
■ The 1998 Planning Competition at the AI Plan-
ning Systems Conference was the first of its kind.
Its goal was to create planning domains that a wide
variety of planning researchers could agree on to
make comparison among planners more meaning-
ful, measure overall progress in the field, and set
up a framework for long-term creation of a reposi-
tory of problems in a standard notation. A rules
committee for the competition was created in
1997 and had long discussions on how the contest
should go. One result of these discussions was the
pddl notation for planning domains. This nota-
tion was used to set up a set of planning problems
and get a modest problem repository started. As a
result, five planning systems were able to compete
when the contest took place in June 1998. All
these systems solved problems in the strips frame-
work, with some slight extensions. The attempt to
find domains for other forms of planning
foundered because of technical and organizational
problems. In spite of this problem, the competi-
tion achieved its goals partially in that it con-
firmed that substantial progress had occurred in
some subfields of planning, and it allowed qualita-
tive comparison among different planning algo-
rithms. It is urged that the competition continue
to take place and to evolve.

In recent years, many subfields of AI have
used competitions as a way of measuring
progress and guiding research directions

(Arkin 1998; MUC 1992, 1991). In a competi-
tion, researchers run their programs on a com-
mon set of problems at the same time with lit-
tle tuning, and the results are compared. There
are several purposes to such an exercise: It
allows meaningful comparison of programs. It
can provide an indication of overall progress in
the field. It can provide a set of benchmark
problems for others to use to compare their
systems to the state of the art. It can focus
attention on more realistic problems.

Of course, competitions have drawbacks.
Preparing a program for a competition usually
means polishing existing features and suspend-

ing work on new ones. “Realistic problems”
might not be those of most interest in the long
run. The Message-Understanding Competi-
tions focused attention on information extrac-
tion from newspaper articles or more restricted
media. The programs that did well on this task
were those that were carefully engineered to
detect and dissect messages in the target cate-
gory. Programs derived from research programs
with more ambitious goals, such as investigat-
ing the general theory of natural language
understanding, did not work so well. One
could argue that this outcome is evidence that
such a general theory is, at least for now, a
chimera. However, many people would dis-
agree, arguing that in the long run, the discov-
ery of such a theory is the whole point of
studying natural language.

Until the AI Planning Systems (AIPS) Con-
ference of 1998, there had never been a com-
petition in the field of automated planning.
The broadest definition of planning is reason-
ing about agent behavior. A system plans to
the extent it predicts the consequences of
alternative behaviors before selecting one.
Because there are a wide range of agents, rea-
soning techniques, and ways of combining
plan inference with plan execution, the field is
broad, encompassing everything from factory
scheduling to robot programming. Some of the
application areas are of immediate practical
interest, but others are still rather abstract.

In spite of this immediate practical interest,
there haven’t been many applications of plan-
ners that are actually used. The practical appli-
cations tend to lie in three categories: (1)
scheduling problems, (2) plan-management
problems, and (3) symbolic control problems.
Scheduling problems are those in which the
actions that must be taken are known, and the
problem is to find an order in which to carry
them out. Plan-management problems are those
in which the plans tend to consist of stereotyp-
ical structures of actions, usually hierarchical

Articles

SUMMER 2000 35

The 1998 AI Planning
Systems Competition

Drew McDermott

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 Number 2 (2000) (© AAAI)

on? As suggested earlier, even after eliminating
scheduling and other areas, we are still left with
several different types of problem area:

Classical planning: In this kind of problem,
you are given an initial situation, a set of action
definitions, and a proposition (goal) to be
brought about. A solution is a sequence of
actions that, when executed beginning in the
initial situation, brings about a situation in
which the goal is true. It is assumed that the
planner knows everything that is true in the
initial situation and knows the effect of every
action.

Hierarchical planning: Here, you are given,
in addition to the material of classical plan-
ning, a set of abstract actions. An abstract
action cannot be executed directly but must be
executed by executing an expansion (or reduc-
tion) of it in terms of less abstract actions, typ-
ically one found in a plan library. A problem
can specify, in addition to a goal, an abstract
action to be executed. A solution is a sequence
of primitive actions that achieves the goal and
corresponds to an expansion of the given
abstract action.

Reactive planning: This classification is
much vaguer, in which the assumption of per-
fect information is relaxed. There are many dif-
ferent types of reactive-planning problem,
depending on what is assumed about the sen-
sors and effectors available.

Learning in planning: This is not a problem
type so much as an approach to the other
types. A learning planner, not surprisingly,
does better and better as it gains experience
with planning problems of a given type. The
style of learning usually studied is case-based
reasoning, in which new problems are solved by
adapting solutions to similar problems previ-
ously encountered.

The Rules Committee spent the summer of
1997 discussing how to proceed. It seemed
clear that it would be hard to find one problem
domain that would be attackable by planners
in all these categories. Hence, it was decided to
try to create several tracks, in which different
categories of planner would compete. Regard-
less of how many tracks we settled on in the
end, it was clear that we would need a notation
to use as an input language for the competing
programs; so, the committee set itself the goal
of designing such a language, to be called the
planning domain definition language, or PDDL.

Meanwhile, we engaged in serious discus-
sion about (at least) four tracks: (1) a STRIPS

track, classical planning with action-definition
notation of the same expressive power as the
STRIPS planner (Fikes and Nilsson 1971); (2) an
ADL (action definition language) track, classical

(longer-term actions being decomposed into
structures of shorter-term ones), without many
choices about how to decompose. Symbolic con-
trol problems are those in which the focus is on
execution of plans for controlling a reactive
system, where the plans were written by a
human.

Applications in these areas tend to succeed
because they eliminate or sharply constrain the
amount of search the planning system has to
do. The focus of the competition was intended
to be planning problems that require a signifi-
cant amount of search. In the past few years,
there has been a lot of work on search-based
planning algorithms and a fair amount of
progress. It would be premature to say that
practical algorithms exist, but planners are
now finding solutions to problems that are an
order of magnitude larger than those they
could solve 10 years ago. It seemed as if the
time was ripe to hold a competition and see
how much progress had really been made and
possibly push the community further in inter-
esting directions.

Although some people (notably Manuela
Veloso) had been arguing for a planning com-
petition for years, serious talk about a compe-
tition began in 1996 and was a major topic
among attendees at the Dagstuhl Workshop on
Control of Search in Planning, held in October.
The fourth biennial AI Planning Systems (AIPS)
Conference was scheduled for June 1998, and
that seemed like the obvious time to have a
competition. Veloso was program cochair for
the conference and asked me to chair the rules
committee for the competition.

By the summer of 1997, we had assembled
the following Rules Committee: Drew McDer-
mott (chair), Yale University; Malik Ghallab,
Ecole Nationale Superieure D’ingenieur des
Constructions Aeronautiques; Adele Howe,
Colorado State University; Craig Knoblock,
University of Southern California; Ashwin
Ram, Georgia Institute of Technology; Manuela
Veloso, Carnegie Mellon University; Daniel
Weld, University of Washington; and David
Wilkins, SRI International.

This article focuses on how the committee
designed and ran the competition, with an
overall summary of results. This issue of AI
Magazine contains a companion article by
those who actually competed, with Derek Long
serving as overall author and editor. It focuses
more on what strengths and weaknesses each
planner embodied, with detailed comparison
of their performance on various problems.

Several matters had to be dealt with to have
a competition: First, exactly what sort of plan-
ning problems would we give people to work

Articles

36 AI MAGAZINE

planning with an enhanced notation allowing
actions with quantified preconditions and con-
text-dependent effects (Pednault 1989); (3)
hierarchical planning, a classical domain but
with explicitly given compound actions
(canned plans) that the planner must be able to
reason about (Erol, Nau, and Hendler 1994;
Wilkins 1988); and (4) reactive planning, plan-
ning in a complex simulated domain, such as
the PHOENIX fire-fighting simulator (Hart and
Cohen 1992).

PDDL—The Planning Domain
Definition Language

The PDDL language was designed to be a neutral
specification of planning problems. Neutral
means that it doesn’t favor any particular plan-
ning system. The slogan we used to summarize
this goal was “physics, not advice.” That is,
every piece of a representation would be a nec-
essary part of the specification of what actions
were possible and what their effects are. All
traces of “hints” to a planning system would be
eliminated. For example, an implication (P �
Q) has several uses, including (1) to prove that
Q is true in a world situation, adopt proving P
as a subgoal, and (2) to achieve Q (make it
true), adopt achieving P as a subgoal. A specifi-
cation of which of these, if either, was actually
a good idea would constitute advice. However,
consider these two interpretations of P � Q:
First, in every world situation, either P is false,
or Q is true. Second, any plan that causes P to
become true without Q being false is invalid no
matter what other virtues it has. The second
interpretation is a safety condition, which has
a completely different meaning from the first.
This distinction is one of “physics,” although
not in the traditional sense. In the first inter-
pretation, P � Q is automatically always satis-
fied. In the second interpretation, it might well
be violated, but no legal plan is allowed to do
so.

We anticipated that most planners would
require some kind of advice because planners
search large spaces and often fail without a bit
of help. We didn’t want to outlaw advice, just
make sure it was properly labeled and account-
ed for, and omitted entirely from the core lan-
guage.

