
� Because perception-action systems are necessarily
constrained by the physics of time and space,
robotocists often assume they are best described
using differential equations, a language that is spe-
cialized for describing the evolution of variables
that represent physical quantities. However, when
it comes to decision making, where the represen-
tations involved refer to goals, strategies, and pref-
erences, AI offers a diverse range of formalisms to
the modeler. However, the relationship between
these two levels of representation—signal and
symbol—are not well understood. If we are to
achieve success in modeling intelligent physical
agents, robotics and AI must reach a new consen-
sus on how to integrate perception-action systems
with systems designed for abstract reasoning.

In the early days of AI, robotics was an inte-
gral part of our research effort. All our major
AI laboratories had research programs in

robotics in the late 1960s and early 1970s.
However by the 1980s, robotics had taken its
own course separate from the core activities of
AI. One might argue that such a split was
inevitable, a natural result of specialization in
a rapidly growing and maturing field such as
ours, but in our pursuit of rational models of
the mind, do we dare leave the body behind? 

What is responsible for the divergence
between these two fields that once were so inti-
mately intertwined? Can AI and robotics ever
be reunited, and if so, what would a new part-
nership look like? At the core, we believe, is the
ubiquitous issue of representation. There is an
enormous difference between dealing with
physical systems that operate in our everyday
environment and software systems that reside
in various abstract worlds. This gap has led to
divergence in many areas, including the fol-
lowing:

The problems: Robotics problems entail sys-

tems and agents interacting with the physical
world, but AI deals mostly with abstract prob-
lems that lend themselves to symbolic repre-
sentations.

The environment: Roboticists seek to
design systems that function in physical envi-
ronments that are always changing and intrin-
sically unpredictable. Software agents generally
operate in human-designed worlds where one
can have some measure of control over change
or at least an a priori knowledge of the possibil-
ities. 

The tools: AI more commonly uses discrete
mathematics, but robotics and machine per-
ception make use of continuous mathematics.
These tools also differentiate the typical educa-
tional background that characterizes the two
areas: AI has more computer scientists, but
robotics has more electrical and mechanical
engineers.

The evaluation criteria: AI researchers seem
to value novelty more, solving “hard” prob-
lems, showing existence of solutions, and so
forth. Robotics, however, follows traditional
engineering evaluation criteria: efficiency, reli-
ability, accuracy of performance, and economy
of the solution. 

We admit that these divisions might be
overexaggerated because in both fields, one
can find counterexamples to the previous
statements. Nevertheless, each of these points
speaks to the differences one encounters when
dealing with corporeal agents in the physical
world versus software agents in cyberspace.
Robotics concentrates most of its resources on
modeling perception and action. Often, differ-
ential equations are used to embody relatively
simple strategies for controlling hardware
effectors based on sensory information. AI,
however, emphasizes planning and abstract
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information and interacting physically with
humans, they will be required to integrate
more sophisticated perception-action capabili-
ties with their abstract reasoning abilities. In
addition, although each of these areas has
been well studied, in robotics and AI respec-
tively, the integration of perception-action sys-
tems with reasoning systems is less well under-
stood. Thus, there is a great need to reconsider
the relationship between AI and robotics.

