
■ This article introduces a generic framework for
constraint-directed search. The research literature
in constraint-directed scheduling is placed within
the framework both to provide insight into, and
examples of, the framework and to allow a new
perspective on the scheduling literature. We show
how a number of algorithms from the constraint-
directed–scheduling research can be conceptual-
ized within the framework. This conceptualization
allows us to identify and compare variations of
components of our framework and provides new
perspective on open research issues. We discuss the
prospects for an overall comparison of scheduling
strategies and show that firm conclusions vis-a-vis
such a comparison are not supported by the liter-
ature. Our principal conclusion is the need for an
empirical model of both the characteristics of
scheduling problems and the solution techniques
themselves. Our framework is offered as a tool for
the development of such an understanding of con-
straint-directed scheduling and, more generally,
constraint-directed search.

Constraint-directed search is a powerful
search methodology founded on the use
of a rich constraint representation not

only to model the problem knowledge but also
to guide search to a solution. It is the latter
point that is responsible for much of the power
of the technique: Constraints do not simply
represent the problem but are also active in
narrowing the space of possible solutions and
form an integral basis for heuristic decision
making.

The goals of this article are to introduce a
generic framework for constraint-directed
search; illustrate the framework with the con-
straint-directed scheduling literature; and,
finally, place constraint-directed–scheduling
research within the framework, enabling a new
perspective on various scheduling algorithms
and components thereof.

Constraint-Directed Search
Constraint-directed search, broadly defined, is
an approach to problem solving that explores
the problem space under the guidance of the
relationships, limitations, and dependencies
among problem objects. These relationships,
limitations, and dependencies together are
known as constraints. The approach requires
that these constraints are represented and, fur-
thermore, are represented in a way that search
techniques can make use of them for guidance.

We return to such representation and search
issues later, after providing the definition of
the most basic example of a constraint-directed
search problem in the following section.

The Constraint-Satisfaction Problem
The finite constraint-satisfaction problem
(CSP) (Tsang 1993; Mackworth 1977) consists
of the following: Given are a set of n variables
Z = {x1, …, xn} with discrete, finite domains
D = {D1, …, Dn} and a set of m constraints C =
{c1, …, cm} that are predicates ck(xi , …, xj)
defined on the Cartesian product Di x … x Dj.
If ck is true, the valuation of the variables is said
to be consistent with respect to ck, or equiva-
lently, ck is satisfied. A solution is an assignment
of a value to each variable, from its respective
domain, such that all constraints are satisfied.

An instance of a CSP (Z, D, C) can be concep-
tualized as a constraint graph, G = {V, E}. For
every variable v in Z, there is a corresponding
node n in V. For every set of variables connect-
ed by a constraint c in C, there is a correspond-
ing hyperedge e in E. Other conceptualizations
of a CSP exist, including the dual constraint
graph and join graph (Dechter, Dechter, and
Pearl 1990). For binary constraint problems,
where each constraint involves at most two
variables, the hyperedges are simply edges.

In figure 1, we present a constraint graph of

Articles

WINTER 1998 103

A Generic Framework for
Constraint-Directed Search

and Scheduling
J. Christopher Beck and Mark S. Fox

Copyright © 1998, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1998 / $2.00

AI Magazine Volume 19 Number 4 (1998) (© AAAI)

minimize the cost by satisfying as many con-
straints as possible.

Why Constraints?
Constraint-directed search relies on two inter-
dependent intuitions: The representational intu-
ition states that to solve a problem, the relevant
knowledge must be represented. The search
intuition states that search toward a solution
should be guided based on the represented
knowledge. Underlying these intuitions is the
following topological assumption (Fox 1986):
Understanding a problem’s search space will
enable the creation and selection of search tech-
niques that can efficiently navigate the space to
a solution. Fortunately, the topological assump-
tion is not too outrageous given that it is under-
lies much of AI and operations research.

The constraint-directed interpretation of the
representational intuition calls for the creation
of a rich constraint representation able to
express the problem knowledge at a deep level.
The search intuition suggests that we look to
the constraints for search guidance: Con-
straints are not passive objects that evaluate a
potential solution but form the basis for the
search operators.

The representational and search intuitions
interact. A constraint representation cannot be
created wholly independent of the search tech-
niques. Similarly, a set of efficient search tech-
niques cannot be constructed without knowl-
edge of the constraint representation. It is
typical to iterate between representation and
search: Not only do the search techniques take
into account the details of the knowledge rep-
resentation, but these very knowledge repre-
sentation details must be modified and
extended based on the details of the search
techniques.

A danger with this research approach, espe-
cially when applied to solving real-world prob-
lems as in scheduling, is that the focus might
be on a specific set of problems and not on the-
oretical issues surrounding search, problem
characteristics, complexity, and other aspects
of computer science. It is critical for both struc-
tured progress toward solving specific prob-
lems and incorporation of the work of other
researchers that the problem characteristics
and search techniques be understood within
an overall framework. It is important to make
this point because given the current schedul-
ing literature, it is difficult to empirically com-
pare algorithms and assess the characteristics
of the algorithms and problems leading to per-
formance differences. (A discussion of the
development of an empirical theory of heuris-
tics can be found in Hooker [1996, 1993]).

a CSP representation of a small graph coloring
problem. Each variable (node) has a domain of
three values {red, green, blue}, and each con-
straint (edge) expresses a “not equals” relation-
ship. For this particular example, there are a
number of solutions, including {v1 = red,
v2 = green, v3 = blue, v4 = red}.

The search for a solution to a CSP can be
viewed as modifying the constraint graph by
addition and removal of constraints. The con-
straint graph is an evolving representation of
the search state, where a solution is a state with
a single value remaining in the domain of each
variable, and all constraints are satisfied. In our
example in figure 1, we can (heuristically) add
a unary constraint that assigns v2 = green.
Alternatively, we may have at our disposal an
algorithm that is able to infer that v1 and v4
must have the same color, and therefore, we
introduce a binary “equals” constraint
between these two variables.

CSPs have successfully been used for a wide
range of problems from the abstract (for exam-
ple, graph coloring [Minton et al. 1992]) to
the concrete (for example, machine vision
[Shapiro and Haralick 1981; Rosenfeld, Hum-
mel, and Zucker 1976; Waltz 1975]). For an
excellent review of CSP solution techniques
and applications, see Kumar (1992).

A constraint-optimization problem (COP)
(Tsang 1993) is defined as a CSP together with
an optimization function f that maps every
solution tuple to a numeric value: (Z, D, C, f),
where (Z, D, C) is a CSP, and if S is the set of
solution tuples of (Z, D, C), then f : S → the
numeric value. The task in a COP is to find a
solution tuple with the optimal (minimal or
maximal) value of f. A common variation of
this model is one in which the optimization
function is a weighted sum of the constraints
violated by a particular valuation of the vari-
ables (Zweben et al. 1994; Zweben et al. 1993;
Smith et al. 1989; Fox 1983). Rather than sat-
isfy all constraints and optimize f, the goal is to

Articles

104 AI MAGAZINE

Di = {red, green, blue}

c1

c4 c2

c3

c5 cj = “not equals”

v1

v4v3

v2

Figure 1. A Small Graph Coloring Problem
Represented as a Constraint-Satisfaction Problem.

A Framework for Constraint-
Directed Search

Before defining the framework and discussing
each of the components of the framework, we
define a number of terms used in our descrip-
tion of the framework.

Definitions

Induced subgraph: If e is an edge, let NODE(e)
be the set of nodes to which e is directly
attached. The induced subgraph of a set of
nodes, V’, in a graph G = {V, E} is a graph,
G’ = {V’, E’}, where V’ ⊆ V and E’ ⊆ E such that
E’ = {e | NODE(e) ⊆ V’}.

Consistent valuation-assignment: A consis-
tent valuation or consistent assignment of a sub-
set of CSP variables, A, is the assignment of a
value to each variable in A such that all con-
straints in the induced subgraph of A are satis-
fied.

Commitment: A commitment is a new con-
straint (or a set of new constraints) added to
the constraint graph. The typical example is
assigning a start time to an activity by posting
a unary equals constraint. We divide commit-
ments into two classes: (1) implied commit-
ments and (2) heuristic commitments. Implied
commitments are constraints added to the graph
because they are implied by the existing prob-
lem state. Implied constraints are redundant,
however; by explicitly adding them to the
graph, we are often able to make use of efficient
techniques to derive further implied con-
straints. A heuristic commitment is a con-
straint that is added, although it is not neces-
sarily implied. Typically, there is some
(heuristic) justification to believe that a heuris-
tic commitment is likely to take part in an
overall solution.

Propagator: A propagator is an algorithm
that examines the existing search state to find
implied commitments.

Commitment assertion: A commitment can
be asserted, that is, added to the constraint
graph. An assertion is a state-transition opera-
tor.

Commitment retraction: Retraction is the
process of identifying a previously made com-
mitment and removing it from the constraint
graph. Like assertion, retraction is a state-tran-
sition operator.

Termination criteria: The termination crite-
ria is the user-defined condition for ending the
search. There can be many criteria: a definition
of a solution (for example, all the activities
have a start time, and all the constraints are
satisfied), determination that a solution does
not exist, limits on the search in terms of cen-

tral processing unit (CPU) time, number of
commitments, number of heuristic commit-
ments, number of retractions, and so on.

Dead end: A dead end is a point in the search
where it is discovered that one or more vari-
ables cannot be assigned values without break-
ing some constraints.

Search strategy: A search strategy is an
instance of our framework, where each compo-
nent is specified. We allow null specifications
of components because, for example, it might
be that a strategy uses no propagators or retrac-
tion techniques.

The Framework
In proposing a framework for constraint-direct-
ed search, we extend and modify the original
ODO scheduling framework (Davis 1994) to
reflect recent work. Figure 2 displays a
schematic of our framework. Figure 3 presents
a pseudocode representation. We are not neces-
sarily proposing this framework at the imple-
mentation level. Depending on the choices
made for the various components, close inter-
action among components might be required;
therefore, an implementation-level description
might split or merge the ones we have identi-
fied. Nonetheless, we believe that the existing
constraint-directed search work can be under-
stood within this framework, and furthermore,
that this understanding allows a new perspec-
tive on this work.

The Components of the Framework
As indicated by figures 2 and 3, the framework
consists of a number of components. The com-
mitment-assertion component is trivial be-
cause it requires adding a constraint to the
existing graph. The other components (that is,
propagators, heuristic-commitment tech-
niques, and retraction techniques) might
require significant search effort. In this subsec-
tion, we define each of these components more
precisely. A number of examples of each com-
ponent from the constraint-directed schedul-
ing literature are presented.

Propagators A propagator is a function that
analyzes the current search state to determine
constraints that are implied by, but are not
explicitly present in, the constraint graph. By
making these constraints explicit, we can use
them to prune the number of possibilities to be
explored in the search space. For example,
these constraints can be used to reduce the
start-time domains of some of the activities in
the problem. The advantages of propagators
stem from the soundness of their commit-
ments (a propagator will never infer a con-
straint that is not a logical consequence of the

Articles

WINTER 1998 105

The
advantages of
propagators
stem from the
soundness of
their
commitments
…

current problem state) and the fact that when
a constraint is explicitly present in the graph,
it not only reduces the search space, but it is
also often possible to use additional propaga-
tors to further prune the search space.

Examples of propagators from a CSP per-
spective include the various consistency
enforcement algorithms such as arc consisten-
cy and k consistency (Freuder 1982, 1978;
Mackworth 1977). These algorithms are typi-
cally viewed as removing values (or tuples of
values) from variable domains; however, we
treat them as adding implied constraints that,
for example, rule out domain values (that is, a
unary not-equals constraint).

Many powerful propagation techniques
have been developed for constraint-directed
scheduling in recent years, for example, many
variations of edge finding (Le Pape and Bap-
tiste 1996; Caseau and Laburthe 1994;
Nuijten 1994; Carlier and Pinson 1989) and
shaving (Carlier and Pinson 1994). It has long
been known that search can drastically be
reduced by enforcing various degrees of consis-
tency (Freuder 1982). The effort to achieve
high degrees of consistency, however, appears
to be at least as expensive as more traditional
algorithms. The goal for propagator research,
then, is to find the trade-off between complex-

Articles

106 AI MAGAZINE

Heuristic
Commitment

Assert
Commitment(s)

START No implied
commitments

Termination
criteria met

EXIT

Dead-end
found

found

Found implied
commitment(s)

FAILURE

Nothing
to retract

Retract
Commitment(s) Propagators

Figure 2. Schematic of the Framework.

forever{
if (termination criteria are met)

EXIT

while (untried propagators AND
no implied commitments found AND
no dead-end found)

try next propagator

if (dead-end found){
retract commitment(s)
if (no commitments to retract)

FAILURE
}
else{

if (no implied commitments)
make heuristic commitment

assert commitment
}

}

Figure 3. Pseudocode for a Search Strategy.

ity and the resultant easing of the search effort.

Heuristic-Commitment Techniques
Theoretically, we can use propagators by them-
selves to solve CSPs as used in solution synthe-
sis techniques (Freuder 1978). However, in the
worst case, such techniques take time, provably
exponential in the number of variables. In
practice, to our knowledge, it has not been
found to be a worthwhile approach for finding
a single solution to a CSP. It is typically neces-
sary to make heuristic commitments—those
not necessarily implied by the current problem
state.

Traditionally in a CSP, a heuristic commitment
is the assignment of some value to some vari-
able. With this narrow definition, heuristics
focus on variable ordering and value ordering:
what is the next variable to assign and to what
value will it be assigned. One popular variable-
ordering heuristic is the fail-first heuristic that
always chooses to instantiate the variable with
the fewest number of remaining possible val-
ues.

With our more general definition of a heuris-
tic commitment as the addition of a constraint
to the graph, we view heuristics as algorithms
that, on the basis of measurements of the cur-
rent search state, suggest new constraints. The
traditional variable- and value-ordering heuris-
tics are particular examples of such algorithms.

