
together while it applies the motion- and per-
son-detection operators.

In the LOOK mode, there is clearly no way
that we can maintain a high frame rate and
execute all these operators on each image. To
solve this problem, the vision module includes
a scheduling algorithm that only applies a few
operators to each frame. This solution works
because the controller usually doesn’t really
need to know that there is a badge in view—or
whatever other object—30 times a second.
Frame rate is usually a lot faster than the robot
can react to things because reactions often
involve physical actions or speaking. Likewise,
most of the other operators do not benefit from
continuous application. Because we supply a
time stamp with each piece of information, the
information sticks around, and the controller
can decide based on the time stamp whether a
piece of information is recent enough to war-
rant a response.

Our scheduling algorithm is based on the
premise that running two operators for each
frame does not reduce the frame rate. This puts
an upper bound on operator complexity,
although in the case of motion analysis, we get
around the limitation by pipelining the
process. In the standard LOOK mode, the mod-
ule randomly selects two of the active opera-
tors based on a probability distribution. To cre-
ate the probability distribution, each process
has a weight associated with it, with processes
requiring higher frame rates receiving higher
weights. Most of the vision operators have
small, relatively equal weights. Once selected,
the module executes the two operators and
updates their information. On average, each
operator is executed according to the probabil-
ity distribution.

The motion-detection operator is the most
difficult operator to integrate within this
framework because it requires multiple
frames—at least three for robust processing—
and requires a significant amount of processing

for each frame. Our algorithm uses Sobel gradi-
ent operators to calculate edge images and then
subtracts adjacent (in time) edge images to
locate edges that moved. It then locates the
bounding box of areas of motion that exceed a
certain threshold. We have found this algo-
rithm to be quite successful at locating people
in the hors d’oeuvres event (Maxwell et al.
1999a, 1999b; Moravec and Elfes 1985).

To avoid breaking the overall structure of the
vision module, we pipeline the algorithm
across multiple event loops. The motion algo-
rithm takes five event loops to calculate a
result, with the first three capturing images and
calculating the Sobel results. To ensure the
motion algorithm is called frequently enough,
we give it a high weight in the probability dis-
tribution. On average, the motion algorithm
produces a result 5 to 6 times a second, and the
vision module maintains a frame rate of greater
than 20 hertz. When the motion operator is
active, it is usually selected as one of the two
scheduled operators.

A secondary mode within the LOOK mode
permits tracking using one operator in addition
to looking for other objects. To engage tracking,
the controller specifies a single tracking operator
and the regular list of other active operators. The
vision-module scheduler then puts the tracking
operator in one of the two execution slots and
randomly selects the other operator from the
active list. Thus, it is guaranteed that the vision
module will look for the object being tracked
every frame, providing the fastest update rate
possible. As noted earlier, in the tracking mode,
the navigation module can look directly at the
vision module output and adjust its control of
the robot accordingly. mario used this ability to
follow badges during the competition.

The scheduling algorithm and overall struc-
ture were extremely successful as a way to man-
age a robot vision system. Even with all the
other robot modules running, the vision mod-
ule was able to maintain a frame rate of at least
20 hertz during the competition. Information
updates occurred regularly enough that each
agent was able to attend to multiple aspects of
its environment with real-time reactions.

The interesting new capabilities and algo-
rithms we developed this year were person
detection and identification, shirt-color identi-
fication, food-tray analysis, and Italian flag
detection. For details on the motion, color-
blob, and P-similar pattern detection, see
Maxwell et al. (1999a, 1999b) and Scharstein
and Briggs (1999).

Person Detection and Identification
Person detection is one of the most important
capabilities for an interactive robot to possess.



We used two independent techniques to
achieve this capability: (1) motion and (2) face
detection. Our motion detector was straightfor-
ward and was described earlier, but we took a
slightly novel approach to face detection that
resulted in a fairly robust technique in the hors
d’oeuvres domain.

The basis of our face-detection system is
skin-color blob detection. The key to skin
detection is effective training because lighting
conditions can strongly affect the appearance
of colors. We developed a fast, interactive train-
ing algorithm that gives the user direct feed-
back about how well the system is going to per-
form under existing conditions. The output of
the training algorithm is an rg fuzzy histogram,
where r and g are defined as in equation 1.

___R G
R+G+B ' R+G+B 1

A fuzzy histogram is a histogram with entries
in the range [0, 1] that indicate membership in
the colors of interest. You can create a fuzzy
histogram by taking a standard histogram,
which counts the occurrences of each rg pair,
and dividing each bucket by the maximum
bucket value in the histogram (Wu, Chen, and
Yachida 1999).

We use fuzzy histograms to convert standard
images into binary images that contain only
pixels whose colors have high fuzzy member-
ship values. For skin-color blob detection, we
train the fuzzy histogram on skin-color regions
of some training images and then keep only
pixels with membership values above a speci-
fied threshold. To get blobs, we run a two-pass
segmentation algorithm on the binary image
and keep only regions larger than a certain size
(Rosenfeld and Pfaltz 1966).