It is harder than it sounds to create a nota-
tion that avoids advice entirely, for a variety of
reasons. Historically, most planning re-
searchers have not made the distinction, so
existing input notations are full of it.

For example, there are actions that are useful
only under certain disagreeable circumstances.
If you need three nuts to attach a wheel to an

axle, one way to do it is to take one nut from
each of the other wheels. This strategy is rea-
sonable if all other nuts are lost. However, with
this action in the database, some planners
might consider deliberately throwing all the
nuts away to make this action feasible.
Although they would presumably reject this
plan at some point, it might be useful to tell the
planner that the condition “there are no unat-
tached nuts” should be treated only as a filter
condition, used to select among alternative
actions but never to be achieved if false. Many
planning researchers have developed sophisti-
cated notations for expressing advice such as
this and have made it so easy to include the
advice in the action specifications that one is
likely to overlook the fact that it’s not actually
part of the definition of what the action does.

The field in which advice has reigned
supreme is hierarchical planning, which studies
planners that assemble solutions from large
canned plans stored in some kind of plan
library. These plans typically look suspiciously
like programs, and some of their steps are
essentially procedures for setting up data struc-
tures, making sure the plan is appropriate, and
so on. It is hard to extract the pure physics
from a representation like that and just as hard
to then represent the advice part as a separate
set of hints.

Nonetheless, we felt it was important to try
to define a purely physical hierarchical nota-
tion to support the proposed hierarchical-plan-
ning track for the competition. Given the way
hierarchical planners are often used, this pro-
ject might be viewed as of questionable sanity.
The main reason to have a library of plans in
the first place is to focus the planner’s attention
on these sequences of actions and away from
others that are less likely to be useful. In other
words, a plan library can be thought of as a
hint library. If that’s what it is, then specifying
it is not part of the PDDL project. A team that
wanted to use a plan library would have to
treat it as an advice structure superimposed on
an underlying physics specified without the
use of hierarchy.

However, there is a sense in which a canned
plan can be thought of as a purely physical
entity, that is, when it represents a standard
procedure whose functioning can’t easily be
expressed in more basic terms. A procedure for
starting a nuclear reactor is, in principle, deriv-
able from a more detailed specification of
exactly what actions are possible and what
their effects are, but this specification might
not be available to the planner. It might just
know that if it carries out the plan specified in
the manual, then it will achieve certain things,

The field in
which advice
has reigned
supreme is
hierarchical
planning,
which studies
planners that
assemble
solutions from
large canned
plans stored
in some kind
of plan
library.

Articles

SUMMER 2000 37

track of the competition in these terms: For
one or more domains, we would specify some
canned plans and then stipulate that no prob-
lem solution could include any steps that were
not part of an instance of one of these plans. In

and that it can interleave steps of other plans
with the steps of this one provided certain con-
straints are honored.

From this point of view, it seemed reason-
able to visualize the hierarchical-planning

Articles

38 AI MAGAZINE

(define (domain logistics-adl)
(:requirements :adl)
(:types physobj - object

obj vehicle - physobj
truck airplane - vehicle
location city - object
airport - location)

(:predicates (at ?x - physobj ?l - location)
(in ?x - obj ?t - vehicle)
(in-city ?l - location ?c - city)
(loaded ?x - physobj)) ; ?x is loaded on a vehicle

(:action load
:parameters (?obj ?veh ?loc)
:precondition (and (vehicle ?veh)

(location ?loc)
(at ?obj ?loc)
(at ?veh ?loc)
(not (loaded ?obj)))

:effect (and (in ?obj ?veh)
(loaded ?obj)))

(:action unload
:parameters (?obj ?veh ?loc)
:precondition (and (vehicle ?veh)

(location ?loc)
(in ?obj ?veh)
(at ?veh ?loc))

:effect (and (not (in ?obj ?veh))
(not (loaded ?obj))))

(:action drive-truck
:parameters (?truck - truck ?loc-from ?loc-to - location ?city - city)
:precondition (and (at ?truck ?loc-from)

(in-city ?loc-from ?city)
(in-city ?loc-to ?city))

:effect (and (at ?truck ?loc-to)
(not (at ?truck ?loc-from))
(forall (?x - obj)

(when (and (in ?x ?truck))
(and (not (at ?x ?loc-from))

(at ?x ?loc-to))))))
(:action fly-airplane

:parameters (?plane - airplane ?loc-from ?loc-to - airport)
:precondition (and (at ?plane ?loc-from))
:effect (and (at ?plane ?loc-to)

(not (at ?plane ?loc-from))
(forall (?x - obj)

(when (and (in ?x ?plane))
(and (not (at ?x ?loc-from))

(at ?x ?loc-to)))))))

Figure 1. The Logistics Domain—ADL Version.

concrete terms, if you had to pump out
radioactive waste and restart the reactor, you
weren’t allowed to flick switch 203 unless one
of the protocols for pumping and restarting
called for this switch to be flicked at some
point, and the other did not forbid it. It turned
out that formalizing exactly the legal action
sequences was extremely difficult, as I discuss
later. The second most important desideratum
in the design of PDDL was that it resemble exist-
ing input notations. Most input notations were
Lisplike for historical reasons, but beyond that,
there were many divergences. The University
of Washington UCPOP input language was the
closest thing to a standard. However, it didn’t
have a simple notation for object types, used
Lisp procedures for arithmetic operations, and
didn’t address the representation of hierarchi-
cal plans at all. PDDL was produced by adding to
the UCPOP language a simple uniform typing
syntax, some arithmetic facilities, and the
notion of action expansion. Actions were clas-
sified as primitive or expandable. An expand-
able action could not be executed directly but
had to be instantiated by selecting one of its
methods, each a structure of actions.

Figure 1 gives an example of a simple
domain, called logistics, one of those used in
the competition. There were actually two ver-
sions, logistics-ADL and logistics-STRIPS. This ver-
sion requires the use of ADL constructs such as
typing and quantification. Types are indicated
by hyphens. The type appears after the objects
it qualifies. Variables are indicated by question
marks.

However, some planners cannot handle
types. In fact, for almost every aspect of prob-
lem definition, there is some planner that can-
not handle it. To cope with this issue, we bor-
rowed an idea from the UCPOP language,
namely, to specify explicitly the requirements a
planner would have to satisfy to handle this
domain, which explains the field (:require-
ments :adl) that appears in the domain defini-
tion. If a planner can’t handle the :adl package
of requirements, then it can issue a warning
when it sees this flag.

After the :requirements specification, the
next field defines the :types that are specific to
this domain. (Types such as object and integer
are inherited by all domains.) Then there is a
list of :predicates, each of which is given with
its argument types.

There are four actions in this domain. Each
is defined by giving a precondition, which must
be true for the action to be feasible, and an
effect, which specifies what happens when the
action is executed. The effect is typically a con-
junction. A conjunct of the form (not p) means

that p becomes false. A conjunct of the form
(when c e) means that effect e happens only if
condition c is true before the action occurs.
(This is a context-dependent effect.) A conjunct
of the form (forall (—vars—) e) means that e
happens for every instance of the variables.

Thus, the fly-airplane action is defined as fol-
lows: You can fly an airplane from airport A to
airport B if the airplane is at A; you can’t fly any
other vehicle between any other types of loca-
tion. The effect of flying is that the airplane is at
B and no longer at A. Furthermore, everything
that is in the airplane is also at B and no longer
at A. Note that we have to specify both that an
object is at B and that it is no longer at A.

For comparison, figures 2 and 3 give the same
domain with no extra requirements at all. We
call this baseline notation the STRIPS notation
because it is essentially the same as the notation
used by the STRIPS planner (Fikes and Nilsson
1971). Here are the changes required to trans-
form the ADL version into the STRIPS version:

First, types are replaced by unary predicates,
which ultimately requires splitting the actions
load and unload into two versions each, one
dealing with trucks and the other with air-
planes. Second, context-dependent effects
(“whens”) must be eliminated. In this case, the
semantics of actions change. In the ADL ver-
sion, an object is at the destination as soon as
its vehicle moves there. In the STRIPS version, it
is at the destination only when it is unloaded.
I return to this issue of domain notation in The
Contest.

Numbers are built in to all PDDL domains, but
only those declaring requirement :expression-
evaluation can have arithmetic expressions
such as (+ ?x 1). These arithmetic expressions
occur in special contexts such as (eval e v),
where e is an arithmetic expression, and v must
unify with its value. If e evaluates to a Boolean,
then (test e) succeeds if and only if the value of
e is true. (equation e1 e2) tries to bind variables
in such a way as to make e1 and e2 evaluate to
the same value. For example, the goal (equa-
tion (+ ?x 1) 3) can be satisfied by binding ?x to
2. Currently, that’s about the only pattern that
implementations are required to handle.