Retraction Techniques Assume that a
search algorithm moves through a sequence of
states S = (s0, s1, s2, …, sk) as a result of the asser-
tion of a number of commitments A = (a1, a2,
..., ak). Further, assume that a mistake is made:
As a result of one or more of the commitments
in A, we have reached a search state sk that is
inconsistent with respect to the constraints in
the problem. The state sk is a dead end in the
search. To escape a dead end, we must retract
some commitments, C ∈ A. The retraction
component of the search strategy must then
answer two questions: First, which commit-
ment (or commitments) should be retracted?
Second, having selected the to-be-retracted
commitment, say, the one made at state si,
i < k, what should be done with the commit-
ments made at the intervening search states,
that is, all states sj, where i < j < k? Different
retraction techniques supply different answers
to these questions. We discuss the various
answers applied to constraint-directed schedul-
ing in the next section.

Constraint-Directed Scheduling
Having introduced the framework for con-
straint-directed search, we now turn to the
constraint-directed–scheduling literature. As

noted in the introduction, this investigation is
to fulfill the dual goals of illustrating the frame-
work components and analyzing the
constraint-directed–scheduling research from
the perspective of our framework.

Background
Constraint-directed scheduling is the represen-
tation of a scheduling problem and the search
for a solution to it by focusing on the con-
straints in the problem. Given that even simple
models of scheduling (for example, job-shop
scheduling) are NP-hard (Garey and John-
son 1979), the search process often depends on
heuristic commitments, propagation of the
effects of commitments, and the retraction of
commitments in the event of a dead end.
Analysis of industrial scheduling problems
(Fox 1990, 1983) indicates that the goal is not
simply meeting due dates but also satisfying
many complex (and interacting) constraints
from disparate sources within the organization
as a whole. In short, scheduling is a prime
application area for constraint-directed search.

The Job-Shop–Scheduling Problem
One of the simplest models of scheduling wide-
ly studied in the literature is the job-shop–
scheduling problem. The N x M job-
shop–scheduling problem is formally defined
as follows:

Given are a set of N jobs, each composed of
M totally ordered activities and M resources.
Each activity Ai requires exclusive use of a sin-
gle resource Rj for some processing duration
duri. There are two types of constraint in this
problem: Precedence constraints between two
activities in the same job state that if activity A
is before activity B in the total order, then
activity A must execute before activity B.
Resource constraints specify that no two activ-
ities requiring the same resource can execute at
the same time.

Jobs have release dates (the time after which
the activities in the job can be executed) and
due dates (the time by which the last activity in
the job must finish). In the decision problem,
the release date of each job is 0, and a global
due date is D. The problem is to determine
whether there is an assignment of a start time
to each activity such that the constraints are
satisfied, and the maximum finish time of all
jobs is less than or equal to D. This problem is
NP-complete (Garey and Johnson 1979).

An example of a 3 x 5 job-shop–scheduling
problem is shown in figure 4. In this example,
there are three jobs (A, B, and C); each job has
five activities (for example, A1, …, A5) and five
resources (R1, …, R5). The release date for all

…
scheduling
is a prime
application
area for
constraint-
directed
search.

Articles

WINTER 1998 107

work on the ISIS scheduler (Fox 1983) at
Carnegie Mellon University (CMU). Systems,
both directly descended from ISIS (OPIS [Smith
et al. 1989], CORTES [Sadeh and Fox 1989],
MICROBOSS [Sadeh 1991]) and more indirectly
related (SONIA [Collinot and Le Pape 1987], DAS

[Burke and Prosser 1994], GERRY [Zweben et al.
1994, 1993], MINCONFLICTS [Minton et al.
1992], DCHS [Sycara et al. 1991], DISARM

[Neiman et al. 1994]), investigate a wide space
of constraint representations and solution
techniques. In particular, this thread is respon-
sible for the realization of the use of constraint
to represent scheduling problems in their full
generality as well as the search approach of
focusing on the problem knowledge represent-
ed in the constraints as the main basis for
heuristic decision making.

The constraint-programming thread: The
constraint-programming community has tra-
ditionally stressed representation but used
more generic solution techniques: Constraint-
programming languages could typically repre-
sent problems far more complex than their
solution techniques could handle. The con-
straint-programming thread, developed from
Prolog, aimed to provide languages for clear,
declarative problem representations, with con-
straint propagation being dealt with by the
underlying language. Attempts to solve hard
scheduling problems with these languages
were often unsuccessful. The propagation
found in early versions of constraint program-
ming languages—forward checking and arc
consistency—was not sufficiently powerful.
More recent work in this field has developed
specific propagation techniques for different
types of constraint found in scheduling. These
recent investigations have corrected the imbal-
ance in solution power and have provided a
number of impressive results (Van Hentenryck

jobs is 0, and the due date for all jobs is D. The
resource required by each activity is indicated
in the upper-left corner, and the duration,
although not specified, is represented by the
length of each activity. The arrows represent
precedence constraints. For clarity, the transi-
tive closure of the precedence relations is not
displayed.

Many scheduling problems are not simply
CSPs but, rather, COPs. Relatively simple opti-
mization functions have been studied in the
literature such as the minimization of make-
span (that is, find the schedule with the mini-
mum D) (Applegate and Cook 1991), mini-
mization of the average (or maximum)
tardiness of activities (that is, how late after
their due date activities finish), or some combi-
nation of other attributes (for example, mini-
mize work-in-process combined with tardiness)
(Sadeh 1991; Smith et al. 1989; Fox 1983). Lit-
tle work has addressed the many complex and
interacting objective functions that typically
arise in real-world problems.

Historical Perspective A number of threads
of research have contributed to modern con-
straint-directed scheduling. It is beyond the
scope of this article to discuss the contributions
of each thread, much less those of each schedul-
ing system. For our purposes, we note the three
chief threads and direct interested readers to
Fox (1990) and Le Pape (1994a) for more in-
depth historical perspectives. There has been
cross-fertilization among these threads as they
have evolved. This categorization is not meant
to indicate completely independent lines of
research but, rather, the areas that modern con-
straint-directed scheduling draws on.

The knowledge representation thread: The
original constraint-directed scheduling work is
owed to Mark Fox and Steve Smith and their

Articles

108 AI MAGAZINE

A1 A2 A3 A4 A5

0 D

R4 R5 R1 R3 R2

B1 B2 B3 B4 B5
R1 R3 R5 R4 R2

C1 C2 C3 C4 C5
R4 R1 R2 R5 R3

Figure 4. An Example 3 x 5 Job-Shop–Scheduling Problem.

1989; Caseau and Laburthe 1995; Caseau and
Laburthe 1996; Nuijten 1994; Le Pape 1994b;
Le Pape and Baptiste 1996).

The operations research thread: The
long(er) history of operations research provides
a number of techniques for constraint-directed
scheduling. From work that predates con-
straint-directed scheduling itself (Baker 1974;
Little et al. 1963) to techniques that have been
adopted and adapted more recently (Applegate
and Cook 1991; Glover 1990, 1989; Carlier and
Pinson 1989; Erschler, Roubellat, and Vernhes
et al. 1980, 1976), a variety of operations
research methods have significant impact on
both the approaches to, and performance of,
modern constraint-directed scheduling sys-
tems. Within the operations research commu-
nity, scheduling techniques have been devel-
oped based on mathematical programming
techniques (integer programming, column
generation) and local search (tabu search).
Although these techniques can be useful, one
drawback is that they tend to be developed for
a specific problem type (for example, job-shop
scheduling) and often cannot represent full,
real-world problems in all their generality.

Notation For an activity, Ai, and a set of
activities, S, we use the notation in table 1
throughout the balance of this article. We omit
the subscript unless there is the possibility of
ambiguity.

Scheduling Algorithms
as Instances of the Framework
To illustrate the applicability of our framework,
we now demonstrate how a number of existing
scheduling algorithms can be conceptualized
within it.

The ORR-FSS Algorithm One of the algo-
rithms implemented in the MICROBOSS sched-
uler (Sadeh and Fox 1996; Sadeh 1994, 1991)
is the operation resource reliance–filtered sur-
vivable schedules (ORR-FSS) algorithm. It is a
constructive algorithm: Each iteration works
on a consistent partial solution (that is, a sub-
set of variables are consistently assigned) and
attempts to extend it by assigning a start time
to a currently unassigned activity.

Informally, ORR heuristically identifies the
most critical activity by finding the activity
that relies most on the resource and time for
which there is the most contention. (A more
formal definition of contention and reliance is
provided later). FSS then rates the quality of the
possible start times of the critical activity. The
start time with the highest quality is assigned.
If there is high contention for a resource at a
particular time, t, it means that a (relatively)

high number of activities are competing to exe-
cute at t. Intuitively, it is important for search
to focus here because start times must be found
for all the competing activities such that only
one is executing at t. Focusing elsewhere is like-
ly to result in a reduction of the possible start
times of the competing activities to such an
extent that a dead end is produced: One of the
activities at t will not have any possible start
times that do not conflict with times when
other activities are executing. Focusing on the
activities competing for t solves the subprob-
lem before it becomes a dead end. Although
the commitments to solve the subproblem
might increase contention elsewhere in the
graph because contention elsewhere was previ-
ously lower, the likelihood of producing a dead
end is smaller than if search did not focus at
the time most contended for.

Two propagators are used: (1) temporal prop-
agation and (2) resource propagation. Temporal
propagation (technically, arc-B-consistency)
operates on the precedence constraints. If Ai
and Aj are activities in the same job such that Aj
is a successor of Ai, temporal propagation
enforces estj ≥ esti + duri and lfti ≤ lftj – durj.
Resource propagation (arc consistency) plays a
similar role for resource constraints. For exam-
ple, if Ai and Bj require the same unary capacity

Articles

WINTER 1998 109

Symbol Description

STi A CSP variable representing the start time of Ai

STDi The discrete domain of possible values for STi

esti Earliest start time of Ai

lsti Latest start time of Ai

duri Duration of Ai

efti Earliest finish time of Ai

lfti Latest finish time of Ai

lft(S) The latest finish time of all activities in S

est(S) The earliest start time of all activities in S

dur(S) The sum of the durations of all activities in S

CSP = constraint-satisfaction problem.

Table 1. Notation.

local search algorithm. Working from a total
assignment of start times that fails to satisfy
some set of constraints, GERRY will reschedule or
“repair” some activity to reduce the total cost
of the schedule. The cost is a weighted sum of
the extent to which each constraint is violated.
The precedence constraints are always main-
tained (using temporal propagation); therefore,
when applied to job shop, the only constraints
that GERRY repairs are the resource constraints.
To repair a resource constraint, GERRY resched-
ules one of the conflicting activities. If K is the
set of activities contributing to a violation, GER-
RY will try to move each task to the previous
and next times at which the resource is avail-
able. Each of these moves is evaluated by a lin-
ear combination of a number of factors, includ-
ing the extent to which the size of the activity
matches the size of the violation, the number
of activities temporally dependent on the activ-
ity, and the distance from the current start time
of the activity to the new start time. Each move
is scored, and the score is used to select the
heuristic commitment.

Every l commitments, the overall cost of the
schedule is calculated. If the cost is less than
the previous schedule (that is, from l iterations
ago), it is accepted as the new schedule. If it is
of lower cost than all schedules seen so far, it is
also stored as the “best so far” schedule. Even
if the schedule is of higher cost than the previ-
ous schedule, it is accepted by some probabili-
ty based on a simulated annealing technique
(Kirkpatrick, Gelatt, and Vecchi 1983); as the
search progresses, a higher cost schedule is
increasingly less likely to be accepted. Search
continues until a zero-cost schedule is found
(no violations), or a bound on the total CPU
time is reached.

GERRY (and other local search techniques)
can be modeled in our framework by encoding
the local search moves as first retracting some
commitment and then making a new commit-
ment. At a conceptual level, we can view the
retraction component as selecting the commit-
ments to retract; the heuristic-commitment
technique then identifies new commitments
to be asserted. In reality, these two compo-
nents are tightly integrated: The commitments
that will be retracted are highly dependent on
the local moves that the heuristic commit-
ment can perform.

Every l iterations, the retraction step is dif-
ferent because the whole schedule is evaluated.
If the new schedule is accepted (because of
lower cost or probabilistic acceptance of higher
cost), the usual retraction takes place (after
replacing the stored solution with the new
one). If the new schedule is not accepted, the

resource and lstj < eftj, then for the time interval
[lstj, eftj), Bj must be the only activity using the
resource. (The interval notation [t1, t2) repre-
sents all time points from t1 to t2, including t1
but not including t2. We follow the convention
that an activity that starts at t1 and ends at t2
executes on the interval [t1, t2). As a conse-
quence, a successor activity may start at t2 and,
for example, execute the interval [t2, t3)).
Resource propagation will remove the values
(lstj – duri, eftj) from the possible start times of Ai.

The retraction technique is chronological
backtracking: The most recent commitment is
retracted. The search continues until a solution
is found or until a bound on the number of
heuristic commitments is reached.

In summary, in terms of our framework, we
represent ORR-FSS as follows: The termination
criteria are that all activities are assigned a con-
sistent start time, or a user-specified bound on
the number of heuristic commitments is
reached. The propagators used are temporal
propagation and resource propagation. The
heuristic-commitment technique is ORR-FSS,
and the retraction technique is chronological
backtracking.

The SOLVE Algorithm The SOLVE algorithm
(Nuijten 1994; Nuijten et al. 1993) is also a
constructive algorithm but takes a different
approach than ORR-FSS. In ORR-FSS, the main
effort (and computational complexity) is in the
heuristic-commitment component, but the
other components are relatively inexpensive.
In SOLVE, the heuristic-commitment technique
is simpler, less expensive, and less powerful,
but the propagators are more expensive and
more powerful.

The heuristic-commitment technique finds
the smallest earliest finish time, t, of all
unscheduled activities and identifies the set of
unscheduled activities that can start before t.
One of these activities is randomly selected
and assigned to start at its earliest start time.
In addition to temporal propagation and
resource propagation, SOLVE uses an extensive
set of propagators, including edge finding (see
later). The retraction technique is bounded
chronological backtracking with restart.
When a dead end is found, a limited number
of chronological retractions are done. If no
solution is found within this limit, search is
restarted from the beginning. Because of the
randomness in the heuristic-commitment
technique, restarting is likely to result in the
exploration of different search states. The con-
ditions for termination of search are having
an assignment for all activities or reaching the
bound on the number of restarts.

GERRY GERRY (Zweben et al. 1994, 1993) is a

In SOLVE, the
heuristic-

commitment
technique is
simpler, less

expensive,
and less

powerful,
but the

propagators
are more

expensive
and more
powerful.

