
■ Many people make many confusing claims about
the aims and potential for success of work in AI.
Much of this arises from a misunderstanding of
the nature of work in the field. In this article, I
examine the field and make some observations
that I think would help alleviate some of the prob-
lems. I also argue that the field is at a major turn-
ing point, and that this will substantially change
the work done and the way it is evaluated.

AI has always been a strange field. Where
else could you find a field where people
with no technical background feel com-

pletely comfortable making claims about via-
bility and progress? We see articles in the pop-
ular press and books regularly appear telling us
that AI is impossible, although it is not clear
what the authors of these publications mean
by that claim. Other sources tell us that AI is
just around the corner or that it’s already with
us. Unlike fields such as biology or physics,
apparently you don’t need any technical
expertise in order to evaluate what’s going on
in this field. 

But such problems are not limited to the
general public. Even within AI, the researchers
themselves have sometimes misjudged the dif-
ficulty of problems and have oversold the
prospects for short-term progress based on ini-
tial results. As a result, they have set them-
selves up for failure to meet those projections.
Even more puzzling, they also downplay suc-
cesses to the point where, if a project becomes
successful, it almost defines itself out of the
field. An excellent example is the recent suc-
cess of the chess-playing program DEEP BLUE,
which beat the world chess champion in 1997.
Many AI researchers have spent some effort to
distance themselves from this success, claim-
ing that the chess program has no intelligence
in it, and hence it is not AI. I think this is sim-

ply wrong and will spend some time trying to
argue why. 

So how can we explain this strange behav-
ior? I can’t give a complete answer but can
point out some contributing causes. First,
unlike most other sciences, everyone feels that
they are familiar with the object of study in AI,
namely, human intelligence. Because we as
people are so complex, and so much of our
behavior is subconscious and automatic, we
have a hard time estimating the difficulty of
tasks that we do. Consequently, we have a hard
time accurately evaluating progress. For
instance, to us, processes such as seeing, lan-
guage understanding, and commonsense rea-
soning appear straightforward and obvious,
while tasks such as doing mathematics or chess
playing seem difficult. In contrast, it is the per-
ceptual and commonsense reasoning tasks that
are most difficult for machines to capture,
whereas more formal problems like game play-
ing are much more manageable. Thus, the gen-
eralizations that one might make by thinking
of machines as people will tend to be highly
inaccurate. For instance, one might think that
because a machine can play excellent chess, it
must be superintelligent, possibly more intelli-
gent than any human. In order to defend
against this “threat,” people feel they have to
put down work. In contrast, if machines
become capable of some truly difficult task
such as understanding natural language, peo-
ple may very well take this in stride and focus
on how “intelligent” the system appears to be
given what it says. 

This inability to fathom the true difficulties
involved is not limited to the general public.
As mentioned previously, researchers them-
selves can be equally wrong in their evalua-
tions. In the researchers’ defense, the field is
very young. By analogy to a mature science
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wide range of areas over the last few decades,
including theories of search, representation,
pattern matching and classification, and learn-
ing and a host of applications, including
robotics, natural language, and vision. In addi-
tion, we’ve certainly been governed more by
emotion than rationality. We’ve been prone to
making outrageous claims; we’ve tended to fall
under the sway of the “popular kids on the
block,” with everybody rushing off and pursu-
ing the latest popular ideas; and we’ve certain-
ly succumbed to bullies. We’ve certainly expe-
rienced a childhood. 

Equally obvious, we’re far from adulthood.
We don’t yet have a good sense of self in that
we have no consensus on a definition of the
field, and we need to learn some responsibility
and self-control in that we have no generally
agreed-upon methodologies for AI research. So
the critical question is whether we’ve moved
into adolescence yet, and if so, how far have
we developed? I would claim that we’re right
at the beginning of adolescence. We are at a
similar transition point to the first flight in avi-
ation. The field of aviation was changed dra-
matically by the development of working pro-
totypes because for the first time, experimental
work could be supported. Until then, there was
no reasonable form of evaluation because no
one could get off the ground. Consequently, it
was hard for the field to progress. After the first
flights, there was a tremendous surge of
progress and development in aviation.