The result of the blob detection is a set of
regions that contain skin color. In previous
competitions, we ran into trouble using just
blob detection because the walls of the hors
d’oeuvres competition areas in 1998 and 1999
were flesh tones. Although this was not the
case in the 2000 competition, there were other
sources of skin color in the environment
besides people.

Our solution to this problem is to multiply a
gradient image with the skin-color probability
image prior to segmentation. The gradient
image, however, is prefiltered to remove high-
gradient values (that is, strong edges). The
result is a gradient image where mild gradients
are nonzero, and all other pixels are zero or
close to it. Faces are not flat and contain mild
gradients across most of their surface. Howev-
er, they do not tend to contain strong edges.
Thus, including the midrange, gradient values

effectively eliminate walls, which are flat and
tend to be featureless but leave faces. We found
the combination to be robust, and it reduced
our false positive rate to near zero and still reli-
ably located people.

In the 1999 competition, our robot ALFRED
tried to remember people based on texture and
color histograms. This approach worked okay
at the competition, but it relied on the person
standing directly in front of the camera, which
was rarely the case. In 2000, we decided to inte-
grate the person identification with the face
detection and shirt-color identification. We
also decided not to store a permanent database
of persons but instead to only recall people for
a short time period. The purpose, therefore, of
the person identification was to discover if a
particular person was standing in front of the
robot-agent for an extended period of time.

After a successful face detection, if the memory
feature is activated and called, then the memory
algorithm extracts a bounding box around the
person’s body based on the location of his/her
face. It then extracts a short feature vector from
the box to represent the person’s identity. The
feature vector is the top five buckets in an rg his-
togram, as defined in the top five buckets in an
(intensity, blue) histogram, the average edge
strength as determined by X and Y Sobel opera-
tors, the number of strong edge pixels, and the
number of significant colors in the rg histogram.
These 12 numbers provide a nice key with which
we can compare people’s appearance.

Once the system extracts a key, it compares
the key to all other keys recently seen. The sys-
tem stores the 100 most recent unique keys. If
it finds a probable match, then it sends the
matching identification to an output filter. If it
finds no match, it adds the key to the data base
and then calls the output filter with the new
identification value. The output filter simply
returns the most common key identified in the
past 10 calls. However, if no single key has at
least 3 matches in the past 10, it returns a null
result (no match). The output filter guarantees
that, even in the presence of a person’s motion
and schizophrenic face-detection results (jump-
ing between people), if a person is standing in
front of the camera for an extended period of
time, his/her key will register consistently.

We used this capability with ALFrepo. If a per-
son was standing in front of ALFrReDO for a min-
imum period of time, it would comment that
he/she should go do something else. Clearly,
there are other applications, but we did not
pursue them for lack of time.

Shirt-Color Identification

Like the memory operator, the shirt-color oper-
ator depends on a successful person detection
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Figure 4. Examples of the Vision Module in Action.

Top: Successful face detection and the corresponding box used for shirt-color and
person identification. Center: Successful flag detection. Bottom: Training system
for face-detection system.
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(face or motion). Once a person is detected, the
algorithm selects a section of the image that
corresponds to the person’s shirt, as shown in
the top photograph in figure 4. The algorithm
then analyzes a histogram of this region to
determine the dominant color. The difficult
aspects of this task are selecting a histogram
space to use and attaching color labels to
regions of the space (figure 5).

Based on experimentation, we selected the
rgl histogram space to represent color, where |
is intensity, and r and g are the normalized
coordinates defined by equation 1. (R, G, B) are
the raw pixel values returned by the camera for
a given pixel. The benefit of using the rgl space
is that the color, represented as rg, is then inde-
pendent of the intensity, represented in the |
axis. We used 20 buckets in each of r and g, and
4 buckets in I.

Because different camera settings and differ-
ent lighting affect where a color sits in the rgl
space, we calibrate the system using a MACBETH
color chart prior to each situation in which the
robot interacts. Using a picture of the color
chart under the appropriate illumination, we
identify the centroid in the rgl space for each of
the 24 colors on the color chart.

After identifying the region of interest, that
is, the shirt region, the system identifies the
most common color in the rgl histogram. The
system then finds the closest, in a Euclidean
sense, color centroid and returns its text color
label as the output. ALFREDO used this system to
great effect during the competition. It correctly
identified numerous shirts, including Bruce
Maxwell’s mother, who was wearing a purple
shirt. It made the computer appear cognizant
of its surroundings in an engaging manner.

Food-Tray Analysis

The food-tray analysis is a simple but effective
algorithm. We have two cameras on the robot
connected to an Osprey 100-frame grabber
card with multiple composite video input. On
entering the TRAY mode, the vision module
switches to analyzing the input from a small
grey-scale camera mounted on top of the tray
looking across it. During the competition, we
used a white napkin to cover the tray and
served dark brown or black cookies.

The tray-analysis algorithm works on the
middle half of the image, where the tray dom-
inates the scene. The operator simply counts
the number of dark pixels and calculates the
percentage of the visible tray that is full. Using
precalculated minimum and maximum values,
the operator sets a flag that specifies full, emp-
ty, or a percentage in between, which turns out
to be a good proxy for how many cookies
remain on the tray. Because the small camera
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Figure 5. Panoramic Image Projected from the Vision Module During the Urban-Search-and-Rescue Contest.