Articles

110 AI MAGAZINE

previous schedule is put back: The l most
recent commitments are retracted, and the l
commitments that must be (re)made to return
to the previous schedule are asserted.

In summary, GERRY’s termination criteria are
the discovery of a zero-cost schedule or the
reaching of a limit on CPU time. The only
propagator used is temporal propagation. The
heuristic-commitment technique and the
retraction technique are tightly integrated.
Together, they identify a violated constraint
and rate, moving each activity taking part in
the violation to the next earliest or next latest
time at which the resource is available. Based
on the rating, the start-time commitment of
one of the activities is retracted. Every l itera-
tions, the overall schedule is evaluated against
the stored solution, and perhaps, the previous
l commitments are retracted.

Tabu Search In tabu search (Vaessens,
Aarts, and Lenstra 1994; Glover 1990, 1989), a
heuristic neighborhood function defines a set
of states that can be reached by retracting a set
of commitments and then asserting a new set.
For example, one neighborhood function is
swapping the ordering of two adjacent activi-
ties (see later), and another is that used by GER-
RY. After the neighborhood function has
(implicitly or explicitly) defined the set of
neighboring states, each state is rated. The state
that the search moves to depends not only on
the rating but also on a (potentially) complex
mechanism involving a tabu list; an aspiration
criteria; and, perhaps, other caches of search
information. A tabu list is typically a set of
states, substates, state attributes, or moves that
are prohibited as the next state. The form of
the tabu list and the criteria for adding and
removing elements can be varied and complex
and, indeed, are an important research issue. A
simple example is to have a tabu list of limited
length and insert every move on the list; when
the tabu list is full, the oldest moves are
removed. While the move is on the tabu list, it
cannot be performed. The intuition is that
search should not revisit states too frequently,
to avoid being trapped in a local optimum of
the state-rating function. An aspiration criteria
is a condition (or set of conditions) for overrid-
ing the tabu list. Like the tabu list, the aspira-
tion criteria can be complex, and a full discus-
sion is beyond our scope. As an example,
perhaps a state with an attribute that is on the
tabu list is selected anyway because it is more
highly rated than any state visited to this point
in the search.

Based on the combination of the neighbor-
hood function, the state-rating function, the
tabu list, and the aspiration criteria, a search

state to move to is selected. The search termi-
nates when a state with the optimal rating is
found or when a bound on the number of iter-
ations is reached.

With a conceptualization similar to that
used with GERRY, we see that the neighborhood
function, the tabu list, the aspiration criteria,
and the state-rating function of the heuristic-
commitment technique are closely integrated
with the retraction component. Together the
two components work to evaluate and select a
neighboring state, retract a set of commit-
ments, and assert a new set of commitments
that move the search to the selected neighbor.

In terms of our framework, the search termi-
nates when an optimal state is found or when
the maximum number of iterations is reached.
No propagators are used. The heuristic-com-
mitment technique and the retraction tech-
nique use a (potentially) complex combination
of neighborhood function, tabu list, and aspi-
ration criteria to identify the commitments to
be retracted and the ones to be asserted to
move to the selected neighboring state.

Genetic Algorithms Genetic algorithms
(Goldberg 1989; Holland 1975) operate on an
evolving population of potential solutions
rather than a single solution. An initial popu-
lation of solutions is created by some (usually
randomized) means, and each individual
schedule is rated. Based on the rating, a subset
of existing solutions are allowed to “repro-
duce” either by crossover (two new schedules
are created from two existing schedules by
exchanging some commitments) or mutation (a
random subset of commitments are changed).
The crossover and mutation operators are usu-
ally random or, at least, have a random compo-
nent. After reproduction, potential solutions
from the previous generation are discarded,
although in some genetic algorithms, those
that are highly rated remain in subsequent
populations. The search repeats until a bound
is reached on the number of generations or
until the optimal solution is found. Clearly,
performance of a genetic algorithm depends
highly on the rating function and the cross-
over and mutation operators.

In terms of our framework, the definition of
termination criteria and propagators is
straightforward. A commitment, however, is
now an entire schedule (for example, a set of
unary constraints that assign a start time to
each activity or, in an alternative formulation,
a set of binary precedence constraints that
order all activities on each resource). To this
point, we have had a single constraint graph to
which constraints are added and from which
constraints are removed. To represent a popu-

Genetic
algorithms …
operate on
an evolving
population
of potential
solutions
rather than
a single
solution.

Articles

WINTER 1998 111

heuristic-commitment component could then
repeat some of the analysis to identify which
commitments to assert. The point is not that
the heuristic-commitment component and
retraction component must be completely
independent, but rather that in many cases,
they might be completely independent; choos-
ing a retraction component does not necessary
limit the choice of heuristic-commitment
technique. For example, one could imagine
replacing the heuristic-commitment tech-
nique in GERRY with another (for example, ORR-
FSS) that conducts a completely, partially, or
probabilistically different analysis than the
retraction component.

It was necessary for genetic algorithms to
account for the population of schedules by
having the commitments that are asserted and
retracted correspond to a member of the popu-
lation. However, our original definition of a
commitment noted that it might be a set of
constraints. The fact that each iteration retracts
and asserts a whole population of these com-
mitments into different constraint graphs does
not significantly modify this definition.

Answer 2: The Benefits The benefits from
describing these strategies within the frame-
work are significant. One key benefit is the
ability to perform empirical comparisons of
different instances of the same component. As
we demonstrate in the balance of this article,
little empirical work compares, for example,
two instances of heuristic-commitment com-
ponents, while all other components are held
constant. As a result, it is difficult to compare
strategies, attribute performance observations
to specific components, and correlate problem
features to performance. The framework allows
us to experiment with a variety of combina-
tions and generate and test specific hypotheses
to explain performance differences.

A second benefit is the ability to create novel
strategies and components with combinations
of existing ones. For example, another way to
account for the relation between the heuristic-
commitment technique and the retraction
technique of GERRY is to implement a form of
communication between the retraction com-
ponent and the heuristic-commitment compo-
nent. We could place the intelligence of the
local-move calculation in the retraction com-
ponent and have it communicate the to-be-
asserted commitments to the heuristic-com-
mitment component. It might be that a wide
range of scheduling strategies can benefit from
such a communication between the retraction
and heuristic-commitment components. In
many of the strategies discussed here, the main
focus of intelligence tends to be in only one of

lation of schedules, we need a set of constraint
graphs, one for each population member. A
single commitment results in a single popula-
tion member with the addition of a complete
set of constraints to its own constraint graph
(that is, a separate copy of the problem). Each
iteration uses the previous set of commitments
(the previous generation) to create a new set of
commitments using the reproduction opera-
tors. The heuristic-commitment technique
embodies the rating of each population mem-
ber and the use of the crossover and mutation
operators to create new schedules (that is, sets
of new commitments). The retraction compo-
nent discards all (or some low-rated subset of)
the members of the previous generation.

We define genetic algorithms as follows:
The search is terminated when an optimally
rated solution is found or when the maximum
number of generations is reached. No propa-
gators are used. The heuristic-commitment
components rates the current generation of
schedules (based on some heuristic rating
scheme) and produces a new set of commit-
ments using the crossover and mutation oper-
ators. The retraction technique discards the
commitments that formed the members of
the previous generation.

Why the Framework?
With these examples, two points, in particular,
should be noted: First, to account for local
search algorithms in our framework, we had to
tightly integrate (if not actually combine) the
heuristic-commitment technique and the
retraction technique. Second, to fit genetic
algorithms into the framework, we need to
account for the population of schedules on
which genetic algorithms operate.

Given these points, the question arises:
“Why should we force these disparate algo-
rithms into the framework?” The answer
offered here is that it is not such a leap of faith
to conceptualize these algorithms as we have,
and even if it were such a leap, the benefits of
the unified framework are significant.

Answer 1: The Conceptualization Is Not
Forced We believe the conceptualization of
the various algorithms is not forced. To
account for local search algorithms, we have
tightly integrated the retraction and heuristic-
commitment techniques. At a conceptual level,
ignoring issues of computational efficiency, we
could have maintained the separation between
the components at the expense of repeated
computation. For example, the retraction tech-
nique of GERRY might do its analysis, pick a new
state, and then simply retract the commit-
ments necessary to move to the new state. The

… to account
for local

search
algorithms in

our
framework,

we had to
tightly

integrate (if
not actually

combine)
the heuristic-
commitment

technique and
the retraction

technique.

Articles

112 AI MAGAZINE

the framework components. With communica-
tion, we can put intelligence in all components
and have them communicate suggestions
about what appear to be good commitments to
retract or assert.

By placing genetic algorithms within our
framework, we can similarly imagine a number
of interesting scenarios. For example, we could
modify the genetic algorithm retraction tech-
nique to, under certain circumstances (for
example, finding a solution significantly better
than all other solutions seen), retract all indi-
vidual schedules and transfer to, for example, a
tabu search on this one solution. Rather than
moving to tabu search, perhaps the retraction
component could not only retract all but the
best solution but also remove some subset of
the constraints from the best solution. The
heuristic-commitment technique could be-
come ORR-FSS, and the retraction component
could become chronological backtracking to try
to build a complete schedule from the promis-
ing partial schedule. Similarly, from a tabu
search, perhaps we could, under certain circum-
stances, spawn a number of schedules from the
best schedule it has found and move to a genet-
ic algorithm search.

The point is not whether these scheduling
strategies will work (that remains to be seen)
but, rather, that simply being able to conceptu-
alize genetic algorithms and other local search
algorithms, together with constructive search,
provides a new perspective on all these tech-
niques that, in turn, creates a space of novel
algorithms to be investigated.

Propagators
In the examples of our framework, we noted
temporal propagation, resource propagation,
and edge finding as propagators. Because of
space limitations, we only discuss two propaga-
tors in depth here; one we have already
encountered (edge finding), and the other we
have not (constraint-based analysis).

Constraint-Based Analysis
Constraint-based analysis (CBA) (Cheng and
Smith 1996; Erschler, Roubellat, and Vernhes
1980, 1976; Smith and Cheng 1993) enforces
arc-B-consistency on the resource constraints.
Arc-B-consistency (Lhomme 1993) (where B
stands for bounds) ensures that for the mini-
mum and maximum values for the any variable,
v1, at least one consistent assignment exists for
any other connected variable, v2. Clearly, arc-B-
consistency is limited to variables where there is
a total ordering over the values. The start-time
variables in scheduling meet this requirement.

CBA analyzes the start and end times of all
pairs of activities and, given activities Ai and Aj,
identifies the following cases:

Case 1. If lfti – estj < duri + durj ≤ lftj – esti,
then Ai must be before Aj.

Case 2. If duri + durj > lftj – esti and duri +
durj > lfti – estj, then the current state is a
dead end.

Case 3. If duri + durj ≤ lftj – esti and duri +
durj ≤ lfti – estj, then either sequence is still
possible.

If after looking at all pairs of activities on each
resource, CBA finds that all pairs are in case 3,
it cannot infer any new constraints: All the
resource constraints are arc-B-consistent.

The worst-case time complexity for CBA is
O(MN2), where N is the number of activities on
one resource, and M is the number of resources.

In the example shown in figure 5, CBA is
able to infer that A1 must be before B3 because
the interval between the earliest start time of B3
and the latest end time of A1 is 15, which is
smaller for the combined durations of the
activities, which is 20.

Empirical evaluation of CBA with the PCP

SLACK heuristic (Smith and Cheng 1993) (see
later) has demonstrated good performance on
one set of job-shop–scheduling benchmarks.
The experimental design did not evaluate CBA
independently of the heuristic-commitment
technique, so it cannot be judged whether the
performance was because of CBA, the heuristic,
or the combination.

Edge Finding
Given S, a set of activities executing on the
same resource, and activity A ∉ S on the same
resource as the activities in S, edge finding
makes operational the implications 1 and 2.

[(lft(S) – est(S) < durA + dur(S)) ∧ (lft(S) – estA <
durA + dur(S)) → estA ≥ est(S) + dur(S). (1)

(lft(S) – est(S) < durA + dur(S)) ∧ (lftA – est(S) <
durA + dur(S)) → lftA ≤ lft(S) – dur(S). (2)

Implication 1 states that if A is scheduled at
its earliest start time, and there is not enough
room for all the activities in S before the latest
finish time of S, then A must occur after all the
activities in S have finished. Implication 1 can
be used to derive a new earliest start time for A.

Similarly, implication 2 is used to find a new
latest end time. If A is scheduled at its latest
start time, and there is not enough room for all
the activities in S before A and after the earliest
time of S, then A must occur before all the
activities in S start.

Complete examination of the O(2N) subsets
of activities is not practical. However, by defin-

Articles

WINTER 1998 113

Empirical
evaluation of
CBA with the
PCP SLACK

heuristic …
has
demonstrated
good
performance
on one
set of
job-shop–
scheduling
benchmarks.

Other work (Caseau and Laburthe 1996,
1995) has extended edge finding by adding
additional valid implications and has demon-
strated favorable empirical results against a
number of polyhedral (cutting-plane) methods
from the operations research literature.

Open Issues
There are a number of open issues in the
research concerning the use of propagators
and the potential impact of new propagators.

Given the theoretical basis for propagators
as consistency techniques, there might be oth-
er forms of consistency that can be used in
scheduling. Many of the results using propaga-
tors have been excellent; therefore, one avenue
for research is to characterize existing propaga-
tors about the type of consistency they enforce
and look for novel propagators based on differ-
ent types of consistency.

Propagators have primarily been studied in
the job-shop model, where they are able to
exploit the fact that two activities requiring
the same resource cannot execute at the same
time. Applications of edge finding to other
types of resource (multiple capacitated [Nui-
jten and Aarts 1997; Nuijten 1994] and cumu-
lative [Caseau and Laburthe 1996]) have result-
ed in preliminary evidence, indicating that
edge finding, although still useful, has less
impact where constraints are more complex.
There is, therefore, the dual challenge of
extending these techniques for more complex
constraints and, should they be found want-
ing, identifying new propagators.