The Problem of Representation
We will explore the issue that we believe is key
to this relationship, the issue of representa-
tion. Representation is critical, especially when
one considers how to find a description that is
compact, yet expressive enough to enable the
modeling of intelligent physical agents. What
kind of mathematical tools are available to us?
At the signal level, modeling of perception-
action (reactive) behaviors can be anchored in
differential equations and control theory, both
linear and nonlinear. At the symbol level,
higher-level control derives its models either
from geometry (typically used in robotics) or
from logics and rule-based systems such as are
favored in the AI planning community. If time
needs to be explicitly accounted for, then there
are other tools available. At the signal level,
time is implicit in the model of the reactive
behaviors (for example, using differential
equations). At the symbol level, discrete states
are generally considered, and these can be
modeled using discrete-event systems; tempo-
ral logics; and, at an even higher level, fluents.
If uncertainty and disturbances must be mod-
eled, then one must bring to bear stochastic
models and probability theory; partially
observable Markov decision models is one
such example. Finally, utility functions and
cost-benefit trade-offs come to play in con-
junction with game theory, optimization,
selection of strategies, and complexity consid-
erations. Examples of such approaches as they
have been applied to robotics are presented in
Alami et. al. (1998); Clementia, Di Felice, and
Hernandez (1997); Cohn (1995); Russell and
Subramanian (1995); and Sandewall (1994).
Hybrid system approaches such as discussed in
Arkin (1998), Brockett (1993), Dickmanns
(1997), Nagel and Haag (1998), Nerode and
Remmel (1991), and Ramadge and Wonham
(1987) combine discrete systems with lower-
level control systems. However, the use of all
these mathematical tools is predicated on the
assumption that label assignment (the seg-
mentation of the sensory or control signals) is
performed externally to the system. 

reasoning. For example, logical, grammatical,
or other discrete formalisms are used to model
the complex operations involved in winning a
chess match or parsing a sentence.

What seems clear is that as robotic agents
are called on to perform increasingly complex
tasks, they will be required not only to react
flexibly in dynamically changing environ-
ments but also to make decisions, reason
abstractly, and change perceptual or behav-
ioral strategies. Conversely, as intelligent soft-
ware agents are required to operate more and
more on human terms, responding to sensory

Figure 1. The Autonomous Agent.
The TRC platform serves as a mobile base. A stereo camera pair mount-
ed on the front of the rig is used for obstacle detection. A third camera
mounted on a pan platform is used for target detection and tracking.
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Signal and Symbol
In our view, the main unsolved problem is
how to segment the continuous signal into
states, strategies, labels, and so forth, and how
to arbitrate among states for effective interac-
tion with the environment (for example, Shi
and Malik [1998], Tari, Shah, and Pien [1997],
and Large, Christensen, and Bajscy [1999]). In
the GRASP Laboratory, we have concerned
ourselves with the problem of representation
in signal-symbol systems over the past several
years. One approach to this problem involves
the study of intelligent physical agents, agents
that can operate in the physical world with all
its uncertainty yet behave intelligently, mak-
ing decisions about how best to perform sim-
ple and complex tasks in a range of real–world
environments. A picture of one such agent is
shown in figure 1. It consists of a TRC LABMATE

mobile platform equipped with a stereo cam-
era pair used for obstacle detection; a third
camera mounted on a turntable for visual
tracking; and several computers used for pro-
cessing sensory signals, generating control sig-
nals, and making decisions.

The control system that models perception-
action behavior transforms visual input into
control signals to enable the physical agent to
carry out various navigation tasks. We use a
dynamic system approach proposed by Schon-
er, Dose, and Engels (1996). In this approach,
behavior is controlled by differential equations
that describe the rate of change of behavioral
variables, such as heading direction and veloc-
ity. At any instant in time, the values of these
variables describe the agent’s behavior. Over
time, the dynamic system generates a series of
values, controlling the behavior of the agent.
Our dynamic system has the form

Figure 2. Two Approaches to Decision Making and Behavioral Sequencing.
In the discrete-event system, the discrete states of a finite-state machine correspond to control of perception-action by a dis-
tinct control law (Θ⋅ = Fstate (Θ, Ψ)). Transitions between states are governed by guard conditions on perceptual variables (for
example, ψ). In the competitive dynamic system, each state variable (for example, w) controls the weighting of a task con-
straint at the signal level. Behavior is shaped directly by the competitive dynamic system, Θ⋅ = F(Θ, W, Ψ), as the symbol-
level system activates and deactivates attractor and repellor contributions to the behavioral dynamics. As perceptual parame-
ters (for example, ψ) change, bifurcations cause qualitative changes in perception-action behavior.
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to rendezvous with an agent and then proceed
toward a target location. To perform such tasks
in a complex environment requires sequenc-
ing several simpler perception-action strate-
gies. Building on the previous signal-level rep-
resentation, we have investigated two
approaches to modeling decision making and
sequence generation: (1) a discrete-event–system
approach and (2) a competitive dynamic system
approach. There are three key differences
between these two approaches: (1) the model
of how the symbol level interfaces with the sig-
nal level, (2) the model of how perception is
integrated into the decision-making process,
and (3) the model of how decisions are cap-
tured at the symbol level.