For example, in defining a grid world in
which a robot can move between locations
with integer-valued coordinates, we can use
these facilities to specify what it means for two
coordinates to be adjacent. Here is a piece of
that specification:
(:axiom

:vars (?i ?j ?i1 - integer)
:implies (adjacent ?i ?j ?i1 ?j right)
:context (and (equation (+ ?i 1) ?i1)

(legal_coord ?i)
(legal_coord ?i1)))

Articles

SUMMER 2000 39

feature is especially useful in domains where
quantities can change. The classical domain in
which water can be poured from jug to jug
might be defined as in figure 4. The (change f
e) says that the value of fluent f changes to the
value of e before the change. The :functors dec-
laration is used to add new function-defining

This example also illustrates PDDL’s ability to
represent axioms that delimit the meanings of
symbols, such as adjacent and right. (There are
three other axioms, for left, up, and down.)

There is also a notion of a term whose value
changes in different situations, called fluents,
following McCarthy and Hayes (1969). This

Articles

40 AI MAGAZINE

(define (domain logistics-strips)
(:requirements :strips)
(:predicates (obj ?obj)

(truck ?truck)
(location ?loc)
(airplane ?airplane)
(city ?city)
(airport ?airport)
(at ?obj ?loc)
(in ?obj1 ?obj2)
(in-city ?obj ?city))

(:action load-truck
:parameters (?obj ?truck ?loc)
:precondition (and (obj ?obj)

(truck ?truck)
(location ?loc)
(at ?truck ?loc)
(at ?obj ?loc))

:effect (and (not (at ?obj ?loc))
(in ?obj ?truck)))

(:action load-airplane
:parameters (?obj ?airplane ?loc)
:precondition (and (obj ?obj)

(airplane ?airplane)
(location ?loc)
(at ?obj ?loc)
(at ?airplane ?loc))

:effect (and (not (at ?obj ?loc))
(in ?obj ?airplane)))

(:action unload-truck
:parameters (?obj ?truck ?loc)
:precondition (and (obj ?obj)

(truck ?truck)
(location ?loc)
(at ?truck ?loc)
(in ?obj ?truck))

:effect (and (not (in ?obj ?truck))
(at ?obj ?loc)))

(:action unload-airplane
:parameters (?obj ?airplane ?loc)
:precondition (and (obj ?obj)

(airplane ?airplane)
(LOCATION ?loc)
(in ?obj ?airplane)
(at ?airplane ?loc))

:effect (and (not (in ?obj ?airplane))
(at ?obj ?loc)))

…

Figure 2. The Logistics Domain—STRIPS Version, Part 1

symbols. Currently, it can be used only to
define new fluent constructors; so, the type of
amount is (fluent number), meaning that
(amount x) is a number that varies from situa-
tion to situation.

Fluents are a natural generalization of tradi-
tional effects; instead of specifying how truth
values change, they allow specification of how
terms change. Without fluents, one could
make the same definitions, but their meaning
would be less clear. The precondition of empty
would be
(and (amount-in ?jug1 ?a1)

(amount-in ?jug2 ?a2)
(capacity ?jug2 ?c2)
(test >= (- ?c2 ?a2) ?a1))

and the effect would be
(and (not (amount-in ?jug1 ?a1))

(amount-in ?jug1 0)
(not (amount-in ?jug2 ?a2))
(amount-in ?jug2 (+ ?a2 ?a1)))

Although this formulation causes little trouble
in inferring the effects of a known action, it is
difficult to use to constrain the arguments and
preconditions of an empty action given a goal
such as (and (amount-in jugB ?x) (> ?x 5)). The
problem is that there may be many ways to
make the first conjunct true, but the result is to
leave some number of gallons in jugB. This
number is either greater than five, or it isn’t;
there’s no way to cause it to become bigger.
Expressing the goal as (> (amount jugB) 5) is

much more perspicuous.
To support hierarchical planning, PDDL

allows actions to be defined that are carried out
by executing a structure of more primitive
actions. Our nuclear-reactor example appears
in figure 5. In English, “To restart reactor ?r,
make sure it is not already running and not
melting down, then open the two valves, tog-
gle the switch, and close one of the valves, in
that order.” The :vars clause is used to declare
local variables that are inconvenient to consid-
er as parameters of the action. Every reactor is
supposed to have one auxiliary valve, one
main valve, and one main switch; so, there is
no need to name them as part of the action.

This definition is misleading in that it
appears that there is only one way to expand
an action. In general, it is possible to specify
multiple methods for an action expansion, as
in the fragment shown in figure 6 from a
domain involving shipping packages from one
place to another. Here there are two methods
for carrying out (ship x l1 l2). The first, carrying
it in a plane, works only if x is a piece of mail.
The second, using a truck, works for any cargo
item. The expression (in-context A :precondi-
tion p) means that p must be true before this
occurrence of A for the plan to be valid.

In addition to defining domains, PDDL allows
for the definition of problems. Figure 7 gives an
example, used in the competition, in the logis-

Articles

SUMMER 2000 41

…
(:action drive-truck

:parameters (?truck ?loc-from ?loc-to ?city)
:precondition (and (truck ?truck)

(location ?loc-from)
(location ?loc-to)
(city ?city)
(at ?truck ?loc-from)
(in-city ?loc-from ?city)
(in-city ?loc-to ?city))

:effect (and (not (at ?truck ?loc-from))
(at ?truck ?loc-to)))

(:action fly-airplane
:parameters (?airplane ?loc-from ?loc-to)
:precondition (and (airplane ?airplane)

(airport ?loc-from)
(airport ?loc-to)
(at ?airplane ?loc-from))

:effect (and (not (at ?airplane ?loc-from))
(at ?airplane ?loc-to)))

)

Figure 3. The Logistics Domain—STRIPS Version, Part 2

that (at truck3 detroit) is true when it is done.
Other features of PDDL include the following:

Domains can include numeric parameters,
such as the maximum coordinate in the grid
world. PDDL allows the specification of timeless-
ly true propositions, that is, facts that are pre-
sent in all situations (thus saving having to
enter them in all problem definitions). It allows
one domain to be specified as a descendant of
one or more alternative domains so that it
inherits types, axioms, actions, and so on. It
allows several problems to share an initial situ-

tics domain. A problem is defined as a domain,
a set of :objects, an initial situation, and a goal
pattern to be made true. In domains with
action expansions, a problem can have an
:expansion field like the following:

(define (problem trans-1)
(:domain transportation)
(:init)
(:goal (at truck3 detroit))
(:expansion (ship pkg13 cincinnati)))

Here the planner must find a way to carry out
the action (ship pkg13 cincinnati) in such a way

Articles

42 AI MAGAZINE

(define (domain jug-pouring)
(:requirements :typing :fluents)
(:types jug)
(:functors

(amount ?j - jug)
(capacity ?j - jug)
- (fluent number))

(:action empty
:parameters (?jug1 ?jug2 - jug)
:precondition (fluent-test

(>= (- (capacity ?jug2) (amount ?jug2))
(amount ?jug1)))

:effect (and (change (amount ?jug1)
0)

(change (amount ?jug2)
(+ (amount ?jug2)

(amount ?jug1)))))
…)

Figure 4. The Jug-Pouring Domain.

(define (problem trans-1)
(:action restart

:parameters (?r - reactor)
:vars (?valve1 ?valve2 - valve ?switch1 - switch)
:precondition (and (not (running ?r))

(not (melting-down ?r))
(aux-valve ?r ?valve1)
(main-valve ?r ?valve2)
(main-switch ?r ?switch))

:effect (running ?r)
:expansion (series (verify-valves-shut ?r)

(parallel (open ?valve1)
(open ?valve2))

(toggle ?switch)
(close ?valve1)))

Figure 5. The Nuclear-Reactor Action.

ation, which needs to be written only once.
One initial situation can be defined in terms of
small changes to another. Action expansions
can include simple iterations, arbitrary acylic
structures of actions, specification of condi-
tions to be maintained true for some period
during the plan, and more.

In addition to defining the language, we felt
it was important to implement a syntax check-
er and a solution checker. The syntax checker
could verify that domains submitted by others
were valid PDDL and ensure that no feature was
used unless it was declared as a requirement. It
could also count the amount of advice that was
given. To make advice accounting possible, we
required all planner-specific annotations to be
indicated by a special flag. The syntax checker
could measure the size of these annotations
and otherwise ignore them.

The other key piece of software was a solu-
tion checker. For the competition we wanted to
be able to generate random problems. We
anticipated not even knowing for many of the
problems whether they had solutions or not.
Some of the problems might have several solu-
tions, some which might be quite long and
involved. Having to check by hand if a solu-
tion was valid would be tedious and prone to
error. We decided to automate it.

Creating a solution checker turned out to be
harder than anticipated, for two reasons. The
first is that to our knowledge, no one has ever

written a solution checker for a hierarchical
planner, which you might find surprising. The
reason is that most hierarchical planners do
not treat prefabricated plans as part of the
problem specification but as advice on how to
solve problems. Once an action sequence has
been found, the hierarchical superstructure can
be dropped, and the action sequence can be
checked as though it had been found without
the use of canned plans. Checking an action
sequence is easy: Just do a little deduction to
verify that every action in the sequence is fea-
sible at the point where it is to be executed and
that the goal is true in the situation that results
from executing the last action.