Currently, it appears that propagators are
applied across an entire problem. Although

ing a task interval (Caseau and Laburthe 1996)
as follows, it is possible to represent all subsets
with only O(2N) sets:

If activity Ai and Aj are two activities
(possibly the same) that use the same resource
such that esti ≤ estj and lfti ≤ lftj, then the task
interval [Ai, Aj] is the set of tasks {Ak} that use
the same resource as Ai and Aj such that esti ≤
estk and lftk ≤ lftj.

It has been shown (Caseau and Laburthe
1996; Carlier and Pinson 1989) that any con-
straints derived by edge finding on a task inter-
val are at least as strong as the constraints that
could be derived from any subset of the task
interval. Clever implementation (Caseau and
Laburthe 1996; Nuijten 1994; Carlier and Pin-
son 1989) is able to reduce the complexity of
the edge-finding algorithm to O(MN2).

Figure 6 presents an example where edge
finding is able to infer not only that C4 must
execute after A1 and B3 but also that the earliest
possible start time of C4 is 25. Implication 1,
where S = {A1, B3} and A = C4, is applicable and
results in a new lower bound on the start time
of C4.

Empirical evaluation of edge finding for job-
shop scheduling has concentrated primarily on
the operations research library set of bench-
marks from the operations research communi-
ty (Beasley 1990). Results show that a simple
randomized heuristic-commitment compo-
nent plus edge finding and a number of sim-
pler propagators can find makespans approxi-
mately 25 percent closer to optimal than the
heuristic by itself (Nuijten 1994) and further
outperforms ORR-FSS with the same set of prop-
agators.

Articles

114 AI MAGAZINE

A1
R1

B3
R1

0 10 20 30

time

Figure 5. An Example Where Constraint-Based Analysis Can Infer A New Constraint: A1 before B3.

anecdotal evidence suggests that on some
problems, the constraints inferred by edge
finding often involve a small number of activ-
ities, there has been no work that we are aware
of that attempts to identify problem substruc-
tures that (heuristically) indicate that a partic-
ular propagator might have a great impact. If
structures within the scheduling problem
where a propagator is likely to be useful can be
identified cheaply, it might be possible to avoid
the use of propagators where they are unlikely
to contribute. (An example of a selective appli-
cation of a propagator based on information
from a commitment-retraction technique is
the dynamic consistency enforcement tech-
nique [Sadeh et al. 1995] discussed later). For
example, because propagators find implied
commitments, it is reasonable to expect that
they will perform better in more constrained
problems. It might be useful, therefore, to look
for a correlation between constraint tightness
(and other problem characteristics) and propa-
gator performance. Identification of such a cor-

relation will not only aid in understanding
propagators but might speak to the other
research issues.

Heuristic-Commitment
Techniques

The heuristic-commitment component of our
framework can be further subdivided into two
components, as shown in figure 7.

In the first subcomponent, texture measure-
ments distill information from the constraint
graph representation. Based on the distilled
information, in the second subcomponent, a
commitment is found that will (heuristically)
move toward a solution state.

Before discussing texture measurements in
more depth, it is instructive to note that one of
the key differentiating factors among existing
heuristic-commitment techniques is the trade-
off between computational complexity and the
accuracy of the heuristic information. At one
end of the spectrum is the approach that can

Articles

WINTER 1998 115

0 10 20 30

time

A1
R1

B3
R1

C4
R1

Figure 6. An Example Where Edge Finding Can Infer a New Constraint: STC ≥ 25.

Heuristic
Commitment

Measure
Textures

Identify
Heuristic

Commitment

Figure 7. The Subcomponents of the Heuristic-Commitment Component.

In the ORR-FSS scheduling heuristic (see later),
contention for a resource is estimated by find-
ing a probabilistic estimate of each activity’s
individual demand for the resource and then
summing these individual demands to form an
aggregate demand for the resource.

Example 2: The Fail-First Heuristic
Recent work on the familiar fail-first heuristic
for CSPs (Haralick and Elliot 1980) helps to
illustrate the differences among texture mea-
surements, estimations of texture measure-
ments, and heuristics based on the estima-
tions. The heuristic states that in a CSP, a good
choice for the next variable to assign is the one
most likely to fail, that is, most likely to result
in a dead end after it is assigned a value. The
texture measurement, therefore, is the proba-
bility of failure of each variable, and this prob-
ability, in the traditional fail-first heuristic, is
estimated by the domain size of each variable:
the smaller the domain size, the higher the
probability of failure. In practice, the variable
ordering achieved by choosing the smallest
domain size (and variations of it) is robust and
often outperforms other more complicated
orderings (Gent et al. 1996).

This understanding of the fail-first heuristic
has been challenged by using better estima-
tions of the probability of failure texture mea-
surement (Smith and Grant 1997). If the small-
est domain-size heuristic works because of its
basis on the estimation of the probability of
failure texture, better estimations of the tex-
ture should lead to better performance (when
the cost of the estimation is not taken into
account). Smith and Grant (1997) create four
increasingly accurate estimations of the prob-
ability of failure texture. Contrary to predic-
tions, the heuristics based on these better esti-
mations perform worse than the smallest
domain-first heuristic. The success of the
smallest domain-first heuristic is because the
domain size is an estimate for some other tex-
ture measurement, not the probability of fail-
ure. The identity of this other texture measure-
ment remains an open question.

Basic Texture Measurement Questions
The previous examples illustrate three basic
questions surrounding texture measurements:

First, what is the information that is to be
distilled? If we are to understand the heuristic-
commitment technique, we need to have a
clear model of the information on which our
heuristic technique operates. We might not be
able to precisely calculate this information in
any practical algorithm; however, a firm theo-
retical basis shows that if we had this informa-
tion, we could use it to find a solution that
allows us to then look to the practical aspects

be characterized as “do the right thing, once.”
A significant amount of computation effort is
expended at each search state to distill the tex-
ture information and make the right commit-
ment based on the information. The hope is
that this investment of (polynomial) effort at
each state will pay off by avoiding the (expo-
nential) effort of frequent retraction of com-
mitments. The other end of the trade-off spec-
trum is the approach that is characterized as
“do something, often.” In this approach, many
commitments are made and retracted with the
belief that a solution will eventually be found.
Little computational effort is spent at each
search state measuring textures; however,
many search states are visited. The extreme of
this approach is to not spend any effort in mea-
suring textures, and indeed, this extreme
approach is the basis of randomized heuristic-
commitment techniques such as those used in
genetic algorithms. The crux of this trade-off
stems from the quality of the information that
the heuristic decisions are based on. If the
information does not appreciably increase the
likelihood of making a correct decision at a
search state, then the extra computation is
wasted. It is better, then, to move quickly
through the search space.

In the balance of this section, we discuss tex-
tures in depth before examining a number of
heuristic-commitment techniques. For each
technique, we provide insight into the deci-
sions that were made with respect to the previ-
ous three issues: (1) what information is being
estimated, (2) what the (relative) complexity of
the estimation algorithm is, and (3) what
heuristic commitments are made.

Texture Measurements
Although a relatively small number of texture
measurements have explicitly been identified
(Sadeh 1991; Fox et al. 1989), we take the broad
view of a texture measurement as any analysis
of the constraint graph producing information
on which heuristic commitments can be based.
A texture measurement is not a heuristic;
rather, it is a technique for distilling the knowl-
edge in the constraint graph into a form that
heuristics can use. A texture measurement
might, for example, label some structures in
the constraint graph (for example, constraints,
variables, subgraphs) with information con-
densed from the surrounding graph. On the
basis of this condensed information, heuristic
commitments can be made.

Example 1: The Contention Texture
The contention texture (Sadeh 1991) is the
extent to which variables related by a disequal-
ity compete to be assigned to the same value.

Articles

116 AI MAGAZINE

of forming an estimate of this information.
Second, given the impracticality of precisely

calculating texture information, can we con-
struct an algorithm that estimates the desired
information? It is likely that we can construct
a number of algorithms producing estimates of
increasing accuracy at the cost of increasing
computational complexity. Where is the trade-
off in terms of impact on the overall schedul-
ing algorithm?

Third, what are the heuristic commitments
that are being made on the basis of the infor-
mation distilled by the texture measurements?
After the texture measurements have estimated
search information, it is still necessary to use
this information to make a heuristic commit-
ment. The type of commitment and the heuris-
tic for finding the instance of the commitment,
based on the distilled information, have a sig-
nificant impact on the search.

ORR-FSS Heuristic
The ORR-FSS heuristic (Sadeh 1991) is based on
two texture measurements: (1) contention and
(2) reliance.

Contention is defined as the extent to which
variables linked by a disequality constraint
compete for the same value. In the context of
job-shop scheduling, contention is the extent
to which activities compete for the same
resource over the same time interval. In ORR-FSS,
contention is estimated by finding a probabilis-
tic estimate of an activity’s individual demand
for the resource and then summing the indi-
vidual demands for a resource to form an
aggregate demand (see later).

Reliance is the extent to which a variable
must be assigned to a particular value to form
an overall solution. In scheduling, one illustra-
tion of reliance arises with alternative re-
sources. If activity A1 requires resources R1, R2,

R3, or R4, and activity A2 requires resources R2
or R5, clearly A2 has a higher reliance on R2
than A1. If A1 is not assigned to R2, it has three
other resource alternatives; however, A2 only
has one. Reliance can also be formulated in the
context of an activity relying on being assigned
to a particular start time on a particular
resource. In ORR-FSS, reliance is a probabilistic
estimate of the activity’s time preferences.

To calculate contention for a resource, we
first determine the individual demand that
each activity has for the resource. If an activity
does not require a resource, it has no demand
for it; so, its individual demand is 0. Otherwise,
to calculate an activity’s individual demand, a
uniform probability distribution over the pos-
sible start times is assumed: Each start time has
a probability of 1 / |STD|. (Recall that STD is the
domain of the activity’s start-time variable. A
uniform probability distribution is the “low-
knowledge” default. It might be possible to use
some local propagation in the constraint graph
to find a better estimate of the individual
demand [Muscettola 1992; Sadeh 1991].) The
individual demand, ID(A, R, t), is the proba-
bilistic amount of resource R, required by activ-
ity A, at time t. It is calculated as follows for all
estA ≤ t < lftA:

ID(A, R, t) = min(t, lstA) – max(t – durA + 1, estA)/
|STD|. (3)

Figure 8 shows the individual demand
curves for the three activities in figure 9.

Contention is estimated by aggregate curves
found for each resource by summing the indi-
vidual demand curves. The aggregate demand
curves and a time interval equal to the average
activity duration are then used to identify the
{resource, time interval} with the greatest area.
By definition, the unassigned activity that con-
tributes the most area to the critical time inter-

Articles

WINTER 1998 117

B2
R1

C3
R1

0 20 40 60

time

80 100

A1
R1

Figure 8. Individual Demand Curves for A1, B2, and C3.

Task-Interval–Entropy Heuristic
Caseau and Laburthe (1995) use task intervals
as a basis for the estimation of resource con-
tention. For task interval I and resource R, the
following are defined: UR is the set of all activ-
ities using R, First(I) is the set of activities in I
that might execute the first of the activities in
I, and Last(I) is the set of activities in I that
might execute the last of the activities in I.

The task-interval–entropy (TIE) heuristic identi-
fies the resource with the highest contention
as the one that minimizes the product in
expression 4.

IntervalSlack(I*) x ResourceSlack(r) x
min(First(I*), Last(I*), par). (4)

IntervalSlack(I) = lft(I) – est(I) – dur(I). (5)

ResourceSlack(R) = lft(UR) – est(UR) – dur(UR). (6)

Where I* is the task interval of R with the
minimum IntervalSlack, and par is a parameter
set empirically to about 3. I*R is then defined
to be I* on the critical resource. TIE chooses the
smallest set from First(I*R) and Last(I*R) and
picks two activities, A and B, to sequence. If
|First(I*R)| is smaller, A is the activity with min-
imal est, and B is chosen to minimize the sum
of the slack resulting from sequencing A
before B and sequencing B before A. Similarly,

val is the most critical activity: It is the most
reliant activity on the most contended-for
{resource, time interval} pair.

Once the critical activity, A, is identified, FSS is
used to rate each of its possible start times by
using the demand curves. This rating takes into
account the effect an assignment to A will have
both on activities competing directly with A
and on those temporally connected to A. A
more detailed description of the start-time–as-
signment heuristic is beyond the scope of this
document; interested readers are referred to
Sadeh (1991).

Sadeh presents empirical evidence showing
that the MICROBOSS scheduler, using ORR-FSS, dom-
inates all the tested dispatch rules on a set of 60
problems. Subsequent work showing the com-
petitive performance of simpler heuristics (for
example, the PCP SLACK heuristic later) (Smith and
Cheng 1993) and significantly better perfor-
mance using edge finding (Nuijten 1994) have
called into question the efficacy of ORR-FSS. The
difficulty is that it is not clear that it is the heuris-
tics, rather than, for example, the retraction
method, that lead to the poor results. No work
that we are aware of has compared only the
heuristic-commitment techniques and held all
other components constant. Without such an
experiment, meaningful comparisons of heuris-
tic-commitment techniques cannot be made.

Articles

118 AI MAGAZINE

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

ID
(t

):
 I

n
d

iv
id

u
al

 D
em

an
d

Time

A1
B2
C3

Figure 9. Activities A1, B2, and C3.

if |Last(I*R)| is smaller, B is the activity with
maximal lft, and A is chosen to minimize the
sum of the slack resulting from sequencing A
before B and B before A. In either case, A before
B is posted.

The intuition for choosing the activities that
minimize the sum of the slack is that a search
state is a branch point, and it is desirable to
simplify the problem as much as possible on
both branches. Minimizing the slack is likely to
increase the number of implied commitments
that the propagators can find and, therefore,
simplify the problem the most. Experiments
are carried out with this heuristic, sophisticat-
ed propagators (including edge finding and
some extensions), and chronological back-
tracking on the operations research library
problems. Although there are no direct com-
parisons to other constraint-directed work
(comparisons are done with a number of poly-
hedral [cutting-plane] methods), comparison
of reported results with those found in
Vaessens, Aarts, and Lenstra (1994) seems to
indicate that TIE is competitive or better than
the other approaches.

Interestingly, the heuristic attempts to min-
imize the resulting slack on both branches (A
before B and B before A) because then the prop-
agators will infer more constraints. In contrast,
the PCP SLACK heuristic (later) attempts to max-
imize the slack remaining after a commitment.