Given all this, I believe that we’re at a simi-
lar transition point to the first flight because
we are now able to construct simple working
artifacts which then can be used to support
experimental work. This is a critical event in
the development of the field that I believe will
revolutionize the way the field operates and
the way it is perceived. Now, some people will
claim that we have been building working sys-
tems for decades in AI, so I need to qualify
what I mean by working. For much of AI’s brief
history, a system has been said to work if it
could run on a set of predefined or “canned”
scenarios. That’s not what I mean by working.
Rather, I say a system works if we can specify a
domain that supports a range of tasks, and the
system can handle randomly generated or
selected tasks in that domain with a reasonable
degree of success. The domain and tasks may
be precisely specified, as in game playing
where the rules completely define the possible
behaviors and outcomes, or more abstractly
defined, as in tasks to support problem solving,
or only defined by naturally occurring behav-
iors, such as in visual interpretation or spoken
language understanding. In all cases, the sys-

such as physics, we are at a stage prior to the
development of calculus and Newton’s laws.
Our youth should be evident from the fact that
many in the first generation of AI researchers
are still active. We still haven’t produced a
good, clear explanation of what the field is,
what its goals are, and what methodologies are
appropriate in research. I’m going to spend a
fair amount of my time today on some of these
thornier issues that define what the field is.

It might help to draw a parallel between the
development of AI and the stages of human
development. I should warn you, however,
that this is a highly idealized version of how
humans develop, and as you’ll see, it’s a little
optimistic. In this naive model, there are three
stages of development. First, we go through an
infancy and a childhood, where we develop
basic skills. There’s a very strong emphasis on
creative exploration, and we’re governed more
by emotion than by reason. Then we move
into the second stage, adolescence, where we
develop a sense of self as well as self-reliance
and discipline. We acquire the skills and habits
that are going to last us a lifetime. Finally, we
attain adulthood, where we apply and further
develop our skills with practice. We train
future generations and ultimately attain a very
deep understanding of life. 

So, how does this apply to scientific disci-
plines? Let’s consider how this model applies
to the development of modern aviation based
on fixed-wing aircraft. The infancy of aviation
was a long period of time, several thousand
years, where people experimented with bal-
loons and artificial wings and hopping
machines, and they jumped off cliffs and did
many other things in an attempt to fly. Adoles-
cence began with the development engines
light enough to be able to lift themselves off
the ground. These first prototypes also got the
development of aircraft off the ground!
Although the Kitty Hawk wasn’t a viable air-
plane and stayed in the air only for a few sec-
onds, it actually was the first time in fixed-
wing aviation that there was an experiment
that achieved the goal even partially. From
then on, researchers could measure incremen-
tal progress, and a burst of work shortly led to
the first viable airplanes. The field eventually
moved on to adulthood with the development
of the science of aeronautics and a deep under-
standing of flight that is used today for a wide
range of applications.

So, at what stage is AI? Well, we’ve certainly
been having a childhood, and in fact, we may
still be in it. We can see the typical properties
of childhood such as learning of basic capabil-
ities. We’ve made tremendous progress in a
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tem works if it can perform its tasks successful-
ly over a wide range of specific situations and
problems within the domain.

Depending on the area, we have different
degrees of sophistication in working systems.
In well-circumscribed domains, such as game
playing, we have high-performance working
systems. Most newsworthy lately, of course, we
now have a chess-playing program that can
beat the world champion. Even in more gener-
al domains, we can see substantial progress.
Expert systems are widely used in industry to
do things such as controlling factories and
diagnosing faults and problems in mechanical
devices, although such applications are often
not publicized as AI. We have robots crawling
on Mars, and spacecraft that will be controlled
using AI planning and agent technology. We
have systems that can roughly classify the con-
tent of news articles and e-mail messages and
conversational agents that can carry on simple
conversations with people using speech. Some
of these systems are quite primitive compared
to what we would like, but they’re all working
by the definition I gave earlier. You can give
them new scenarios and have them go
through and actually do something. With the
capability to evaluate, we can start the long
process of incremental progress that is essen-
tial for the development of the science.

Given the progress mentioned previously,
why does AI have such a bad name in certain
circles, and why do many still think AI is
impossible or that the accomplishments so far
are not really AI work? A large part of the prob-
lem is that the goals of the field are misunder-
stood, not only by the layperson but, even
more damaging, by the researchers themselves.
As a result, it can seem that AI is pursuing a
hopeless dream and that all these success sto-
ries are not really the product of AI research. It
is critical that we reexamine the goals of the
field and to attempt to define it in a way that
is inclusive—a definition that embraces the
diversity of work and does not exclude large
sections of the field. 