Now suppose you add a serious requirement
that the action sequence not just be legal but
also instantiate the :expansion given as part of
the problem definition. The result is to super-
impose a “parsing” problem on top of the stan-
dard deductive problem. That is, the solution
checker must find a way to group the actions
into a hierarchical structure to instantiate the
given expansion, in a way analogous to the
way a natural language parser groups words
into phrases. However, the problem is much
more difficult for several reasons. PDDL allows
quantifiers in expansions of the form (forsome
v A) and (foreach v C A). These occur in an
action sequence if the right kind of instances of
the action expansion A occur. In the case of a
forsome, there must be one instance; in the

Articles

SUMMER 2000 43

(:action ship
:parameters (?pkg - cargo ?orig ?dest - location)
:precondition (at ?pkg ?orig)
:effect (at ?pkg ?dest)
:expansion :methods)

(:method ship
:parameters (?pkg - mail ?orig ?dest - location)
:expansion (forsome (?p - airplane)

(series (in-context
(load ?pkg ?p)
:precondition (at ?p ?orig))

(fly ?p ?dest)
(unload ?pkg ?p))))

(:method ship
:parameters (?pkg - cargo ?orig ?dest - location)
:expansion (forsome (?tr - truck)

(series (in-context
(load ?pkg ?tr)
:precondition (at ?tr ?orig))

(drive ?tr ?dest)
(unload ?pkg ?tr))))

Figure 6. The Shipping Action.

stable algorithm for checking solutions never
became a problem because no contestants
appeared for this part of the competition. We
corresponded with several potential entrants,
but none of them got over the hurdles in the
way of taking part. The main problem was, we
believe, that the semantics of hierarchical plan-
ning have never been clarified to the point
where everyone in this area can be said to be
working on the same problem. Our attempt to
create a “lowest common denominator” nota-
tion succeeded only in creating a new notation
that matched no one’s expectations. In addi-
tion, the hierarchical planning community is
used to thinking of library plans as advice struc-
tures, which was a drastic departure from our
assumption that the basic content of the plan

case of a foreach, there must be a set of
instances satisfying condition C. In addition,
two action expansions could, unless con-
strained otherwise, be interleaved in an arbi-
trary order, and the same primitive action
could occur as a part of more than one com-
plex action.

It soon became clear that the problem of
solution checking was going to be intractable
unless the checker was given some hints. A
solution to a problem with hierarchical expan-
sions was going to have to include a specifica-
tion of exactly which higher-level actions
occurred where. Even with this change, the
algorithm took a long time to develop, and it
never was completely debugged.

Fortunately, or unfortunately, the lack of a

Articles

44 AI MAGAZINE

(define (problem log-x-2)
(:domain logistics-adl)
(:objects package5 package4 package3 package2 package1 - obj

city10 city9 city8 city7 city6 city5 city4 city3 city2 city1 - city
truck10 truck9 truck8 truck7 truck6 truck5 truck4 truck3 truck2 truck1 - truck
plane4 plane3 plane2 plane1 - airplane
city10-1 city9-1 city8-1 city7-1 city6-1 city5-1 city4-1 city3-1 city2-1 city1-1

- location
city10-2 city9-2 city8-2 city7-2 city6-2 city5-2 city4-2 city3-2 city2-2 city1-2

- airport)
(:init (in-city city10-2 city10) (in-city city10-1 city10)

(in-city city9-2 city9) (in-city city9-1 city9)
(in-city city8-2 city8) (in-city city8-1 city8)
(in-city city7-2 city7) (in-city city7-1 city7)
(in-city city6-2 city6) (in-city city6-1 city6)
(in-city city5-2 city5) (in-city city5-1 city5)
(in-city city4-2 city4) (in-city city4-1 city4)
(in-city city3-2 city3) (in-city city3-1 city3)
(in-city city2-2 city2) (in-city city2-1 city2)
(in-city city1-2 city1) (in-city city1-1 city1)
(at plane4 city3-2)
(at plane3 city7-2) (at plane2 city3-2)
(at plane1 city6-2) (at truck10 city10-1)
(at truck9 city9-1) (at truck8 city8-1)
(at truck7 city7-1) (at truck6 city6-1)
(at truck5 city5-1) (at truck4 city4-1)
(at truck3 city3-1) (at truck2 city2-1)
(at truck1 city1-1) (at package5 city1-2)
(at package4 city7-2) (at package3 city3-2)
(at package2 city10-1) (at package1 city2-2))

(:goal (and (at package5 city4-2)
(at package4 city6-1)
(at package3 city1-1)
(at package2 city9-2)
(at package1 city3-1))))

Figure 7. The Logistics Problem LOG-X-2.

library contained no advice, only “physics.”
Trying to make this assumption actually

work was extremely difficult. The problem is
that no one has ever figured out how to recon-
cile the semantics of hierarchical plans with
the semantics of primitive actions. Ordinary
action sequences satisfy a straightforward com-
positionality property: If you know the precon-
ditions and effects of two sequences of actions
S1 and S2, then you can infer the preconditions
and effects of S1 followed by S2. Hierarchical
plans do not have this property, at least not
obviously.

To take a simple example, consider the
action restart, described in figure 5, for restart-
ing a nuclear reactor. The action sequence
<(verify-valves-shut r2), (open v30)> does not
by itself restart the reactor, and neither does
the action sequence <(open v29), (toggle sw53),
(close v28)>, but the two together do, assuming
that all the relevant preconditions are satisfied.
In other words, a conditional effect of the sec-
ond sequence is to restart the reactor, in a situ-
ation where the first sequence has (just? recent-
ly?) been executed. Conditional effects are not
unusual in classical planning (Pednault 1989),
but they normally take the form of an effect
that becomes true if and only if a certain sec-
ondary precondition was true before the
action. Expressing this sort of conditional
effect is the job of the when effect clause in
PDDL. With hierarchical plans, we get a new
kind of implicit precondition, that a certain
standard plan be “in progress.”

Suppose that an action sequence looks like
<(open v29), (toggle sw42), (close v28)>. Is it
legal? Does it cause (running r2) to become true
if v29 is the auxiliary valve of r2 and sw42 is its
main switch, and so on? One might think that
the answer is “obviously not” because two
actions are missing, namely (verify-valves-shut
r2) and (open v31), assuming v31 is the main
valve of r2. However, to make this inference
requires one to assume that these actions did
not occur before the action sequence we
explicitly mentioned.

As it turned out, in the end, these complex-
ities did not affect the actual competition. I
describe them in such detail to save future
researchers from rediscovering them.

The Contest
The competition took place in June 1998, but
the contestants spent several months preparing
for it. Each of them had to alter the front end of
their system to accept problems expressed in
PDDL. Because the language was brand new, this
process was iterative: Changes to the notation

were suggested and sometimes incorporated
before the problems were specified.

Even more important, the form of the con-
test had to be worked out, and several sample
problems had to be released to give the contes-
tants a clue about what their planners had to
be capable of. A repository of problems was
begun at Yale, using as a nucleus the repository
developed by the UCPOP group at the University
of Washington. Contestants were invited to
submit new problems, and several did. In addi-
tion, some new domains were invented by the
keeper of the repository, me.

Bargaining over Expressiveness
Over the six months leading to the actual com-
petition, there was an intricate negotiation
involving the committee and the community
of potential contestants. The committee want-
ed to encourage the research community to try
new things; the community wanted the com-
mittee to focus on the areas their planners did
well in.

In the case of hierarchical planners, this ten-
sion proved fatal. The researchers with hierar-
chical planners lost interest rapidly as it
became clear how great the distance was
between PDDL and the kind of input their plan-
ners expected. Many of the researchers in this
community think of their planners as a cross
between a programming language and a
knowledge-acquisition system. They have
developed elaborate notations for capturing
domain knowledge in the form of rules that
push the planner toward particular kinds of
solution. Unfortunately, PDDL defines all such
notations as advice. To adapt these systems to
PDDL would require factoring their input into
two parts: (1) a physics part that is identical for
all planners and (2) an advice part that controls
how the planner reacts to the physics. The dif-
ficulty of doing this separation under the time
constraints proved to be insurmountable. After
a few exploratory conversations, all the hierar-
chical-planning researchers dropped out.

In the case of classical planning, the com-
mittee assumed at first that the ADL track was
where most of the interest would be. ADL had
been around since the mid-1980s, and several
existing systems had been able to handle prob-
lems expressed in this format. However, much
of the progress on planning algorithms in the
1990s has been based on what might be called
propositional planning, in which variables are
eliminated from planning problems by gener-
ating up front every instance of every term that
might be needed. With the variables gone, all
the machinery for matching literals and
recording codesignation constraints is not

Articles

SUMMER 2000 45

the move is for the vehicle to be at node 2 and
for there to be one less unit of fuel at node 1.

There are two problems with this action def-
inition: It involves numbers, and it involves a
context-dependent effect (the amount of fuel
afterward depends on the amount of fuel
before). In PDDL, a term like (fuel n) defines a
fluent, a term whose value changes from node
to node. The notation (change f a) means that
the value of fluent f after the action is equal to
the value of expression a before the action.