RESOURCE SLACK, First-Last Heuristic
Baptiste, Le Pape, and Nuijten (1995) use the
minimum RESOURCE SLACK to identify the
resource with the highest average contention.
Based on a comparison of the time windows
available for each unsequenced activity on the
critical resource, one is selected to execute first
(or last). All activities on the critical resource
are sequenced before identifying the next crit-
ical resource. Three heuristics are examined for
activity selection:

First is choose first. An activity is chosen to
execute first among the unsequenced activities.
A set of propagators are used to identify activi-
ties that cannot execute first; however, it is
unclear precisely which are used. Once the set
of activities is identified, one activity is selected
to execute first by the EST-LST rule: the activity
with the smallest est breaking ties with the
smallest lst.

Second is choose last. An activity is chosen to
execute last among the unsequenced activities.
Analogously, identify the set of activities that
can execute last from the set of activities, and
use an LFT-EFT (latest lft with ties broken by
latest eft) to pick the activity to schedule last.

Third is choose dynamically. An activity is

heuristically chosen to execute either first or
last based on the size of the sets of activities that
are able to execute first or last. The smaller set
of activities is chosen, and then the appropriate
rule (EST-LST or LFT-EFT) is used to select an
activity from this set. If the set sizes are equal,
the tie is broken by looking at the difference
between the top two activities to schedule first
and the top two activities to schedule last. If the
difference is greater between the activities to
execute first, then this set is used; otherwise,
the activities that can execute last are used.

Once the critical resource is identified, all
activities on it are scheduled before moving to
another resource, which is different from most
modern techniques that have a more oppor-
tunistic nature in that after each commitment
the critical resource is recalculated. Such
resource-centered approaches were previously
investigated in ISIS (Fox 1983) and OPIS (Smith
et al. 1989).

Empirical evidence shows little difference
among the activity-selection heuristics; howev-
er, they are not directly compared with any
other heuristics. Reported results of these
heuristics with edge finding and chronological
backtracking seem to be a significant improve-
ment over many techniques, although they lag
behind results using the TIE heuristic. Again,
head-to-head comparison is necessary for
firmer conclusions to be drawn.

PCP SLACK Heuristic
The precedence constraint-posting slack (PCP

SLACK) (Cheng and Smith 1996; Smith and
Cheng 1993) makes use of the CBA propagator,
as described previously; when CBA is unable to
find an implied commitment (that is, in case 3
previously), a heuristic commitment is made.

BSLACK, as defined in equation 7, is calculated
for all pairs of activities, and the pair with the
smallest BSLACK value is identified as the most
critical. BSLACK is an estimate of the two-way
contention among activities. The smaller
BSLACK is, the greater the contention there is
between the two activities. The sequence that
preserves the most slack is the one chosen. The
intuition here is that a pair with a smaller
BSLACK is closer to being implied than one with
a larger value. Once we identify this pair, it is
important to leave as much temporal slack as
possible in sequencing them to increase the
likelihood of not having to backtrack.

(7)

slack(i → j) = lftj – esti – (duri + durj). (8)

S + min(slack(i → j),
slack(j → i)) / max(slack(i → j), slack(j → i)). (9)

Empirical evidence (Smith and Cheng 1993)

bslack i j slack i j S() () /→ = →

Articles

WINTER 1998 119

pensive heuristic-commitment techniques
often used in local search.

The basic MINCONFLICTS algorithm (Minton
et al. 1992) evaluates contention in the exist-
ing state by counting the number of resource
violations for each activity. The activity with
the most violations (that is, an activity that
relies on the most-contended-for resource and
time) is chosen, and for each of its possible
start times, the number of resulting resource
violations is assessed. The start time with the
lowest number of violations is chosen as the
new commitment. The heuristic commitment
used in GERRY (Zweben et al. 1994, 1993) is a
variation of MINCONFLICTS.

MINCONFLICTS has performed well on some
large CSPs (for example, N-queens with N =
1000000) and on a particular set of space shut-
tle scheduling problems (Zweben et al. 1994,
1993). Performance is weaker on other job-
shop–scheduling benchmarks (Davis 1994).

Vaessens, Aarts, and Lenstra (1994) provide
an in-depth comparison of many of the neigh-
borhood functions that have been applied to
scheduling. Based on a search state where all
the activities on a resource are completely
sequenced, the neighborhood algorithms span
the swapping of two adjacent activities, jumps
that remove an activity from its current posi-
tion and insert it before or after another (non-
adjacent) activity, the reordering of all activi-
ties on a single machine, and the modification
of orderings across multiple machines. Exam-
ples of the three single-machine moves are
shown in figure 10.

Neighborhood functions do not estimate
texture measurements but, rather, look ahead
to the states that would occur if particular
commitments are made. Based on the evalua-
tion of the resulting states (which can include
estimation of texture measurements), a move
is selected.

Unfortunately, the empirical comparisons
embed the neighborhood functions in differ-
ent overall strategies (for example, one heuris-
tic with tabu compared to another heuristic
with simulated annealing). Although they are
able to compare the overall search strategies, it
is not clear how these results speak to a com-
parison based solely on the neighborhood
functions.

Open Issues
As with propagators, there are a number of
interesting research issues concerning heuris-
tic-commitment techniques.

We have presented heuristic-commitment
techniques from the perspective of texture mea-
surements even though, with the exception of

shows that the PCP SLACK heuristic combined
with CBA, competes well with ORR-FSS, al-
though different types of commitment are
made (that is, precedence constraints rather
than start-time assignments).

The Randomized Left-Justified
Heuristic
The heuristics reviewed previously all estimate
the contention-texture measurement by
increasingly simple algorithms: ORR-FSS and TIE

use sophisticated techniques to estimate the
contention based on all activities, but PCP SLACK

simply uses only the two-way interactions. In
the randomized left-justified heuristic
(Nuijten 1994; Nuijten et al. 1993), con-
tention is not calculated, but rather, a small set
of reliance estimates are made. The set of activ-
ities that can execute before the minimum ear-
liest finish time of all unscheduled activities is
identified. It is assumed (under this estima-
tion) that each activity in this set has equiva-
lent reliance on its earliest start time and, fur-
ther, that it relies more on its earliest start time
than any other of its possible start times. With
this information, one of the activities is ran-
domly selected and scheduled at its earliest
start time.

Experiments compare SOLVE (using sophisti-
cated propagators and bounded chronological
backtracking with restart) with the ORR-FSS

heuristic (using chronological backtracking,
temporal propagation, and resource propaga-
tion) and with ORR-FSS augmented with the
propagators used in SOLVE (still with chronolog-
ical backtracking). SOLVE strongly outperforms
the augmented ORR-FSS, which, in turn, strongly
outperforms unaugmented ORR-FSS.

It is not clear from this study whether
chronological backtracking or the ORR-FSS

heuristics are to blame for the relatively poor
performance of ORR-FSS. However, these results
raise further questions about sophisticated
heuristic techniques such as ORR-FSS.

Local Search Heuristics
Finally, there are a number of heuristic-commit-
ment techniques often used in local search
algorithms. Many such techniques fall into the
“do something, often” extreme noted previous-
ly, although not all do. For example, in tabu
search, the heuristic-commitment technique
involves not only a neighborhood function but
also the tabu list; aspiration criteria; and, per-
haps, other caches of search information.
Indeed, the complexity of the neighborhood
function, although often small, is not pre-
scribed by the tabu search method. With this
caveat in mind, we examine a number of inex-

Articles

120 AI MAGAZINE

ORR-FSS, they were not originally conceived in
this way. This characterization is an effort
toward an underlying, domain-independent
foundation for heuristics used in constraint-
directed search. Such a foundation can lead to a
deeper understanding of the existing heuristics
as well as a firm basis for the creation of new
heuristic-commitment techniques. However,
the foundation must be justified both theoreti-
cally and empirically. Theoretically, texture
measurements require a mathematical basis for
both their exact calculation and their estimates.
The ability to characterize various estimation
techniques based on the expected error from the
true measurements is a significant open ques-
tion. From an empirical perspective, a basic
starting point is to demonstrate that a better
estimate of texture measurement (while holding
the type of commitments made constant) leads
to a better heuristic commitment.

There is a major need for a head-to-head
comparison of the techniques for heuristic
commitments. It is not at all clear how to eval-
uate the techniques described previously
because empirical studies often embed the
techniques in larger search strategies. It would
seem straightforward to compare a number of
these techniques (ORR-FSS, task-interval entropy,
RESOURCE SLACK first-last, PCP SLACK, and random-

ized left justified) and hold all other compo-
nents of the search strategy constant. It is more
difficult, however, to compare, say, ORR-FSS

meaningfully with the various local search
heuristics because their formulations use differ-
ent retraction strategies. This comparison is an
important issue. (Recent work in the opera-
tions research literature [Hooker 1996] raises
this issue, among many others, concerning the
empirical study of heuristics.)

Given the two extremes in the approaches to
heuristic-commitment techniques, is there a
way to identify problems where one is likely to
perform better than the other? Can we quickly
analyze a problem and discover a structure
indicating that it will be particularly amenable
to a simple heuristic (in a local search strategy)
or, conversely, a sophisticated heuristic in a
constructive strategy?

Propagators versus heuristics: It seems pos-
sible that if a heuristic technique is good
enough, there is no need for propagators: The
heuristics will make the same decisions that
the propagators will make. If propagators are
more expensive than the heuristic technique, a
trade-off is suggested between spending effort
in finding and making sound decisions and
just making heuristic commitments. Such a
trade-off has not been observed.

Articles

WINTER 1998 121

A1B2 C1

A1 B2 C1

A1B2C1

A1 B2C1

Swap

Jump

Reordering

Figure 10. Examples of Three Local Search Moves.

propagator to infer more implied commit-
ments). We interpret this work as supporting
the slack-minimizing intuition.

Few of the heuristic techniques discussed
here are directly applicable to more complex
constraints outside the job-shop–scheduling
model. If research is to address real-world prob-
lems, the more complex constraints need to be
addressed.

Retraction Techniques
Commitment-retraction techniques must
determine the commitment to be retracted
and the fate of the intervening commitments,
as illustrated in figure 11. In this section, we
look at the ways various retraction techniques
address these issues.

Choosing Commitments to Retract
Techniques for identifying C, the commitment
to be retracted, fall into two general categories:
(1) provable and (2) heuristic. Provable tech-
niques guarantee that no solution exists in the
area of the search space defined by C and the
commitments made prior to C. The proof is
typically necessary but not sufficient: At least
C must be retracted; however, prior commit-
ments might also need to be retracted to
escape the dead end. In contrast, heuristic tech-
niques are based on a heuristic evaluation: It is
determined that C is likely to be the cause of
the dead end.

It should be noted that there is a distinction
between provability and completeness. It is
possible to have a retraction technique, such as
limited discrepancy search (see discussion lat-
er), that is complete but not provable, that is,
that retracts commitments even though there
might be a solution in the subspace. To main-
tain completeness, the subspace is revisited lat-
er in the search if no solution has been found
elsewhere.

Provable Retraction Provable retraction
appears reasonable: Until it can be proved that
there is no solution given C and the commit-
ments preceding C, the search should concen-
trate on the states in that area.

The simplest scheme is chronological retrac-
tion: The most recent commitment is retracted.
Clearly, because the search space under the
most recent commitment contains one state
and it is a dead end, we can retract the most
recent commitment without missing a solu-
tion. However, it might be that a commitment
made much earlier in the search is responsible
for the dead end that has only been discovered
now. Chronological retraction will exhaustive-
ly search the subspace below this wrong com-

The fact that PCP SLACK maximizes remaining
slack but TIE minimizes it raises an interesting
question about the intuition behind the heuris-
tics. The slack-maximizing algorithm preserves
slack in a least-commitment approach: By leav-
ing more slack, it is more likely that a solution
will be found because there is a higher probabil-
ity that the to-be-scheduled activities can be
scheduled. The slack-minimizing algorithm
attempts to minimize the slack resulting from
either sequence at a branch point. The intuition
is that both branches will terminate more
quickly (either in solution or failure). Recent
work on branching rules for satisfiability prob-
lems (Hooker and Vinay 1995) shows that a
popular heuristic works not because it increases
the probability that the chosen branch contains
a solution (as was conjectured) but because it
simplifies the problem the most (and allows a

Articles

122 AI MAGAZINE

Dead-end

To-be-retracted
commitment

Intervening
commitments

Figure 11. A Search at a Dead End.

mitment before finding and retracting it.
If chronological retraction is to be improved

on and provability still maintained, it is neces-
sary to exploit the situation where chronologi-
cal retraction does too much work. For example,
assume some set of commitments C1 leads to a
state s1, and then a second set of commitments
C2 leads from state s1 to state s2. Further, suppose
that in s2, it is discovered that none of the values
for variable V are consistent with the current
search state. It might be the case that had we
decided to make commitments involving V at
state s1, we would have discovered precisely the
same dead end. In other words, the commit-
ments in C2 do not contribute to the dead end.
Chronological retraction will revisit all the
search states between s1 and s2 and exhaustively
try all the possible commitments before return-
ing to a state prior to s1, where, finally, it might
be possible to escape the dead end. All provable
retraction techniques rely on some mechanism
to identify the most recent state at which it is
possible to escape the dead end.

Full dependency-directed backtracking (Stall-
man and Sussman 1977) is the most extreme of
these methods because it ensures that the cor-
rect state will be identified. The time and space
complexity of maintaining the dependency
information is in the same order (exponential)
as the search itself. Other methods (for exam-
ple, backjumping [Gaschnig 1978], conflict-
directed backjumping [Prosser 1993], graph-
based backjumping [Dechter 1990], dynamic
backtracking [Ginsberg 1993]) use various tech-
niques to prove necessity rather than sufficien-
cy: It is necessary to jump back at least as far as
the identified state, but it might be that subse-
quent search shows that the jump was not suf-
ficient to escape the dead end. The intervening
commitments are not causes of the dead end, so
no solutions will be missed. Empirically, these
techniques are able, in the average case, to
make significant improvements over chrono-
logical retraction.

Although many of these techniques show
good average time performance on CSPs, few
have been applied to scheduling where the
most common method of provable retraction
is chronological.