Before describing each approach in detail,
we summarize the differences between the two
systems in figure 2. In the discrete-event– system
approach (Kosecka 1996), the symbol level
interfaces with the signal level by realizing dis-
tinct behaviors as separate dynamic systems
(that is, fstate, middle left panel); these are con-
ceived of as elementary perception-action
strategies. At any particular time, the behavior
of the agent is governed by one of these equa-
tions. Decision making and sequencing are
modeled at the symbol level using a finite-state
machine (FSM) (top left panel). Individual FSM
states correspond to elementary signal-level
behaviors; when in a particular state, behavior
is governed by a corresponding signal-level
dynamic system. The arcs linking states are
labeled with discrete events (for example, � >
0) that summarize perceptual information. The
perceptual system generates these events,
which correspond to qualitatively different
conditions in the environment. The occur-
rence of a specific event causes the switch from
one state to another, modeling the decision to
execute a different perception-action behavior.
Thus, sequences of behavior are generated by
traversing the arcs, which is, in turn, governed
by the conditions on the current situation.

The competitive dynamic system model is for-
mulated entirely within the qualitative theory
of dynamic systems. Both signal-level control
and symbol-level decision making are modeled
using differential equations (Large, Chris-
tensen, and Bajscy 1999). However, the com-
petitive dynamic system interfaces with the sig-
nal level differently than the discrete-event
system. Rather than defining multiple elemen-
tary perception-action behaviors, a single mas-
ter equation is defined containing all possible
task constraints (middle right panel, figure 2).
Then, each variable in the symbol-level system
controls the weighting of a task constraint at
the signal level, such that the symbol-level sys-

D��dt = F(�,�) (1)
where � = [� �]T is a vector of behavioral vari-
ables, heading direction, and velocity and  is a
vector of variables that represent perceptual
information, such as direction to the target
and size of obstacles. An example of such a
function is shown in figure 2 (bottom panel).
Three fixed points can be seen in the figure as
points where the value of f(�,�) is zero (that
is, d�/dt = 0, so heading direction is fixed). If
the slope of the function around a fixed point
is positive, the value of the behavioral variable
is pushed away from this value by the action of
equation 1; such an unstable fixed point is
called a repellor. If the slope of the function is
negative, it is a stable fixed point, called an
attractor, because the behavioral variable is
pulled toward this value by the differential
equation.

The behavior of the agent is controlled by
the configuration of attractors and repellors:
Desired actions (such as moving toward a tar-
get) are modeled as attractors, and undesired
actions (such as moving toward an obstacle)
are modeled as repellors of the perception-
action dynamic system. Task constraints deter-
mine the mapping from perceptual informa-
tion to behavioral attractors and repellors. If
the task is to go to the desk, the action of mov-
ing toward the desk is modeled an attractor,
but other objects are considered obstacles
(modeled as repellors). However, if the task is
to rendezvous with another agent, then the
action of moving toward the other agent is an
attractor, and the desk is treated as an obstacle,
and moving toward it is to be avoided. Thus,
viewed as a representation of a perception-
action behavior, this dynamic system incorpo-
rates task knowledge and makes use of percep-
tual information.

As the values of the perceptual variables
change, the attractor-repellor layout changes.
For example, if a target moves, the location of
the corresponding attractor will move as well,
thus providing behavioral flexibility—behav-
ior adapts to accommodate changes in the
environment. An even greater measure of flex-
ibility is provided by bifurcations in the dynam-
ic system—qualitative changes in the layout of
attractors and repellors caused by changes in
parameter values. For example, when a new
obstacle comes into view, a repellor forms
where there was no repellor before. 