It might seem as if this domain were simply
off limits to any planner that can’t handle
numbers or context-dependent effects, but in
fact, there are ways to work around these limi-
tations. Fuel amounts start off as nonnegative
integers, never change except to become small-
er by 1, and never become negative, so only a
predictable set of natural numbers will occur in
a given problem. Hence, for every problem, we
can supply a set of constants num0, num1, …,
numK, where K is the largest number that
occurs in the problem statement, and we can
include among the initial conditions

(:init (just-less num0 num1)
(just-less num1 num2)
. . .
(just-less num9 num10)
…)

(in the case where K = 10). These constants are
declared as pseudonumbers:

(:objects num0 num1…num10 - pseudo-number)

This eliminates the numbers; the next step is to
eliminate the context-dependent effect. We use
the old trick of adding arguments to the action.
With this change, our action definition
becomes as shown in figure 8. Suppose veh29 is
at node101, which has 3 units of fuel. Instead
of saying, for example, “the action (move
veh29 node101 node63) changes the fuel at
node101 from 3 to 2,” we say, “the action

needed (Chapman 1987), and the search can
focus on constraints among action terms and
atomic formulas. The search process is simpler
and can afford to explore a lot more possibili-
ties. The resulting algorithms offer a significant
improvement over older approaches in many
cases.

Unfortunately, this power has been attained
by sacrificing some expressivity. The proposi-
tional-planning researchers have focused on
the STRIPS notation for the time being, and their
planners lack the ability to handle problems
involving numbers, nonatomic terms, and
quantifiers. Some of them also have trouble
with context-dependent effects, where the effects
of an action depend on the circumstances in
which it is executed. These limitations might
sound serious, but in many cases, one can work
around them, at the cost of using cumbersome
notational tricks. For example, one of the
domains we came up with for the competition
was called the mystery domain. We called it
that to conceal its underlying structure and
make it harder to give planners advice about it.
The domain actually concerned a transporta-
tion network through which vehicles could
move carrying cargoes. A vehicle could move
from one node to a neighboring node if there
was fuel at the originating node. In PDDL,
(:action move

:parameters (?v - vehicle ?n1 ?n2 - node)
:precondition (and (loc ?v ?n1)

(conn ?n1 ?n2)
(fluent-test (> (fuel ?n1) 0)))

:effect (and (not (loc ?v ?n1))
(loc ?v ?n2)
(change (fuel ?n1)
(- (fuel ?n1) 1))))

In English, you can move a vehicle from
node 1 to node 2 if the vehicle is at node 1,
node 1 is connected to node 2, and there is a
nonzero amount of fuel at node 1. The effect of

Articles

46 AI MAGAZINE

(:action move
:parameters (?v - vehicle ?n1 ?n2 - node

?f1 ?f2 - pseudo-number)
:precondition (and (loc ?v ?n1)

(conn ?n1 ?n2)
(fuel-at ?n1 ?f1)
(just-less ?f2 ?f1))

:effect (and (not (loc ?v ?n1))
(loc ?v ?n2)
(not (fuel-at ?n1 ?f1))
(fuel-at ?n1 ?f2)))

Figure 8. Action Definition Using the Old Trick of Adding Arguments to the Action.

(move veh29 node101 node63 num3 num2) is
the only feasible action of form (move veh29
node101 node63).”

It is somewhat discouraging that after 30
years of research, we are back to the notational
restrictions we started with. However, it did
have one benefit. We wanted to disguise the
mystery domain, and all this verbosity helped
do that. We labeled nodes as foods, vehicles as
pleasures, and cargo objects as emotions. Instead
of a single sort of pseudonumber, we intro-
duced one, called provinces, for fuel and anoth-
er, called planets, for space on vehicles. (loc v n)
became (craves v n); (conn n1 n2) became (eats
n1 n2); (fuel v k) became (local v k). The just-less
predicate for numbers became (attacks k1 k2).
Moving was called feasting. Thus, in the STRIPS

style, our action definition becomes as shown
in figure 9.

There was also an ADL version, albeit without
numbers, in which types and context-depen-
dent effects were allowed. In this version, the
action was defined as shown in figure 10.

Participants
As a result of bargaining between the commit-
tee and the contestants, we arrived at a STRIPS

track and an ADL track, neither of which could
handle problems with numbers. By April 1998,
we had two contestants who were planning to
enter the ADL track, and eight who were plan-
ning to enter the STRIPS track. No one wanted to
enter the hierarchical-planning track, and the
other track never got off the ground. Nonethe-
less, we were happy with what we had. The
contestants were putting a tremendous
amount of work into altering their planners to
take the PDDL notation. Unfortunately, for some
of them, the work was just too much, and three
dropped out in the weeks leading to the com-
petition. The final participants in the STRIPS

track were IPP (Jana Köhler, University of
Freiburg); BLACKBOX (Henry Kautz and Bart Sel-
man, ATT Labs and Cornell University); HSP

(Hector Geffner and Blai Bonet, Simon Bolivar
University); and STAN (Derek Long and Maria

Articles

SUMMER 2000 47

(:action feast
:parameters (?v ?n1 ?n2 ?f1 ?f2)
:precondition (and (craves ?v ?n1)

(food ?n1)
(pleasure ?v)
(eats ?n1 ?n2)
(food ?n2)
(locale ?n1 ?f2)
(attacks ?f1 ?f2))

:effect (and (not (craves ?v ?n1))
(craves ?v ?n2)
(not (locale ?n1 ?f2))
(locale ?n1 ?f1)))

Figure 9. Action Definition in the STRIPS Style.

(:action feast
:parameters (?v - pleasure ?n1 ?n2 - food)
:vars (?f1 ?f2 - province)
:precondition (and (craves ?v ?n1)

(eats ?n1 ?n2)
(locale ?n1 ?f2)
(attacks ?f1 ?f2))

:effect (and (not(craves ?v ?n1))
(craves ?v ?n2)
(not (locale ?n1 ?f2))
(locale ?n1 ?f1)))

Figure 10. Action Definition in the ADL Style.

The most important dimension is correct-
ness. There are two possible outcomes for plan-
ner j on problem i in order of decreasing possi-
bility of winning: either it stops and reports a
correct answer, or it doesn’t. In other words,
either it prints a correct solution or returns “no
solution” when there isn’t one, or it prints an
incorrect solution, returns “no solution” when
there is one, or never stops and has to be
stopped by hand.

The second dimension is advice. Define

where aij is the size of the advice given to plan-
ner j for problem i;

is the size of the advice given to planner j for
domain D (Di is the domain of problem i); and
N(D) is the number of problems in domain D.
We planned to measure the size of a piece of
advice by counting the number of symbols in
it.

The third dimension is performance. If a
problem has no solution, you measure the cen-
tral processing unit time of planner j on prob-
lem i, or Tij. If it has a solution, and planner j
finds a solution, then we will replace Tij with
Tij (Lij)

h, where Lij is the length of the solution
and h = 0.5. Length is defined as number of
steps, regardless of whether some could be exe-
cuted in parallel. (If L = 0, we treat the solution
as of length 1.)

Three comments can be made. First, the idea
was to take solution length into account but to
discount it so that it broke a tie between plan-
ners only if they had comparable solution
times. If planner P1 is 10 times slower than
planner P2, it would have to produce a plan
100 times shorter to win. If P2 produces a plan
twice as long, it must run in 70 percent of the
time P1 takes to beat it. The formula reflects the
classical presupposition that the existence of a
plan is more important than its size. (Making
the exponent h bigger would make length
more relevant.)

Second, if a planner required advice, it could
never beat a planner that solves the same prob-
lems with no advice; so, it’s worth giving a cer-
tain amount of advice only when you bet that
no one will be able to solve the problem with
less.

Third, for some of the more difficult
machine-generated problems, we might not
really know if there is a solution. In this case, if
no planner finds a solution, we will assume
that “no solution” is the correct answer. If a
planner has to be stopped by hand, then it will
be taken to have returned “no solution” after
the amount of run time it actually spent (as

ADj

A a A N Di j i j D j i
i

, , , /= + ()

Fox, Durham University). The two participants
in the ADL track were Köhler’s IPP and SGP (Corin
Anderson, University of Washington). All the
planners were written in C/C++ except SGP,
which was written in Lisp.

As explained in the companion paper, all
these systems except HSP were based to some
extent on the GRAPHPLAN algorithm (Blum and
Furst 1995). HSP was based on heuristic search
guided by means-ends analysis. In addition,
BLACKBOX used satisfiability testing. All the sys-
tems avoided repeated variable substitution by
generating all required instances of proposi-
tions and action terms at the beginning. This
lack of diversity in current research directions
in classical planning means either that GRAPH-
PLAN on variable-free terms really is the best
approach to planning or that the summer of
1998 happened to coincide with the peak of a
particularly intense fad. What was particularly
striking was the complete absence of partial-
order, or nonlinear, planning (Weld 1994). A
few years ago, many people thought that the
superiority of partial-order techniques had
been proven conclusively (Barrett and Weld
1994). It seems doubtful that the arguments in
its favor were all wrong, and it would be inter-
esting to see partial-order planners compete in
future competitions.

Scoring
In parallel with the design of domains, we were
also designing the scoring mechanism, which
proved to be a difficult challenge, one that we
never really solved. At first, we thought the
biggest issue was going to be how to penalize a
planning system for taking advice. Some mem-
bers of the community feel that there is noth-
ing wrong with advice; it was even suggested
that a planner be rewarded for being able to
take it. However, most people agreed that if
planner A requires a lot more advice than plan-
ner B to solve a problem, B should win if it does
almost as well as A.