Heuristic Retraction The major difficulty
with provable retraction is that search can get
stuck in a subspace that takes so long to prove
that it does not contain a solution that the
problem cannot be solved in a reasonable
amount of time. It might be better to be more
opportunistic in the selection of commitments
to be retracted and, therefore, move more
freely in the search space. The problem with
heuristic retraction is that it can abandon com-

pleteness (that is, there is no guarantee that the
strategy will find a solution or prove that none
exists) and that multiple search states can be
rediscovered a large number of times.

The simplest heuristic-retraction technique
is to restart the search whenever a dead end is
found. This technique is called iterative sam-
pling, or restart. Provided the heuristic-commit-
ment component has some randomness,
restarting the search is likely to explore new
states. Unless the search space is fairly dense in
terms of solutions, however, incompleteness
can be damaging. Nonetheless, there has been
successful scheduling done using simple itera-
tive sampling on a set of job-shop–scheduling
problems (Crawford and Baker 1994).

It is easy to adapt iterative sampling to pro-
duce bounded chronological retraction with
restart (Nuijten 1994). When a dead end is
found, a bounded number of chronological
retractions are performed to investigate the
neighborhood of the dead end. If no solution is
found, it is heuristically concluded that there is
no solution in the area, so the search is restart-
ed. Good results with this technique as part of
a full strategy were discussed previously. A sim-
ilar retraction technique, the incomplete back-
jumping heuristic (IBH), is proposed in Sadeh,
Sycara, and Xiong (1995). After a bounded
number of chronological retractions, the
retraction returns to the root commitment.
Sadeh’s heuristic (ORR-FSS) does not have a ran-
dom component; so, rather than restart, the
search selects the next-best commitment in the
initial search state. Empirical results indicate
that IBH is particularly effective where a dead
end is the result of a complex interaction
among activities on more than one resource.

Limited discrepancy search (LDS) (Har-
vey 1995; Harvey and Ginsberg 1995) main-
tains completeness at the cost of significant
effort spent in the rediscovery of search states
that have already been visited. If the search
exhausts the entire search space, LDS visits poly-
nomially more search states than chronologi-
cal retraction (Korf 1996). LDS is based on three
ideas: First, with good heuristics, the solution is
expected in states where the heuristic is wrong
a limited number of times. Second, heuristics
are more likely to be wrong earlier in the
search. Third, a wrong commitment early in
the search has more impact (the “early mis-
take” problem).

Based on these intuitions, LDS follows the
heuristic during its first probe into the search
tree until arriving at a dead end. The search is
restarted, and the probes investigate all paths
in the search tree with as few as one search
state where the heuristic is ignored: all paths

The major
difficulty
with provable
retraction is
that search
can get stuck
in a subspace
that takes so
long to prove
that it does
not contain a
solution that
the problem
cannot be
solved in a
reasonable
amount of
time.

Articles

WINTER 1998 123

Empirical evaluation of LDS on job-
shop–scheduling problems (with a partially
randomized heuristic-commitment technique)
shows significant gain over chronological
retraction and iterative sampling and compa-
rable results to bounded backtracking with
restart. The best performance was attained
with a combination of LDS with bounded back-
tracking (Harvey 1995).

At the extreme of heuristically guided retrac-
tion are the local search methods that move in
the search space with few limitations. The
retraction is completely driven by the heuris-
tics. If the search is free to follow the gradient
defined by the neighborhood function, how-
ever, it is likely to discover a local optima from
which it cannot move: All neighboring states
are worse than the current one, yet the current
one is not a global solution. A number of tech-
niques to escape local optima have been sug-
gested, such as simulated annealing (Zweben
et al. 1994, 1993; Kirkpatrick et al. 1983), tabu
search (see earlier), genetic algorithms (see ear-
lier), and the shuffle technique (Baptiste, Le

with discrepancy level 1. Discrepancies early in
the search are explored first. In the second
phase of the search, the first path (the one
where there were no discrepancies) will be
rediscovered. The discrepancy level is incre-
mented every time all the search paths to the
current level are exhausted. Each iteration with
a particular discrepancy level will rediscover all
the search states found at all previous levels.

Figure 12 displays the order in which
chronological backtracking and LDS traverse the
same search tree. We use the convention that
the commitment represented by the left
branch at each node represents the commit-
ment chosen by the heuristic. As noted, at iter-
ation level x, LDS rediscovers all the search
states that were visited in previous iterations to
x – 1.

The weakness of rediscovering search states
is overcome in improved LDS (ILDS) (Korf 1996).
ILDS generates more states than chronological
retraction, but at worst, the number of ILDS

states is bounded by a linear factor of the num-
ber of chronologically generated states.

Articles

124 AI MAGAZINE

Chronological Backtracking

LDS (Only the first visit to each leaf-node is shown)

Figure 12. A Comparison of Traversals of the Search Space for a Binary Tree of Depth 4.

Pape, and Nuijten 1995). In the shuffle tech-
nique, each commitment is retracted with
some probability. The nonretracted commit-
ments then form a new partial solution from
which forward search can continue.

In general, local search with such escape
techniques has been shown to perform well.
However, as we discuss later, these techniques
are often treated as abstract frameworks for
algorithms rather than as algorithms them-
selves; so, comparison between local search
algorithms specifically crafted for a benchmark
set and more general strategies is questionable.

Dealing with
Intervening Commitments
When the to-be-retracted commitment has
been identified, there are three encompassing
ways to deal with commitments made in states
between the dead end and the state where the
to-be-retracted commitment was made: (1)
retract all, (2) retract some, or (3) retract none.

Retract All The most principled way to deal
with intervening commitments is to retract
them all. The intuition for this approach is that
each commitment depends on all commit-
ments made previously. If the search is jump-
ing back to retract a commitment, all the com-
mitments that were made subsequently are
retracted because their justification no longer
exists. Iterative sampling or restart, dependen-
cy-directed backtracking, the host of provable
retraction techniques (except dynamic back-
tracking), and LDS all follow this method.

Bounded chronological backtracking with
restart is a special case because for some back-
tracks (that is, when performing chronological
backtracking), there are no intervening com-
mitments to retract, but for other backtracks
(that is, restart), all the intervening commit-
ments are retracted.

Retract Some Assuming that the justifica-
tion for a commitment no longer exists simply
because a previous commitment is retracted
might be too conservative. The retracted com-
mitment might have had no bearing on some
of the intervening commitments: By retracting
an intervening commitment, the search is dis-
carding information that must be rediscovered
later when precisely the same commitment is
made again. The advantages of not having to
rediscover search information are strongly
argued in Ginsberg (1993) and used as motiva-
tion for dynamic backtracking.

In dynamic backtracking, limited dependen-
cy information (used to choose the to-be-
retracted commitment in backjumping) is
cached so that it is not necessary to make the
assumption that all intervening commitments

depend on the retracted commitment. In fact,
only those intervening constraints that might
have depended (based on the cached informa-
tion) on the retracted commitment are retract-
ed. Empirical evidence (Ginsberg 1993) shows
significant improvement over backjumping on
the CSPs tested. Interestingly, further evidence
(Baker 1994) shows that in some situations,
dynamic backtracking can be exponentially
worse than chronological backtracking. The
intuition is that dynamic backtracking changes
the heuristic ordering of commitments as the
search proceeds. This ordering has significant
impact on the search, and therefore, modifying
it can lead to highly inefficient behavior. From
another perspective, this intuition can be
restated as follows: Although the intervening
commitments do not directly depend on the
to-be-retracted commitment, the state created
by the to-be-retracted commitment leads by
way of the heuristic to the intervening compo-
nents. Given the retraction, the heuristic
might well guide the search in a completely
different direction that would not result in the
intervening commitments being made at all.
Although the intervening commitments are
not directly dependent on the retracted com-
mitment, they are dependent by way of the
heuristic component.

Retract None Finally, in typical local search
algorithms such as hill climbing, tabu, simulat-
ed annealing, and shuffle, none of the inter-
vening commitments are retracted. The intu-
ition here is that if they actually do need to be
retracted, subsequent iterations will determine
the retraction that must be done.

Open Issues
A number of retraction techniques can be char-
acterized by the cache of information that is
used to select the commitment to retract or
determine the fate of the intervening commit-
ments. Dynamic backtracking and tabu search
begin to look similar when it is realized that
the contents and size of the cache are the main
differences, so, too, for dependency-directed
backtracking (with an exponential size cache)
compared with restart and LDS (with caches of
zero size). Can we use the size and content of
the cache to construct new retraction tech-
niques with varying trade-offs between the
completeness and heuristic responsiveness
(Havens 1997)?

There would seem to be a middle ground
between local search algorithms and, say, LDS,
in terms of the ability to respond heuristically.
For example, it would be interesting to record
a confidence with which all commitments are
made and, when a dead end is reached, use the

The most
principled
way to deal
with
intervening
commitments
is to retract
them all.

Articles

WINTER 1998 125

Our intuition is that heuristics and propaga-
tors can be complementary because the prop-
agators find sound commitments that improve
the information on which the heuristics are
calculated. This intuition remains to be tested,
although there has been work that recognizes
the possibility and formulates heuristics specif-
ically to take advantage of the power of the
propagators. In Baptiste, Le Pape, and Nui-
jten (1995), it is noted that if the heuristic-
commitment component schedules activities
in a particular order (say earliest to latest), the
propagator will make more inferences than if
no such order is followed. This technique is
extended in the TIE heuristic (Caseau and
Laburthe 1995): One justification for the min-
imizing slack is that a smaller slack allows the
propagators to find more implied commit-
ments. Unfortunately, no work was done to
isolate components and test the extent to
which it is the combination that leads to the
performance results.

Heuristic-Commitment Techniques
and Retraction
Given a particular retraction technique, is it
better to use a more or less computationally
expensive heuristic-commitment technique?
Given a heuristic-commitment technique, is it
better to use a more systematic retraction tech-
nique or one more like those used in local
search? It has been shown, using GERRY, that in
tightly constrained, smaller problems, a more
informed (that is, more complex and more
powerful) heuristic performs better, but in larg-
er, more loosely constrained problems, a sim-
pler heuristic performs better (Zweben et al.
1993). This work should be followed up and
extended for different variations of heuristic-
commitment and retraction techniques.

The learning ordering from failure (LOFF)
(Sadeh, Sycara, and Xiong 1995) retraction
technique proposes an explicit interaction
between the retraction and heuristic-commit-
ment components. LOFF is a variation on
chronological retraction that overrides the
default activity-ordering heuristic: The most
recent commitment is retracted, and the activ-
ities that were without any possible value are
placed in a stack. The heuristic-commitment
technique then assigns the activities on the
stack before returning to the default activity-
ordering heuristic. The order in which activi-
ties are assigned is modified based on informa-
tion from retraction. It is not clear how LOFF

performs on its own because it is evaluated as
combined with either dynamic consistency
enforcement (see later) or dynamic consisten-
cy enforcement and IBH.

confidences to identify the commitment to
retract.

Three examples of retraction techniques dis-
cussed previously are actually combinations of
other retraction techniques: (1) bounded
chronological backtracking with restart, (2) IBH,
and (3) bounded LDS. Furthermore, as we see
later, IBH has successfully been combined with
other retraction techniques. Are there other
retraction techniques that can be combined to
improve performance over the individual tech-
niques by themselves?

Is the completeness of the retraction tech-
nique relevant? In a large problem, it is practi-
cally impossible to explore more than a small
percentage of the search space, so why should
we care that eventually our search will cover
the entire space?

Interactions
among Components

In the previous sections, we concentrated indi-
vidually on each component. The underlying
assumption in much of the analysis is that
instances of a component can be compared
with each other while the other components
are held constant. Although we believe isolated
component comparison to be possible and use-
ful, we also expect that there will be significant
interactions among the components. A partic-
ular heuristic that works well with, for exam-
ple, a tabu search retraction component might
perform poorly with LDS. Conversely, a heuris-
tic might perform well with LDS and poorly
with tabu search.

Given that the components have not previ-
ously been defined as such in the literature, it
is not to be expected that much work has
addressed interactions of scheduling compo-
nents. Nonetheless, it is possible to examine
some of the existing work for insight.

Heuristic-Commitment Techniques
and Propagators
To our knowledge, the only empirical work
that speaks to the interaction between heuris-
tic-commitment techniques and propagators is
that done by Nuijten (1994). As noted previ-
ously, it was found that the SOLVE strategy sig-
nificantly outperformed the ORR-FSS heuristics
with edge finding and chronological backtrack-
ing. Given the different backtracking tech-
niques, however, this result should not be
interpreted to indicate that the sophisticated
heuristics and propagators are not complemen-
tary. Indeed, Nuijten indicates that it might be
the restart retraction that leads to the disparate
results.

Is the
completeness

of the
retraction
technique

relevant? In a
large problem,

it is
practically

impossible to
explore more
than a small
percentage of

the search
space, so why

should we
care that

eventually our
search will

cover the
entire space?

Articles

126 AI MAGAZINE

Propagators and Retraction
A propagator finds commitments that are
implied by the search state. It is contradictory
to retract a commitment found by a propagator
unless the search state in which the commit-
ment was made no longer exists. In other
words, it is incorrect to ever select an implied
commitment as the commitment to retract
from a dead-end state.

More interesting is what to do with implied
commitments when retracting a prior commit-
ment. Existing work with propagators has sim-
ply retracted all the implied constraints (and,
indeed, all the intervening constraints whether
implied or not). However, given that propaga-
tors infer commitments based on specific crite-
ria, one could imagine caching the context of
an implied commitment. On retracting a prior
commitment, an implied commitment only
need be retracted if its context no longer exists.
This technique is the same that is used in
dynamic backtracking; however, it might be
that the decision to retract or not will be of
higher quality because there is a specific con-
text in which the commitment was made. Of
course, the question of the content and size of
the cache might well have bearing on the use-
fulness of this idea.