Although the dynamic control system pro-
vides a great deal of flexibility, it can only
model one relatively simple perception-action
behavior at a time. Complex tasks, however,
typically require the execution of sequences of
behavior. For example, one agent might need
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tem can activate and deactivate attractor and
repellor contributions to the behavioral
dynamics. Different behaviors are modeled as
fixed points (stable weight configurations) in
the competitive dynamic system. The environ-
ment determines the values of the system para-
meters. As the perceptual information changes,
parameters change, causing bifurcations in the
symbol-level system (top right panel, figure 2),
modeling the decision to cease executing one
behavior and execute another instead. This
approach differs from the discrete-event
approach because the properties of dynamic
systems, such as stability, bifurcations, and hys-

teresis, govern decision making and sequence
generation.

Discrete-Event Systems
The discrete-event approach models elemen-
tary perception-action strategies as behavioral
atoms, and each elementary control law is
associated with a state in a simple finite-state
machine. We define the composition operators
for the FSMs by imposing some additional
structure. The set of final states of an elemen-
tary behavior is partitioned into a set of suc-
cessful and unsuccessful final states. By utiliz-
ing these primitives, it is possible to build

Figure 3. Finite-State Machine (FSM) Models for Simple and Complex Behaviors.
A. An FSM for elementary behavior GoTo. The control law (fGoTo ) is repeatedly invoked in the next state until suc-
cessful (arrival at the goal) or unsuccessful (for example, detection of a spurious attractor) termination. 

B. Finite-state model for a navigation behavior. Failure of GoTo is followed by the elementary behavior Escape. Once
the agent clears the obstruction, GoTo is invoked again. This more complex behavior is able to handle a large variety
of navigation situations.
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Figure 4. Bifurcations in a Competitive Dynamic System for Decision Making.
Two bifurcation diagrams are shown, one corresponding to each dimension of a two-dimensional system for system navigation. It is
assumed that γtar,obs = γobs,tar = 0.5. A. The state variable wobs determines the weighting of ftar. B. The state variable wobs determines the
weighting of fobs. Four qualitatively different behaviors, corresponding to four fixed points of the competitive dynamics, are shown. 
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models of more complex tasks, which are
described as sequences of behavioral atoms. By
using a task-specification language, complex
FSMs are synthesized by sequencing simpler
automata. 

The FSM model of an elementary GoTo
strategy is shown in figure 3a. A signal-level
perception-action behavior is repeatedly
invoked in the next state until the agent reach-
es the desired target location and makes a tran-
sition to the final state. If the strategy fails, the
transition to the unsuccessful final state is
made. As an example of a composition of ele-
mentary behaviors, consider the problem of
moving to a target location while avoiding
obstacles. In simple environments, one ele-
mentary perception-action behavior, GoTo,
might do the trick. However, in complex envi-
ronments with multiple obstacles arrayed in
difficult configurations, our agent might get
stuck in an area and never reach the target
location (Large, Christensen, and Bajscy 1999).
We address this problem by adding an Escape
behavior that enables the agent to find its way
out of enclosures and other spatial traps. The
FSM for this behavior is shown in figure 3b. We
assume that the fail signal to the GoTo behav-
ior is generated whenever the agent detects an
enclosure from which it must escape. When
the fail signal is generated, the FSM enters the
unsuccessful final state, and a transition is
made to the initial state of Escape. When
Escape terminates (when the agent has cleared
the obstruction), the GoTo behavior resumes.
The navigation task terminates successfully
when the agent reaches the target location.

Competitive Dynamic Systems
The competitive dynamic system strategy
models individual behaviors as the stable fixed
points of a decision-making dynamic system.
This system interacts with the signal level not
by invoking separate elementary behaviors but
by directly shaping perception-action strate-
gies. The variables of the competitive dynamic
system determine the weighting of the task
constraints in the behavioral dynamic system.
This interface between the two levels allows
the decision-making system to activate and
deactivate attractors and repellors in the per-
ception-action system, synthesizing control
laws on the fly. Thus, qualitatively different
configurations of the weights give rise to dis-
tinct perception-action behaviors. In addition,
distinct weight configurations, which arise as
attractors in the competitive dynamic system,
are functionally equivalent to the FSM states of
the discrete-event system.