Here is the scoring algorithm we proposed:
The basic idea was to give each planner j a score
on problem i equal to

(Ni – Rij)Wi
where Ni is the number of planners competing
on problem i; Rij is the rank of planner j on
problem i (0 for best program, N – 1 for worst,
as explained later); and Wi is the difficulty of a
problem, defined as

Wi = medianj Tij /∑m mediann Tmn
where Tbl is the time taken by planner l on
problem b.

Here is our method for computing Rij: Rank
all planners lexicographically as follows: (1)
correctness, (2) advice, and (3) performance.

Articles

48 AI MAGAZINE

close as that can be estimated).
Unfortunately, this scoring function, in spite

of its arcane complexity, failed to match every-
one’s judgment about what was to be mea-
sured, as I discuss later. Also, it turned out that
our preoccupation with advice was misplaced.
None of the competitors ever used any advice
at all. A few years ago, almost every planner
would have required a lot of advice, and it is
remarkable how big a change had occurred.

Domains
In the last month before the competition,
everyone involved put in a tremendous
amount of work, making sure that every plan-
ner worked on the sample problems. Contes-
tants were invited to contribute problem
domains of their own. The idea was to allow
each of them to benefit from their areas of
strength by having at least one domain where
they knew they would do well. Domains were
submitted by the IPP group, the SGP group, and
the BLACKBOX group. The final lineup of
domains was as follows:

Mystery: The mystery domain described ear-
lier defined three actions: (1) loading some-
thing on a vehicle, (2) unloading it, and (3)
moving the vehicle.

Mystery prime: This is the mystery domain
with one extra action, the ability to squirt a
unit of fuel from any node to any other node,
provided the originating node has at least two
units. The contestants knew that a modified
mystery domain was coming but did not actu-
ally see it until the first day of the competition.

Movie: In this domain, the goal is always the
same (to have lots of snacks to watch a movie).
There are seven actions, including rewind-
movie and get-chips, but the number of con-
stants increases with the problem number.
Some planners have combinatorial problems in
such cases. This domain was created by Corin
Anderson.

Gripper: Here, a robot must move a set of
balls from one room to another, being able to
grip two balls at a time, one in each gripper.
There are three actions: (1) move, (2) pick, and
(3) drop. Most planners explore all possible
combinations of balls in grippers, overlooking
the fact that all combinations are equivalent
and giving rise to an unnecessary combinator-
ial explosion. (Contributed by Jana Köhler.)

Logistics: There are several cities, each con-
taining several locations, some of which are
airports. There are also trucks, which can drive
within a single city, and airplanes, which can
fly between airports. The goal is to get some
packages from various locations to various new
locations. (Created by Bart Selman and Henry

Kautz, based on an earlier domain by Manuela
Veloso.) Figure 1 gives the complete ADL version
of the logistics domain, developed by me from
Selman and Kautz’s STRIPS version. (This is not
precisely the version of the domain used in the
competition; this version had an unimportant
bug that has been removed.) The STRIPS version
has six action definitions instead of four
because an action with context-dependent
effects has to be split into different versions.

Grid: There is a square grid of locations. A
robot can move one grid square at a time hori-
zontally and vertically. If a square is locked, the
robot can move to it only by unlocking it,
which requires having a key of the same shape
as the lock. The keys must be fetched and can
themselves be in locked locations. Only one
object can be carried at a time. The goal is to
get objects from various locations to various
new locations. The ADL version of the domain
has four actions, and the STRIPS version has five.
(Created by Jana Kohler, based on an earlier
domain of mine.)

Assembly: The goal is to assemble a complex
object made of subassemblies. There are four
actions: (1) commit resource assembly, (2)
release resource assembly, (3) assemble part
assembly, and (4) remove part assembly. The
sequence of steps must obey a given partial
order. In addition, through poor engineering
design, many subassemblies must be installed
temporarily in one assembly, then removed
and given a permanent home in another. There
was no STRIPS version of this domain.

It would be pleasant if we could claim that
these domains covered the entire range of what
planners can handle, that these domains repre-
sent approximations of real-world problems
planners will eventually solve, or that within
each domain the problems are typical. Unfor-
tunately, we can make none of these claims.
Two of the domains, movie and gripper, were
submitted because problems in these domains
were thought to be difficult for some planners
to solve, even though the problems are easy for
humans. The other domains were chosen
because it seemed, based on experience and
informal experimentation, that it was possible
to create hard problems in them. However, as is
now well known (Kirkpatrick and Selman
1994), it can be tricky to generate random
problems that are hard. Randomly generated
problems tend to be either extremely easy or
impossible. (Some “impossible” problems are
actually quite easy because many programs can
quickly verify that they are impossible.) The
zone in between the subspace of easy problems
and the subspace of impossible problems has
been compared to a phase transition in a phys-

Articles

SUMMER 2000 49

performance announced as they finished.
Everything went reasonably smoothly

through round 1. We had a total of 170 prob-
lems, drawn from the assembly, gripper, logis-
tics, movie, and mystery domains. All 170
appeared in the ADL track; in the STRIPS track,
the assembly problems were omitted, leaving
140. Table 1 summarizes the data on problem
sizes. The grid domain was reserved for round
2. Contestants worked through Monday, June
8, at 5 PM, when we declared round 1 complete.
On the ADL track, IPP outperformed SGP so con-
vincingly that it was declared the winner. Both
programs did well, but SGP was written in Lisp
and rarely matched the raw speed of the other
systems, which were written in C or C++.

The results for the STRIPS track were not at all
clear. For one thing, we failed to anticipate that
several of the contestants would simply not try
to solve some of the problems. If their planner
failed on almost all the easiest 10 problems in
a domain, they didn’t see the point of letting it
grind forever on the next 20. The scoring func-
tion as originally designed gave one point to a
program that tried a problem, failed, and took
longer than any other program that tried and
failed. It gave zero to a program that didn’t try.

An even worse problem was that one plan-
ner (STAN) spent an hour each on the more dif-
ficult gripper problems before giving up on
them, which was much longer than any other
planner spent on any problem. Only two plan-
ners, STAN and HSP, tried the difficult gripper
problems, so the median time to solve them
was large, and these gripper problems ended up
carrying a large fraction of the weight. HSP

ical system. Analyzing a domain to figure out
where the phase transitions are is not easy, and
we did not attempt it for any of the domains in
the competition. As a result, some of the ran-
domly generated problems are too easy, and
some are too hard. However, it does seem that
many are about right.

Results
The competition took place at Carnegie Mellon
University (CMU) in June 1998, at the same
time as AIPS-98. We owe a debt of gratitude to
the CMU staff, especially Bob McDivett, who
got the computers running and made sure that
they were all identical. (The computers were
233-megahertz PENTIUM-based PC compatibles,
with 128 megabytes of primary memory, run-
ning the LINUX operating system.) The contes-
tants and I arrived early at the conference to
get their systems up and running. The next few
days were an intense but exhilarating effort. In
the end, we had to write quite a bit more code
and rethink our scoring function completely.

There were to be two rounds in the competi-
tion. The first was designed to allow contes-
tants to get used to the environment and the
problem domains. They would be allowed to
run their programs several times and make
changes in between. The programs that did
best in round 1 would be allowed to advance to
round 2, where the rules were more stringent.
Some new domains would be introduced. Each
planner could be run exactly once, with no
tuning. Round 2 would take place in real time,
as the conference proceeded, with programs’

Articles

50 AI MAGAZINE

Domain Number Average
Objects

Average Inits Smallest Largest

Assembly 30 48 118 67 270
Gripper (ADL) 20 25 26 13 89
Gripper (STRIPS) 27 53 23 137
Logistics (ADL) 30 171 155 58 960
Logistics
(STRIPS)

171 342 96 1470

Movie (ADL) 30 98 3 28 173
Movie (STRIPS) 98 99 51 341
Mystery (ADL) 30 44 82 46 233
Mystery
(STRIPS)

44 126 64 317

Table 1. Problem Sizes—Round 1.
For each domain, the number of problems, the average number of objects a problem, and the average number of “inits” (propositions true
in the initial situation) are shown. The columns labeled Smallest and Largest give the combined size (objects + inits) for the smallest problem
in the domain and the largest. The mystery prime domain had exactly the same problems as the mystery domain, so they are not listed
separately here.

spent less time than STAN and actually solved
the problems (although not optimally), so it
got a higher overall score on round 1 than any-
thing else. The HSP team deserves credit for
solving these problems, but it seems clear that
the scoring function’s judgment of their impor-
tance disagrees with intuition. At the end of
round 1, therefore, all four contestants in the
STRIPS track could argue that their systems had
done well. A total of 88 problems had been
solved by at least one planner.

HSP solved more problems than any other
system and found the shortest solution more
often. BLACKBOX had the shortest average time
on problems it attempted, but IPP had the
shortest solution time on more problems. STAN

was in second place for shortest solution time
and second place for overall score.

The committee was unhappy with the holes
that had been revealed in the scoring function.
We tried to achieve a consensus on what to
replace it with and finally gave up. We decided
to let all the programs advance to round 2;
measure their performance as well as possible;
and let history judge who, if anyone, did the
best. Once this decision was made, round 2 was
a lot of fun. We continued to observe the same
pattern as in round 1, that different planners
succeeded in different ways.