Sadeh et al. (1995) present dynamic consis-
tency enforcement (DCE) where, when a dead
end is detected, a subset of “dangerous” activi-
ties that are believed to cause the dead end
(because of their competition for a resource)
are identified. Commitments are retracted in
chronological order while a k-consistency
propagator (Freuder 1982) is run on the dan-
gerous activities (in the experiments reported,
k = 4). Commitment retraction continues with
newly unscheduled activities being inserted
into the dangerous group if appropriate until
such time as k-consistency is established on
each group. The intuition behind DCE is that
dead ends arise because of the lack of consis-
tency; however, it is too expensive to use the
propagator on the entire graph. Rather, consis-
tency should be enforced selectively among
those activities that are identified as the likely
causes of the dead end. DCE can be combined
with LOFF by placing the dangerous activities
on the stack to be assigned first after the prop-
agator is run. Similarly, DCE and LOFF can be fur-
ther combined with IBH by allowing a bounded
number of DCE and LOFF retractions before back-
jumping to the initial commitment and select-
ing the next best assignment. In this way, DCE,
LOFF, and IBH embody interaction both between
the commitment-retraction technique and the
heuristic-commitment technique and between
the propagator and the commitment retrac-

tion. Empirical results show significant perfor-
mance gains over chronological backtracking
as well as a form of dependency-directed back-
tracking (second-order deep learning).

Open Issues
We expect significant interactions among the
various components of a scheduling strategy.
For example, we noted previously the conjec-
ture that a particular form of heuristic commit-
ment would increase the pruning abilities of the
propagator. Similarly, DCE and LOFF depend on
such interactions. The identification of such
interactions in existing algorithms, as well as
the creation of new components that depend
on such interactions, remains to be investigated.

A further issue with respect to interactions is
the robustness of formulating an entire strate-
gy to specifically take advantage of a particular
propagator. The performance of the strategy
then depends significantly on the propagators:
If there is a class of problems where the propa-
gators do not perform well, it is unlikely that
the strategy will be of any use.

Comparing Scheduling Strategies
The comparison of individual components is
crucial for developing an understanding of
both problems and solution techniques. We
should not lose sight of the fact, however, that
it is the performance of the overall strategy
that solves (or fails to solve) the problem. We
now look at comparing scheduling strategies as
a whole. First, we comment on the difference
that has traditionally been seen between con-
structive and local search algorithms and then
turn to more empirical questions: direct com-
parison of strategies and the possibility of com-
bining them.

Constructive versus Local Search
Traditionally, constructive search and local
search algorithms have been viewed as quite
different. Local search deals with an assigned,
inconsistent state, and the heuristic-commit-
ment techniques focus on repair. In contrast,
constructive algorithms examine the unassigned
activities to make new assignments. We believe
that the key difference between constructive
and local search algorithms, however, is not
the heuristic-commitment techniques but the
retraction techniques: how the to-be-retracted
commitments are identified and how the inter-
vening commitments are handled.

Although some modification will be neces-
sary, there does not appear to be any principled
reason why heuristic-commitment techniques
typically used in constructive search cannot be

Traditionally,
constructive
search and
local search
algorithms
have been
viewed as
quite
different.

Articles

WINTER 1998 127

problem set. It is questionable what general
understanding can be gained from comparing
tuned tabu algorithms with, for example, the
SOLVE algorithm on precisely those problems
that the tabu is tuned on.

That being said, a large study of local search
techniques (Vaessens, Aarts, and Lenstra
1994), together with SOLVE (although without
recent task-interval work from Caseau and
Laburthe [1995]) and Baptiste, LePape, and
Nuijten [1995]), concludes that an instantia-
tion of tabu search is the choice on the opera-
tions research library set of benchmark prob-
lems. Although this study is likely to be
outdated, it does provide an interesting snap-
shot comparison.

Combining Strategies
Is there any advantage to be gained from com-
bining different scheduling strategies? For
example, can we run a constructive algorithm
for a bounded time (or number of backtracks)
and then switch to a local search algorithm to
attempt to improve the situation?

Davis (1994) looked at running the ORR-FSS

heuristic until a bound on the number of back-
tracks was reached. The scheduler then
switched to the MINCONFLICTS strategy. Three
intuitions formed the basis for this test. First, a
diversity is introduced to the search: Different
strategies will explore different regions. Sec-
ond, if the first strategy reaches the backtrack
bound, it is unlikely to find a solution in a rea-
sonable amount of time. Third, it has been
demonstrated that MINCONFLICTS requires a rel-
atively good starting point to be successful.
ORR-FSS is likely to find such an initial solution.
Empirical evidence, however, showed that
solutions were found more often by continuing
to use ORR-FSS than by switching to MIN-
CONFLICTS. The explanation for these results
stems from underlying similarities between the
two search style. Similar texture measurements
were used to guide both ORR-FSS and MINCON-
FLICTS. ORR-FSS uses contention and reliance to
identify the unassigned activities with the
highest demand on a highly contended-for
resource, but MINCONFLICTS uses the activities
that have the most resource conflicts with oth-
er activities. These are two measures of the
same underlying phenomenon: the competi-
tion among activities for a resource reservation.
In addition, both ORR-FSS and MINCONFLICTS

make small-granularity microcommitments:
the assignment of a start time to an activity.
Because of this similar granularity, a state from
which ORR-FSS is not able to quickly move to a
solution tends to correspond to a state from
which MINCONFLICTS cannot quickly move to a

used in repair. For example, one could imagine
formulating an alternative calculation of the
ORR-FSS heuristic that can be used on an incon-
sistent, completely assigned search state. ORR-
FSS can then guide, for example, the neighbor-
hood function in a tabu search. Similarly, the
lookahead used in GERRY could be modified and
applied to unassigned activities in a construc-
tive search.

We are not claiming that all traditionally
constructive heuristic-commitment techniques
can be used in a local search, or vice versa.
Rather, we claim that the fundamental differ-
ence in the approaches is in the retraction
technique and that viewing heuristic-commit-
ment techniques as constructive or local search
techniques is unnecessarily limiting.

Head-to-Head
Comparisons of Strategies
Little work has been done in the comparison of
scheduling strategies, and that which has been
done is far from convincing because of at least
two problems: (1) the scheduling problems
used as a basis for comparison and (2) the
extent to which algorithms have been tuned
for specific problem sets. (Both of these prob-
lems [and others] have been discussed in the
context of the empirical study of heuristics
[Hooker 1996, 1993]).

The first problem results from the fact that
different researchers have their own sets of
problems, and in the past, there was little cross-
validation of scheduling techniques. For exam-
ple, GERRY performed on a set of space shuttle
scheduling problems, but MICROBOSS had its own
set of job-shop problems. Recently, problem
benchmarks have arisen: First, the MICROBOSS

problems were informally accepted and, more
recently, the operations research library prob-
lems (Beasley 1990). (Although the operations
research library problems have existed for a
number of decades as a benchmark set in the
operations research community, they have only
recently been used in constraint-directed sched-
uling work.) If the goal of the research is to
develop a scheduler that can be applied broadly,
it is difficult to extrapolate from results on these
benchmarks. Indeed, with the exception of the
MICROBOSS problems, it is unclear that any work
has been done in examining the characteristics
of scheduling problems.

The second, and perhaps more critical, issue
is the tuning of algorithms. Although a tabu
algorithm currently displays close to the best
performance of the operations research library
benchmark problems (Vaessens, Aarts, and
Lenstra 1994), the inventors point out that
they have constructed it specifically for this

Is there any
advantage to

be gained
from

combining
different

scheduling
strategies? For
example, can

we run a
constructive

algorithm for
a bounded

time (or
number of

backtracks)
and then

switch to a
local search
algorithm to

attempt to
improve the

situation?

Articles

128 AI MAGAZINE

solution. When reaching the commitment
bound, the constructive search is making and
retracting microcommitments without much
success. In changing to local search, MINCON-
FLICTS made the same granularity of commit-
ment as ORR-FSS and was limited to accepting
new states of lower (or equal) cost. In the start-
ing state for MINCONFLICTS, there was often no
possibility of making a microcommitment that
resulted in a lower-cost state. What was neces-
sary was a macrocommitment (for example, a
set of activity reassignments) that changed a
number of the commitments in a single step.

Another attempt at combining strategies to
minimize makespan was recently done in Bap-
tiste, LePape, and Nuijten (1995). The first
strategy was a heuristic one that used edge
finding, the RESOURCE SLACK first-last heuristic,
and the shuffle procedure as a retraction tech-
nique. After a number of iterations of this strat-
egy, the best solution (smallest makespan) was
used as the initial upper bound in a branch-
and-bound strategy (using edge finding,
RESOURCE SLACK first-last, and chronological
retraction). The results showed a significant
speedup in finding the optimal solution over
simply using branch and bound to find an ini-
tial upper bound on the schedule makespan.

Open Issues
If we are trying to discover algorithms that can
be applied without tuning across a large class of
problems, the concentration on a set of bench-
mark problems that are simply hard, rather
than characteristic of classes of problems, is
misguided. There is a need to investigate and
classify scheduling problems to test and com-
pare algorithms on a representative set.

The existence of interactions among sched-
uling strategies is also an open question. It
seems reasonable that a problem (or problem
class) for which a particular strategy does poor-
ly might be amenable to a different strategy.
Conversely, when a particular strategy becomes
trapped, another strategy is not necessarily
more likely to escape. However, one can con-
ceive of situations where exactly the opposite is
true: No strategy performs well, but one strate-
gy starting from a state where another failed
results in better performance than either algo-
rithm alone. Empirical work is needed to assess
these intuitions.

Without a framework such as the one we are
proposing, it is difficult to develop an under-
standing of the performance of scheduling
algorithms. Insight into the reasons for perfor-
mance results cannot easily be developed if the
algorithms are unrelated black boxes. By pro-
viding structure to a scheduling strategy, the

framework enables the attribution of perfor-
mance results to specific components, allowing
the beginnings of an empirical understanding
of the algorithms.

Conclusions
In this article, we introduced a constraint-
directed–search framework. The framework
rests on assertion and retraction of commit-
ments as primary search operators and defines
three nontrivial components: (1) propagators,
(2) heuristic-commitment techniques, and (3)
commitment-retraction techniques.

Rather than illustrating the framework with
general constraint-directed–search research, we
concentrated on constraint-directed schedul-
ing and showed how a variety of scheduling
algorithms can be conceptualized within the
framework. The analysis of instances of sched-
uling strategies and components of the frame-
work found in the literature led to the identifi-
cation of a number of research issues. Many of
the issues raised surround the need for a firm
empirical foundation to understand both the
problems and solution techniques.

Our principal conclusion from the applica-
tion of the framework to constraint-directed
scheduling is the need for an empirical founda-
tion for scheduling research. Little is known
about how particular instances of scheduling
components compare over a wide range of
problem characteristics. There is an even small-
er body of knowledge concerning why algo-
rithms and their components perform as they
do on particular problem sets. Our framework
is offered as a structure to allow comparisons
and evaluations of the components of schedul-
ing algorithms as well as the generation of
hypotheses concerning the underlying reasons
for algorithm behavior. The conceptualization
of different scheduling strategies within our
framework allows a first (nonempirical) com-
parison and then experimentation through
systematic variation of scheduling compo-
nents. Not only will this process lead to a better
understanding of the strategies but also the cre-
ation of novel strategies from simple-minded
combination and recombination of compo-
nents; the need to create new strategies to test
hypotheses about the performance of existing
strategies; and, once a better understanding
has been achieved, more principled creation of
strategies from the understanding itself.

Acknowledgments
This research was funded in part by the Natur-
al Science and Engineering Research Council
of Canada, Numetrix Limited, the Institute for

Our principal
conclusion
from the
application
of the
framework to
constraint-
directed
scheduling is
the need for
an empirical
foundation
for scheduling
research.

Articles

WINTER 1998 129

Twelfth National Conference on Artificial Intelli-
gence, 1092–1097. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Davis, E. D. 1994. ODO: A Constraint-Based Scheduler
Founded on a Unified Problem-Solving Model. Mas-
ter’s thesis, Enterprise Integration Laboratory,
Department of Industrial Engineering, University of
Toronto.

Dechter, R. 1990. Enhancement Schemes for Con-
straint Processing: Backjumping, Learning, and Cut-
set Decomposition. Artificial Intelligence 41:273–312.

Dechter, R.; Dechter, A.; and Pearl, J. 1990. Optimiza-
tion in Constraint Networks. In Influence Diagrams,
Belief Nets, and Decision Analysis, eds. R. Oliver and J.
Smith, 411–425. Chichester, U.K.: Wiley.

Erschler, J.; Roubellat, F.; and Vernhes, J. P. 1980.
Characterizing the Set of Feasible Sequences for n
Jobs to Be Carried Out on a Single Machine. Euro-
pean Journal of Operational Research 4:189–194.

Erschler, J.; Roubellat, F.; and Vernhes, J. P. 1976.
Finding Some Essential Characteristics of the Feasi-
ble Solutions for a Scheduling Problem. Operations
Research 24:772–782.

Fox, M. S. 1990. Constraint-Guided Scheduling—A
Short History of Research at CMU. Computers in
Industry 14:79–88.

Fox, M. 1986. Observations on the Role of Con-
straints in Problem Solving. In Proceedings of the
Sixth Canadian Conference on Artificial Intelli-
gence, May, Montreal, Canada.

Fox, M. S. 1983. Constraint-Directed Search: A Case
Study of Job-Shop Scheduling. Ph.D. thesis, Intelli-
gent Systems Laboratory, The Robotics Institute,
Carnegie Mellon University.

Fox, M. S.; Sadeh, N.; and Baykan, C. 1989. Con-
strained Heuristic Search. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, 309–316. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Freuder, E. C. 1982. A Sufficient Condition for Back-
track-Free Search. Journal of the Association for Com-
puting Machinery 29(1): 24–32.

Freuder, E. C. 1978. Synthesizing Constraint Expres-
sions. Communications of the Association for Comput-
ing Machinery 21(11): 958–966.

Garey, M. R., and Johnson, D. S. 1979. Computers
and Intractability: A Guide to the Theory of NP-Com-
pleteness. New York: Freeman.

Gaschnig, J. 1979. Performance Measurement and
Analysis of Certain Search Algorithms. Technical
report, CMU-CS-79-124, Department of Computer
Science, Carnegie Mellon University.

Gent, I.; MacIntyre, E.; Prosser, P.; Smith, B.; and
Walsh, T. 1996. An Empirical Study of Dynamic Vari-
able-Ordering Heuristics for the Constraint-Satisfac-
tion Problem. In Proceedings of the Second Internation-
al Conference on Principles and Practice of Constraint
Programming (CP96), ed. E. Freuder, 179–193. New
York: Springer-Verlag.