Decisions are made through bifurcations in

the competitive dynamic system, and as with
any dynamic system, bifurcations are caused
by changes in the values of the system parame-
ters. The decision-making system uses two
types of parameter: (1) competitive advantage
and (2) competitive interaction. These parame-
ters are tied to perceptual information, so that
decisions are made on the basis of the environ-
ment as sensed by the agent. First, each weight
has an associated competitive advantage that
describes whether the corresponding task con-
straint (for example, move toward target,
avoid obstacles) is appropriate to the agent’s
current situation. For example, if obstacles are
nearby, the Obstacles constraint will have a
strong competitive advantage, but if the target
is also in view, the Target constraint also has a
strong advantage. The activation of both con-
straints simultaneously corresponds to the ele-
mentary GoTo behavior of the discrete-event
system earlier. Competitive interaction describes
the extent to which each constraint is consis-
tent or inconsistent other constraints. For
example, if the agent finds itself enclosed in an
area with the target just beyond, the competi-
tive interaction between the Obstacles and the
Target constraints would increase so that the
Target constraint would be deactivated tem-
porarily, allowing the agent to escape from the
enclosure. Deactivation of the target con-
straint corresponds to the Escape behavior of
the discrete-event system.

We can understand in detail how these para-
meters interact to determine the behavior of
the agent by constructing a bifurcation dia-
gram such as that in figure 4. The bifurcation
diagram shows the layout of fixed points for a
two-dimensional system (that is, weights for
the Target and Obstacles constraints) as a func-
tion of the perceptual parameters. In the fig-
ure, the competitive advantage parameters are
varied from 0 to 1, assuming that the two com-
petitive interaction parameters remain fixed at
0.5. Four qualitatively different regions (and,
thus, behaviors) are pictured. Activation of
both constraints corresponds to the GoTo
behavior described earlier, but activation of
the Obstacles constraint only corresponds to
the Escape behavior. 

Beginning in the front left corner of the
parameter space, only the Obstacles constraint
contributes to the behavioral dynamics (the
Escape behavior). Moving to the right, as Tar-
get‘s advantage increases beyond 0.5, both Tar-
get and Obstacles constraints contribute to
shape perception-action behavior (the GoTo
behavior). As we next decrease the advantage
of Obstacles, moving to the back left region,
Obstacles is deactivated, but Target is activat-
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and reasoning might be unnecessary because
many apparently intelligent behaviors can be
modeled as perception-action systems situated
in the physical world. Unfortunately, we have
come to view both points of view as somewhat
simplistic. Intelligent agents must be capable
of bringing to bear a rich variety of perception-
action strategies but, at the same time, reason-
ing and solving problems to perform both
familiar and unfamiliar tasks in novel environ-
ments. 

In this regard, the study of intelligent phys-
ical agents and their behavior is of tremendous
theoretical and practical significance in AI. Not
only are there a vast number of real-world
applications where autonomous agents can be
useful, but models of intelligent physical
agents can serve as valuable starting points for
theories of intelligent biological systems. The
question that we ask is how to integrate mod-
els of perception-action behavior with models
of problem-solving behavior. 

Although we do not yet have the answer, we
have two requirements for any solution: First,
the description of the physical agent should
take place within a structured framework that
supports both analysis and theory making.
Thus, we are allowed to develop design
methodologies for artificial agents as well as
develop rational theories of biological agents.
Furthermore, any methodology that we pro-
pose should be compositional, allowing man-
ageable and flexible system design through
decomposition of complex problems or behav-
iors into subparts. Both of our systems meet
these requirements. Finally, it is necessary to
carefully compare the assumptions brought to
bear by different strategies as we learn to mod-
el intelligent behavior in the real world. 

What are the special requirements of sys-
tems that must interact with the physical
world and also reason and solve problems? It is
this question that must be addressed before we
can claim a theory of intelligent physical
agents and before AI and robotics can be
reunited.
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