For round 2, we used the grid, logistics, and
mystery prime domains, all in their STRIPS ver-
sions. There were a total of 15 problems, of
which 12 were solved by at least one program.
Table 2 shows the sizes of these problems. We
tried to generate problems that the planning
systems could be expected to handle in the
time allotted.

Tables 3 and 4 summarize how hard the
problems were that some planner could solve.
For each domain, we show the largest problem
that any planner could solve and the problem
whose shortest known solution is longer than
that of any other problem. These figures should
not be taken too seriously. For one thing, the

fact that a problem was not solved by any plan-
ner might mean that it has no solution (more
later). In addition, the fact that no planner
finds a short solution to a problem does not
mean that there isn’t one. To give a concrete
idea of the performance of the planners, figure
7 contains the definition of problem STRIPS-
LOG-X-2, which occurred during round 1 of
the competition. It mentions 49 objects and 68
inits, for a total size of 147. Both STAN and
BLACKBOX found 32-step plans to solve this
problem; HSP found a 44-step plan. BLACKBOX’s
plan is shown in figure 11.

Tables 5, 6, and 7 give the results for both
rounds. The planners are sorted in alphabetical
order in each table. These results are not exact-
ly the same as those presented at the confer-
ence because of some minor glitches that mud-
died the presentation. Three of IPP’s solutions
were checked and found to be wrong because
of a trivial bug in the output printer, which
caused all occurrences of one particular action
to be garbled. In these tables, we have counted
these as successes.

There are two important caveats about these
data: First, we measure the length of the plan
found by counting the total number of steps in
it. However, for many of the planners, this mea-
sure might not be appropriate. Planners such as
BLACKBOX, IPP, and STAN find the plan with the
shortest parallel length, in which several steps
are counted as taking one time unit if they
occur as a substring at some point in the plan,
and the substring could have occurred in any
order. The plan with the shortest parallel length
might not be the plan with the least number of
steps. Which of these numbers is a better mea-
sure of plan quality is not always obvious.

If no planner found a solution to a problem,
it simply doesn’t enter into our statistics. How-
ever, in some cases, some of the planners were
able to prove there was no solution. I discuss
this further later. For further analysis of results,
see the companion paper.

Articles

SUMMER 2000 51

Domain Number Average
Objects

Average Inits Smallest Largest

Logistics
(STRIPS)

5 33 67 63 159

Mystery
Prime (STRIPS)

5 40 106 82 237

Grid (STRIPS) 5 66 328 209 613

Table 2. Problem Sizes—Round 2.

Articles

52 AI MAGAZINE

Domain Largest
Solved

Plan
Length

Solution
Time

Longest
Solution

Solution
Time

Gripper (ADL) 29 47 225730 47 225730

Gripper (STRIPS) 137 165 33210 165 33210

Logistics (ADL) 109 26 17400 26 17400

Logistics
(STRIPS)

180 112 788914 112 788914

Movie (ADL) 173 7 50 — —

Movie (STRIPS) 341 7 40 — —

Mystery (ADL) 159 4 17810 13 9280

Mystery
(STRIPS)

304 16 1789 16 789

Mystery Prime
(ADL)

131 10 24240 12 1960

Mystery Prime
(STRIPS)

214 4 7141 11 5214

Table 3. Hardest Problems—Round 1.
For each domain, data are shown for the hardest problems solved. On the left side of the table, data are dis-
played for the largest problem solved. Call it B. Largest solved is the size of B, defined as the sum objects + inits.
Plan length is the length of the shortest solution of B found, and solution time is the time the fastest planner
took to find the solution. On the right side of the table, data are displayed for the problem whose shortest solu-
tion was longest. Call it L. Longest solution gives the length of the shortest solution of L found, and solution
time is the time the fastest planner took to find the solution. Times are in milliseconds.

Domain Largest
Solved

Plan
Length

Solution
Time

Longest
Solution

Solution
Time

Logistics
(STRIPS)

159 31 66170 59 170394

Mystery Prime
(STRIPS)

237 6 4991 7 2537

Grid (STRIPS) 209 14 2505 14 2505

Table 4. Hardest Problems—Round 2.
For each domain, data are shown for the hardest problems solved. On the left side of the table, data are dis-
played for the largest problem solved. Call it B. Largest solved is the size of B, defined as the sum objects + inits.
Plan length is the length of the shortest solution of B found, and solution time is the time the fastest planner
took to find the solution. On the right side of the table, data are displayed for the problem whose shortest solu-
tion was longest. Call it L. Longest solution gives the length of the shortest solution of L found, and solution
time is the time the fastest planner took to find the solution. Times are in milliseconds.

Conclusions
The planning competition was a valuable exer-
cise. For the first time, researchers had to com-
pete against each other on exactly the same
problems. The PDDL notation made this possi-
ble, and hopefully, it will continue to serve this
role. The PDDL syntax checker and solution
checker, as well as all the problems and results
from the competition, can be found at
www.cs.yale.edu/~dvm.

We encourage researchers to compare their
planning systems against the programs that
competed. However, the existence of this
repository is only a first step toward a compre-
hensive set of benchmark problems for auto-
mated planners. We encourage others to sub-
mit candidate benchmarks to drew.mcdermott
@yale.edu or to the competition committee for
the 2000 Planning Competition, chaired by
Fahiem Bacchus.

The competition documented a dramatic
increase in the speed of planning algorithms.
Some of the problems in the competition had
solutions of 30 steps or more, extracted from
problems with dozens of propositions to deal
with. Ten years ago planners required signifi-
cant amounts of domain-specific advice to
achieve performance like this; the current gen-
eration requires no advice at all.

To an extent, this gain has been won by
restricting the types of problem that can be
worked on. Most of the planners could handle
STRIPS-style problems and not much else. Some
of these restrictions are only temporary, and we
would urge the planning community to
explore ways of removing them. However, the
focus on classical planning, where perfect
information is assumed, seems to be an intrin-
sic constraint on most planners currently being
developed. There’s nothing wrong with this
focus, but if the current research is really lead-
ing to powerful algorithms, it will soon be time
to show them working on realistic classical-
planning problems. For example, combining
features of the logistics and mystery domains
would get us close to real-world transportation
planning with capacity constraints. Perhaps
this is a reasonable target for the community to
aim for.

There is a remarkable divergence of opinion
on whether and how planners should take
advice’, that is, domain- or problem-specific
guidelines that are not strictly necessary in
defining the domain but constrain the search
for plans. Some researchers feel that any need
for advice is a weakness, and others think that
there is unlikely to be a general-purpose plan-
ning algorithm that solves all realistic prob-
lems. Thus, the issue is not whether domain-

specific heuristics are necessary but how easy or
natural it is to tell a planner about them. In this
competition, the first camp decided the issue,
probably because I am in this camp. However,
none of the competitors could resist the temp-
tation to ask for a “little bit” of “trivial” advice.
For example, some of the propositional plan-
ners must set a bound on the length of a plan
before doing a search. If the bound is
unknown, they must search for it by starting
with a short bound and extending it after each
failure. A serious argument was made that this
number should be given to the planner in
advance. The antiadvice people succeeded in
arguing that this one number constituted an
enormous hint. (Among other things, it tells
the planner that a solution exists.) In other cas-
es, the disagreement became an impasse. For

Articles

SUMMER 2000 53

((load-airplane package4 plane3 city7-2)
 (load-truck package2 truck10 city10-1)
 (load-airplane package3 plane2 city3-2)
 (drive-truck truck1 city1-1 city1-2 city1)
 (fly-airplane plane4 city3-2 city2-2)
 (fly-airplane plane1 city6-2 city10-2)
 (drive-truck truck6 city6-1 city6-2 city6)
 (drive-truck truck3 city3-1 city3-2 city3)
 (load-airplane package1 plane4 city2-2)
 (drive-truck truck10 city10-1 city10-2 city10)
 (fly-airplane plane3 city7-2 city6-2)
 (fly-airplane plane2 city3-2 city1-2)
 (unload-airplane package4 plane3 city6-2)
 (unload-truck package2 truck10 city10-2)
 (fly-airplane plane4 city2-2 city3-2)
 (unload-airplane package3 plane2 city1-2)
 (load-airplane package5 plane2 city1-2)
 (fly-airplane plane2 city1-2 city4-2)
 (load-airplane package2 plane1 city10-2)
 (unload-airplane package1 plane4 city3-2)
 (load-truck package3 truck1 city1-2)
 (load-truck package4 truck6 city6-2)
 (drive-truck truck6 city6-2 city6-1 city6)
 (unload-airplane package5 plane2 city4-2)
 (fly-airplane plane1 city10-2 city9-2)
 (drive-truck truck1 city1-2 city1-1 city1)
 (load-truck package1 truck3 city3-2)
 (unload-airplane package2 plane1 city9-2)
 (drive-truck truck3 city3-2 city3-1 city3)
 (unload-truck package3 truck1 city1-1)
 (unload-truck package4 truck6 city6-1)
 (unload-truck package1 truck3 city3-1))

Figure 11. BLACKBOX’s Solution to the Problem of Figure 7.

they can’t solve it. The former should
be rewarded. The problem is to verify
that a planner’s output is correct. In
the case where it outputs a proposed
solution as a sequence of steps, this
sequence can be simulated to see if it is
feasible and actually brings about the
desired situation. The issue is what it
should output in the case where it
proves that there is no solution. One
possibility is that it can produce a for-
mal proof in first-order logic, in which
case, the solution checker would just
be a proof checker. However, most sys-
tems that prove there is no solution do
not currently produce such a proof,
and it would probably be a major pain
to give them the ability to produce
one.