The boxes indicate possible motion and skin color, respectively. The skin color on the mannequin arm, on which we trained, is grey,
which is why the floors and wall get highlighted.

includes an auto-gain feature, this method
works even when someone blocks the direct
lighting by leaning over the tray or standing so
it is in shadow.

Based on the percentage-full values returned
by the vision module, the controller can
smoothly transition from pure serving to serv-
ing while heading toward the refill station to
heading directly to the refill station because
the tray is empty. This feature worked well dur-
ing the competition.

Vertical Italian Flag (Red-White-Green)
Detection

Finally, we gave the robots for the hors d’oeu-
vres event the ability to strike up conversations
with one another. To make this capability real-
istic, it should only happen when the robots
are near to each other, which means they need
the ability to visually recognize each other. We
originally considered putting p-similar pat-
terns—easily recognizable targets—on each
robot. However, this method would have
detracted from the robot’s appearance, which
was something close to formal dress.

Because our theme was an ltalian restaurant,
we used the Italian flag colors—red, white, and
green—as our identifying feature. sanTiNO had a
flag draped vertically from his serving tray, and
MARIO had one placed on an antenna about four
feet above the ground. ALrrepo could also initi-
ate conversations when it saw one of the mobile
robots in its camera. To differentiate the two
mobile robots, we reversed the order of the col-
ors for mAriIO and sanTiNO from top to bottom.

The technique we use for flag recognition is
based on traversing columns because the colors
are arranged vertically. Along each column, a
state machine tracks the order of the pixels.
The state machine only outputs a positive
identification if it finds a vertical series of red,

white, and green pixels (or in reverse order).
Each color has to be mostly continuous and
contain a sufficient number of pixels. The state
machine allows a certain number of invalid
(not red, white, or green) pixels as it traverses
the colors. However, too many invalid pixels
invalidates a particular recognition and resets
the state machine.

This method, because it is based on single
columns, turns out to be robust and easy to exe-
cute in real time. The recognition system worked
well both in test runs and in the competition.
Because sanTINO was almost continuously
engaged in serving during the competition,
however, it was never able to respond to MARIO
during the competition. For us, watching the
robots engage one another prior to the competi-
tion was one of the highlights of the experience.

Lessons Learned and
Looking to the Future

The products of our experience that we will
continue, and are continuing, to use are the
overall Reaper architecture, the navigation
modules, the face module, and the vision mod-
ule. All these provide us with generic scaffold-
ing on top of which we are building other capa-
bilities and systems. All of them are extendable
and easily integrated with one another. We also
now have excellent debugging tools that per-
mit us to track all the information and mes-
sages that pass between modules during execu-
tion. For us, this infrastructure is the real
outcome.

What we also learned is that designing the
controller module is still more art than science.
From a practical point of view, if we continue
to use the state-machine approach, we need to
build a set of standard techniques for manag-
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ing and passing information around
the system. We have already started
some of this building, but it needs to
be approached in a more formal man-
ner. One alternative is to start building
a generic state controller that uses a
knowledge management system and a
set of rules to determine its actions.
This method would implement a true
three-layer architecture where the con-
troller sits between a reactive system
and a deliberative symbolic system
(Kortenkamp, Bonasso, and Murphy
1998). The RrReaper architecture is ideal
for this situation because the perceptu-
al information is provided to the con-
troller module in a symbolic and real-
time manner.

Looking to the future, if the Hors
d’Oeuvres, Anyone? event continues,
then the challenge is to push the enve-
lope. On the interaction front, one
challenge is to develop a more generic
speech-interaction system that can
engage in and follow conversations,
albeit within a limited domain. A sec-
ond is to fully implement an emotional
subsystem that can affect the whole
range of robot behaviors. A third is to
more closely link visual recognition of
features, such as shirt color, with the
interactions in a natural manner. We
came close to that goal this year, but to
be smooth, it must be integrated with a
more generic speech-interaction sys-
tem.

On the navigation front, coverage
of the serving area has only been
achieved by mARIO, mostly because it
never stopped to talk. Combining
MARIO’s ability to move in a crowd with
a more effective santino will be diffi-
cult because at some point the robot
has to take the initiative, stop interact-
ing, and move on.

Finally, the multirobot system
proved to be both entertaining and
successful at solving the task. Future
competitions should encourage multi-
ple-robot interaction; two teams
attempted it this year. They will have
to deal with the fact that it is difficult
for the robots to get to one another,
but it should be possible.

In the USAR task, the challenge is
clear. The autonomous entries covered
only a small amount of the test area,
mostly because of limitations in their
ability to sense and interpret the reali-
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ties of the situation. The teleoperated
entry, however, did not give much
responsibility to the robots. Building
meaningful maps, correctly flagging
important features or injured people,
and simply getting out of the test area
within the time limit should be mini-
mal goals for future entries. We believe
the techniques exist to accomplish
these goals, but their integration in a
single package has yet to be completed.
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