Ginsberg, M. 1993. Dynamic Backtracking. Journal of
Artificial Intelligence Research 1:25–46.

Glover, F. 1990. Tabu Search Part II. Operations

Robotics and Intelligent Systems Research
Network, the Manufacturing Research Corpo-
ration of Ontario, and Digital Equipment of
Canada. Thanks to Scott Hadley, Ioan Popes-
cu, Rob Morenz, and Andrew Davenport for
comments on, and discussion of, earlier drafts
of this article.

References
Applegate, D., and Cook, W. 1991. A Computational
Study of the Job-Shop Scheduling Problem. ORSA
Journal on Computing 3:149–156.

Baker, A. 1994. The Hazards of Fancy Backtracking.
In Proceedings of the Twelfth National Conference
on Artificial Intelligence, 288–293. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Baker, K. 1974. Introduction to Sequencing and Schedul-
ing. New York: Wiley.

Baptiste, P.; Le Pape, C.; and Nuijten, W. 1995. Con-
straint-Based Optimization and Approximation for
Job-Shop Scheduling. Paper presented at the IJCAI-95
Workshop on Intelligent Manufacturing Systems,
22–25 August, Montreal, Canada.

Beasley, J. E. 1990. OR-Library: Distributing Test
Problems by Electronic Mail. Journal of the Opera-
tional Research Society 41(11): 1069—1072.

Burke, P., and Prosser, P. 1994. The Distributed Asyn-
chronous Scheduler. In Intelligent Scheduling, eds. M.
Zweben and M. Fox, 309—339. San Francisco: Mor-
gan Kaufmann.

Carlier, J., and Pinson, E. 1994. Adjustment of Heads
and Tails for the Job-Shop Problem. European Journal
of Operational Research 78:146–161.

Carlier, J., and Pinson, E. 1989. An Algorithm for
Solving the Job-Shop Problem. Management Science
35(2): 164–176.

Caseau, Y., and Laburthe, F. 1996. Cumulative Sched-
uling with Task Intervals. In Proceedings of the Joint
International Conference and Symposium on Logic Pro-
gramming. Cambridge, Mass.: MIT Press.

Caseau, Y., and Laburthe, F. 1995. Improving Branch
and Bound for Job-Shop Scheduling with Constraint
Propagation. In Proceedings of the Eighth Franco-
Japanese Conference CCS’95, Brest, France.

Caseau, Y., and Laburthe, F. 1994. Improved CLP
Scheduling with Task Intervals. In Proceedings of the
Eleventh International Conference on Logic Program-
ming, 369–383. Cambridge, Mass.: MIT Press.

Cheng, C., and Smith, S. F. 1997. Applying Con-
straint-Satisfaction Techniques to Job-Shop Schedul-
ing. Annals of Operations Research (Special Volume on
Scheduling: Theory and Practice) 70:327–378.

Collinot, A., and Le Pape, C. 1987. Controlling Con-
straint Propagation. In Proceedings of the Tenth
International Joint Conference on Artificial Intelli-
gence, 1032–1034. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Crawford, J. M., and Baker, A. B. 1994. Experimental
Results on the Application of Satisfiability Algo-
rithms to Scheduling Problems. In Proceedings of the

Articles

130 AI MAGAZINE

Research Society of America (ORSA) Journal on Comput-
ing 2(1):4–32.

Glover, F. 1989. Tabu Search Part I. Operations
Research Society of America (ORSA) Journal on Comput-
ing 1(3): 109–206.

Goldberg, D. 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Reading, Mass.: Addi-
son-Wesley.

Haralick, R. M., and Elliot, G. L. 1980. Increasing Tree
Search Efficiency for Constraint-Satisfaction Prob-
lems. Artificial Intelligence 14:263–314.

Harvey, W. D. 1995. Nonsystematic Backtracking
Search. Ph.D. thesis, Department of Computer Sci-
ence, Stanford University.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited
Discrepancy Search. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelli-
gence, 607–613. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Havens, W. 1997. Nogood Caching for Multiagent
Backtrack Search. Paper presented at the AAAI-97
Constraints and Agents Workshop, 26 July, Provi-
dence, Rhode Island.

Holland, J. 1975. Adaptation in Natural Systems. Ann
Arbor, Mich.: University of Michigan Press.

Hooker, J. N. 1996. Testing Heuristics: We Have It All
Wrong. Journal of Heuristics 1:33–42.

Hooker, J. N. 1993. Needed: An Empirical Science of
Algorithms. Technical report, Graduate School of
Industrial Administration, Carnegie Mellon Universi-
ty.

Hooker, J. N., and Vinay, V. 1995. Branching Rules for
Satisfiability. Journal of Automated Reasoning
15:359–383.

Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983.
Optimization by Simulated Annealing. Science
220:671–680.

Korf, R. 1996. Improved Limited Discrepancy Search.
In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Kumar, V. 1992. Algorithms for Constraint-Satisfac-
tion Problems: A Survey. AI Magazine 13(1): 32–44.

Le Pape, C. 1994a. Constraint-Based Programming
for Scheduling: An Historical Perspective. Paper pre-
sented at the Operations Research Seminar on Con-
straint-Handling Techniques, London, United King-
dom.

Le Pape, C. 1994b. Using a Constraint-Based Sched-
uling Library to Solve a Specific Scheduling Problem.
In Proceedings of the AAAI-SIGMAN Workshop on
Artificial Intelligence Approaches to Modeling and
Scheduling Manufacturing Processes, New Orleans,
Louisiana.

Le Pape, C., and Baptiste, P. 1996. Constraint-Propa-
gation Techniques for Disjunctive Scheduling: The
Preemptive Case. Paper presented at the Twelfth
European Conference on Artificial Intelligence,
11–16 August, Budapest, Hungary.

Lhomme, O. 1993. Consistency Techniques for
Numeric CSPs. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelli-

gence, 232–238. Menlo Park, Calif.: International
Joint Conference on Artificial Intelligence.

Little, J.; Murty, K.; Sweeney, D.; and Karel, C. 1963.
An Algorithm for the Traveling Salesman Problem.
Operations Research 11(6): 972–989.

Mackworth, A. K. 1977. Consistency in Networks of
Relations. Artificial Intelligence 8:99–118.

Minton, S.; Johnston, M.; Philips, A.; and Laird, P.
1992. Minimizing Conflicts: A Heuristic Repair
Method for Constraint-Satisfaction and Scheduling
Problems. Artificial Intelligence 58:161–205.

Muscettola, N. 1992. Scheduling by Iterative Parti-
tion of Bottleneck Conflicts. Technical Report, CMU-
RI-TR-92-05, The Robotics Institute, Carnegie Mellon
University.

Neiman, D.; Hildum, D.; Lesser, V.; and Sandholm, T.
1994. Exploiting Metalevel Information in a Distrib-
uted Scheduling System. In Proceedings of the
Twelfth National Conference on Artificial Intelli-
gence, 394–400. Menlo Park, Calif.: American Associ-
ation for Artificial Intelligence.

Nuijten, W. P. M. 1994. Time- and Resource-Con-
strained Scheduling: A Constraint-Satisfaction
Approach. Ph.D. thesis, Department of Mathematics
and Computing Science, Eindhoven University of
Technology.

Nuijten, W., and Aarts, E. 1996. A Computational
Study of Constraint Satisfaction for Multiple Capac-
itated Job-Shop Scheduling. European Journal of Oper-
ational Research 90: 269–284.

Nuijten, W. P. M.; Aarts, E. H. L.; van Arp, T.; Kip, D.
A. A.; and van Hee, K. M. 1993. Randomized Con-
straint Satisfaction for Job-Shop Scheduling. Paper
presented at the IJCAI’93 Workshop on Knowledge-
Based Production, Scheduling, and Control, 29
August, Chambery, France.

Prosser, P. 1993. Hybrid Algorithms for the Con-
straint-Satisfaction Problem. Computational Intelli-
gence 9(3): 268–299.

Rosenfeld, A.; Hummel, R. A.; and Zucker, S. W. 1976.
Scene Labeling by Relaxation Operations. IEEE Trans-
actions on Systems, Man, and Cybernetics 6:420–433.

Sadeh, N. 1994. Microopportunistic Scheduling. In
Intelligent Scheduling, eds. M. Zweben and M. Fox,
99–138. San Francisco: Morgan Kaufmann.

Sadeh, N. 1991. Lookahead Techniques for Microop-
portunistic Job-Shop Scheduling. Ph.D. thesis, Com-
puter Science Department, CMU-CS-91-102,
Carnegie-Mellon University.

Sadeh, N., and Fox, M. S. 1996. Variable and Value-
Ordering Heuristics for the Job-Shop–Scheduling
Constraint-Satisfaction Problem. Artificial Intelligence
Journal 86(1): 1–41.

Sadeh, N., and Fox, M. 1989. Focus of Attention in an
Activity-Based Scheduler. Paper presented at the
NASA Conference on Space Telerobotics, January,
Pasadena, California.

Sadeh, N.; Sycara, K.; and Xiong, Y. 1995. Backtrack-
ing Techniques for the Job-Shop–Scheduling Con-
straint Satisfaction. Artificial Intelligence 76:455–480.

Shapiro, L. G., and Haralick, R. M. 1981. Structural
Descriptions and Inexact Matching. IEEE Transac-

Articles

WINTER 1998 131

search, scheduling, and distributed AI. His e-mail
address is chris@cs.utoronto.ca.

Mark S. Fox is a professor of
mechanical and industrial engi-
neering with cross-appointments
in the Department of Computer
Science and the Faculty of Man-
agement Science at the University
of Toronto. He is head of the
Enterprise Integration Laboratory
and director of the Graduate Pro-

gram in Integrated Manufacturing and the holder of
the National Sciences and Engineering Research
Council Industrial Research Chair in Enterprise Inte-
gration. Prior to his return to Toronto, he was an
associate professor of computer science and robotics
and director of the Center for Integrated Manufac-
turing Systems of The Robotics Institute at Carnegie
Mellon University. He is also a cofounder and past
president of Carnegie Group Inc., a knowledge-based
software company that focuses on engineering,
manufacturing, and telecommunications applica-
tions. He received a B.Sc. in computer science from
the University of Toronto in 1975 and his Ph.D. in
computer science from Carnegie Mellon University
in 1983. Fox was elected a fellow of the American
Association for Artificial Intelligence (AAAI) in 1991,
was a AAAI councilor, and is a cofounder of the AAAI
Special Interest Group in Manufacturing. He was
also elected a joint fellow of the Canadian Institute
for Advanced Research and the Precompetitive
Advanced Research Network. He is also a member of
the Association of Computing Machinery, the Cana-
dian Society for Computational Studies of Intelli-
gence, the Institute of Electrical and Electronics
Engineering, the Institute of Industrial Engineers,
and the Society of Manufacturing Engineers. Fox’s
current research focuses on theories of enterprise
engineering (that is, information technology for
business-process engineering), constrained-directed
reasoning, a unified theory of scheduling, enterprise
modeling, and coordination theory. These theories
are being applied to the problems of concurrent
engineering, supply-chain management, and busi-
ness-process reengineering. His e-mail address is
msf@ie.utoronto.ca.

tions on Pattern Analysis and Machine Intelligence
3(11): 504–519.

Smith, B., and Grant, S. 1997. Trying Harder to Fail
First. Technical Report, 97.45, School of Computer
Science, University of Leeds.

Smith, S. F.; Ow, P.; Matthys, D.; and Potvin, J. 1989.
OPIS: An Opportunistic Factory-Scheduling System.
Paper presented at the International Symposium for
Computer Scientists, August, Beijing, China.

Smith, S. F., and Cheng, C. C. 1993. Slack-Based
Heuristics for Constraint-Satisfaction Scheduling. In
Proceedings of the Eleventh National Conference on
Artificial Intelligence, 139–144. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Stallman, R., and Sussman, G. 1977. Forward Reason-
ing and Dependency-Directed Backtracking in a Sys-
tem for Computer-Aided Circuit Analysis. Artificial
Intelligence 9:135–196.

Sycara, K.; Roth, S.; Sadeh, N.; and Fox, M. 1991. Dis-
tributed Constrained Heuristic Search. IEEE Transac-
tions on Systems, Man, and Cybernetics SMC-21(6):
1446–1461.

Tsang, E. P. K. 1993. Foundations of Constraint Satisfac-
tion. San Diego, Calif.: Academic.

Vaessens, R. J. M.; Aarts, E. H. L.; and Lenstra, J. K.
1994. Job-Shop Scheduling by Local Search. Techni-
cal Report, COSOR Memorandum 94-05, Eindhoven
University of Technology.

Van Hentenryck, P. 1989. Constraint Satisfaction in
Logic Programming. Cambridge, Mass.: MIT Press.

Waltz, D. 1975. Understanding Line Drawings of
Scenes with Shadows. In The Psychology of Computer
Vision, ed. P. Winston, 19–91. New York: McGraw-
Hill.

Zweben, M.; Daun, B.; Davis, E.; and Deale, M. 1994.
Scheduling and Rescheduling with Iterative Repair.
In Intelligent Scheduling, eds. M. Zweben and M. Fox,
241–256. San Francisco: Morgan Kaufmann.

Zweben, M.; Davis, E.; Daun, B.; and Deale, M. 1993.
Informedness versus Computational Cost of Heuris-
tics in Iterative Repair Scheduling. In Proceedings of
the Thirteenth International Joint Conference on
Artificial Intelligence, 1416–1422. Menlo Park, Calif.:
International Joint Conferences on Artificial Intelli-
gence.

J. Christopher Beck is a Ph.D.
candidate in the Department of
Computer Science, University of
Toronto, and project manager of
the Intelligent Scheduling Group,
Enterprise Integration Laboratory,
Department of Mechanical and
Industrial Engineering, University
of Toronto. He received his B.Sc.

(mathematics and computing sciences) from St.
Francis Xavier University and his M.Sc. (computer
science) from the University of Toronto. His doctoral
dissertation concerns the extension of constraint-
directed–scheduling techniques to address a variety
of real-world constraints, such as the production,
consumption, and storage of inventory. His research
interests include constraint-directed reasoning and

Articles

132 AI MAGAZINE