Many of the problems in the com-
petition were produced by random
problem generators. It is difficult to
ensure that randomly generated prob-
lems are interesting, that is, not easy
or impossible to solve. One way to get
around this difficulty is to make prob-
lem design a more important part of
the competition and encourage partic-
ipants (and others) to produce tricky
problems.

A more strenuous effort should be
made to accommodate planners that
require domain-specific advice. Ideal-
ly, a reward mechanism should be
found that gives points for ease of
advising, and more creative ways
should be sought of combining PDDL

with planner-specific advice.

Acknowledgments
Thanks to the members of the com-
mittee and the contestants for making
this event possible. Thanks to the
CMU staff for technical support.
Thanks to Blai Bonet, Henry Kautz,
Manuela Veloso, David Wilkins, and
the referees for comments on this arti-
cle. Funding for the competition was
provided by the Defense Advanced
Research Projects Agency.

References
Arkin, R. C. 1998. The 1997 AAAI Mobile
Robot Competition and Exhibition. AI
Magazine 19(3): 13–17.

Barrett, A., and Weld, D. S. 1994. Partial-
Order Planning: Evaluating Possible Efficien-
cy Gains. Artificial Intelligence 67(1): 71–112.

Blum, A. L., and Furst, M. L. 1995. Fast
Planning through Planning Graph Analy-

involving hierarchical planning but
also run-time (reactive) planning and
decision-theoretic planning. The
issue of plan quality should be
addressed more carefully. Different
problem domains have different defi-
nitions of optimality, and these defi-
nitions should be made explicit in the
domain or problem definitions. Plan
length (sequential or parallel) is only
a crude measure of plan cost; more
realistic measures are needed. In
many domains, the problem of find-
ing an optimal plan is much more dif-
ficult than the problem of finding a
feasible one, and in these cases, it
might be desirable to give planners a
big bonus for coming close to the
optimum.

Some planners can prove that a
problem has no solution; others just
work for a while and then declare that

Articles

54 AI MAGAZINE

Planner Average Time Problems
Solved

Fastest Shortest

IPP 21396 69 68 68
SGP 14343 38 5 35

Planner Average
Time

Problems
Solved

Fastest Shortest

BLACKBOX 1498 63 16 55
HSP 35483 82 19 61
IPP 7408 63 29 49
STAN 55413 64 24 47

Planner Average
Time

Problems
Solved

Fastest Shortest

BLACKBOX 2464 8 3 6
HSP 25875 9 1 5
IPP 17375 11 3 8
STAN 1334 7 5 4

Table 5. Results for Round 1—ADL Track.

Table 6. Results for Round 1—STRIPS Track.
A total of 88 problems were solved by at least 1 planner. Times are in milliseconds.

Table 7. Results for Round 2—STRIPS Track.
A total of 12 problems were solved by at least 1 planner. Times are in milliseconds.

example, many hierarchical planners
(especially SIPE [WILKINS 1988]) give
deductive rules a procedural interpre-
tation, so that they are used in only
one direction. P � Q is interpreted to
mean that Q is caused by P, which
then gets generalized to “execute Q
whenever P becomes true.” The use of
rules of this sort can be a very directed
way of getting a planner to do some-
thing, and once you get used to think-
ing in these terms, it’s hard to recast
problems as pure physics plus some
extra advice.

We hope the competition will
become a regular part of the AIPS con-
ference, thereby continuing to exert
pressure on the planning community.
In particular, we hope the next com-
petition deals with the following
issues:

There should be competitions

sis. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial
Intelligence, 1636–1642. Menlo Park,
Calif.: International Joint Conferences on
Artificial Intelligence.

Chapman, D. 1987. Planning for Conjunc-
tive Goals. Artificial Intelligence 32(3):
333–377.

Erol, K.; Nau, D.; and Hendler, J. 1994. HTN

Planning: Complexity and Expressivity. In
Proceedings of the Twelfth National Con-
ference on Artificial Intelligence. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

Fikes, R., and Nilsson, N. 1971. STRIPS: A
New Approach to the Application of Theo-
rem Proving to Problem Solving. Artificial
Intelligence 2:189–208.

Hart, D. M., and Cohen, P. R. 1992. Predict-
ing and Explaining Success and Task Dura-
tion in the PHOENIX Planner. In Proceedings
of the First International Conference on AI
Planning Systems, 106–115. San Francisco,
Calif.: Morgan Kaufmann.

Kirkpatrick, S., and Selman, B. 1969. Criti-

cal Behavior in the Satisfiability of Random
Boolean Expressions. Science
264(5163):1297–1301.

McCarthy, J., and Hayes, P. 1969. Some
Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine
Intelligence, Volume 4, eds. B. Meltzer and D.
Michie, 463–502. Edinburgh, U.K.: Edin-
burgh University Press.

MUC. 1992. Proceedings of the Fourth Mes-
sage-Understanding Conference. San Francis-
co, Calif.: Morgan Kaufmann.

MUC. 1991. Proceedings of the Third
Message-Understanding Conference. San Fran-
cisco, Calif.: Morgan Kaufmann.

Pednault, E. P. 1989. ADL: Exploring the
Middle Ground between STRIPS and the Sit-
uation Calculus. In Proceedings of the Con-
ference on Knowledge Representation and Rea-
soning, Volume 1, 324–332. San Francisco,
Calif.: Morgan Kaufmann.

Weld, D. 1994. An Introduction to Least
Commitment Planning. AI Magazine 15(4):
27–61.

Wilkins, D. 1988. Practical Planning: Extend-

Articles

SUMMER 2000 55

ing the Classical AI Planning Paradigm. San
Francisco, Calif.: Morgan Kaufmann.

Drew McDermott is a
professor of computer
science at Yale Universi-
ty. He was educated at
MIT, where he received a
Ph.D. in 1976. He was
chair of the Yale Com-
puter Science Depart-
ment from 1991 to

1996. He is coauthor of two texbooks in AI,
serves on the editorial board of Artificial
Intelligence, and is also a Fellow of the
American Association for Artificial Intelli-
gence. McDermott’s research is in robot
navigation, planning, and interagent com-
munications. In earlier incarnations he did
work on knowledge representation and
nonmotonic logic. He is currently working
on a book about machine consciousness.

Running out of space on your bookshelf?
Tired of leafing through thousands for pages for that one paper?

Electronic Versions of ALL AAAI Proceedings Are Now Available!

■ 1980–1997 AAI–IAAI Proceedings CD-ROM Set
This archival CD-ROM set consists of all the papers from the 1980, 1982, 1983, 1984, 1986, 1987, 1988, 1990, 1991,
1992, 1993, 1994, 1996, and 1997 AAAI National Conferences as well as the papers from the 1993, 1994, 1995, 1996,
and 1997 Innovative Applications of Artificial Intelligence Conferences. The set consists of more than 2,200 papers in
PDF format and is readable by most Windows, Macintosh, and many UNIX platforms.
4 CDs, $250.00

■ 1998–1999 AAAI–IAAI Proceedings CD-ROM (Special Bonus: KDD–95, KDD96, KDD97, and KDD-98)
This CD-ROM set consists of all the papers from the 1998 and 1999 National Conferences on Artificial Intelligence as
well as the 1998 and 1999 Innovative Applications of Artificial Intelligence Conferences. Also included on this CD are
the 1995, 1996, 1997, and 1998 Knowledge Discovery and Data Mining Conference papers. The single CD contains
approximately 260 technical papers in PDF format and is readable by most Windows, Macintosh, and many UNIX plat-
forms.
1 CD, $50.00

To order, call 650-328-3123 or send e-mail to orders@aaai.org

prices subject to change without notice

AAAI PRESS 445 BURGESS DRIVE MENLO PARK, CALIFORNIA 94025 USA

Articles

56 AI MAGAZINE

Edited by Jeffrey Bradshaw
The chapters in this book examine the state of today’s agent technology and point the way toward the exciting developments of the next millennium.
Contributors include Donald A. Norman, Nicholas Negroponte, Brenda Laurel, Thomas Erickson, Ben Shneiderman, Thomas W. Malone, Pattie
Maes, David C. Smith, Gene Ball, Guy A. Boy, Doug Riecken, Yoav Shoham, Tim Finin, Michael R. Genesereth, Craig A. Knoblock, Philip R. Cohen,
Hector J. Levesque, and James E. White, among others. 500 pp., ISBN 0-262-52234-9

Published by the AAAI Press / The MIT Press
To order, call 800-356-0343 (US and Canada) or (617) 625-8569. Distributed by The MIT Press, 55 Hayward, Cambridge, MA 02142