What Is AI? 
I looked in the introductions of five introduc-
tory textbooks to AI and collected the defini-
tions that were presented. I was surprised at
the range of different definitions and the lack
of an overall consensus. But one thing they all
had in common was that all the definitions
focused on what the artificial part was, but
intelligence was left undefined. In fact, most
definitions of AI used the word intelligence in
its definition, leaving that term completely

unexamined. I think this causes considerable
social problems in the field and so will attempt
to elaborate on the notion of intelligence and
in what sense it can be artificial.

Let me start with definitions that should not
be used to define the field of AI because they
are not broad enough and encourage exclusion
of work rather than inclusion. AI is not the sci-
ence of building artificial people. It’s not the
science of understanding human intelligence.
It’s not even the science of trying to build arti-
facts that can imitate human behavior well
enough to fool someone that the machine is
human, as proposed in the famous Turing test.
These are all fine motivations of individual
researchers, but they don’t define the field.
Specifically, they are not inclusive enough to
include the breadth of work in the field, and
they encourage fragmentation. 

These definitions also lead to behavior
where success is downplayed because it falls
short of these definitions of AI. To illustrate
this, I want to give my favorite ways of putting
down or excluding AI research. Most recently,
I’ve heard variants of all of these in response to
the success in chess playing. The first attack
can be paraphrased as, “Well, the program
only does one thing (say, play chess), and it’s
not aware of the larger context. Therefore it’s
not intelligent.” The underlying assumption
made here that intelligence means that a sys-
tem has to duplicate a person, and since peo-
ple are obviously aware of much larger context
and do many things, anything that can’t do
that is not intelligent. Note that this is an
absolute statement. Such people are not saying
that the system is not very intelligent com-
pared to human abilities; rather, they are
claiming flat out that it is not intelligent. In
fact, many go further and use this argument to
claim that current chess-playing programs
don’t have anything to do with AI research.
The second way is really a variant on this
theme and can be paraphrased as “Well, peo-
ple don’t work that way, so this is not intelli-
gent.” A quite different reason, and my all-
time favorite can be paraphrased as “Well, I
understand how that system works, so it can’t
be intelligent.” It seems that there has to be
something mystical about intelligence that
forces us to say that if we can understand the
mechanism, then it lacks intelligence. If some-
thing is just a mechanism and deterministic,
then it can’t be intelligent. These three meth-
ods of excluding work from the field are all
motivated by the definitions mentioned previ-
ously.

So, if that’s what AI is not, what is AI? Let’s
start with this mystical word intelligence and try
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gence. There’s creative intelligence, which
reflects one’s ability to be innovative and pro-
duce original ideas. There’s communicative
intelligence reflecting our communication
skills, physical intelligence reflecting our agility
and skill at sports as well as others. While theo-
ries differ on the number of types of intelli-
gence, it is clear from this literature that there is
no single notion of intelligence. Rather, the
notion is being broken down into particular
capabilities. 

Next we can try a linguistic analysis of the
term. The word intelligence is a nominalization
of the adjective intelligent. It is an interesting
fact that most properties described by adjec-
tives are relative to the thing you’re modifying.
For example, even the quite concrete adjective
large means something different when talking
about a mouse and when talking about an ele-
phant. The same thing happens with intelli-
gent. We can argue about whether my dog’s
smarter than your dog by saying things like,
“My dog knows five tricks; yours only knows
three. My dog knows 20 words of English and
can do all sorts of things, and yours doesn’t
know hardly anything!” While you may dis-
pute the facts of the case, we generally agree
on what properties we are talking about. But
you see a very different argument if a cat own-
er is arguing with a dog owner about which pet
is more intelligent. The dog person will say,
“My dog does more tricks,” and the cat owner
replies, “Well, why would you want a pet to do
tricks? My cat’s much more independent.” The
argument rapidly changes form and becomes a
debate about what intelligence is. And there’s
never a resolution to this because people are
using different criteria when applying the
notion to dogs than to cats. So, intelligence is
a relative concept that may capture different
properties depending on the thing it modifies.

So, now for some empirical work. Given
intelligence is relative, what kind of things can
be said to be intelligent? Clearly we apply the
term to people, and  earlier, I illustrated the case
of applying the term to cats and dogs. In gener-
al, I think we are comfortable using the term for
all mammals and probably other vertebrates.
For instance, we could talk about one iguana
being smarter than another iguana because of
the way it interacts with its environment. Note
that there’s no magic property of intelligence
that all these animals have; rather, the notion
may change from species to species. But we are
comfortable comparing the intelligence of ani-
mals of like species. Does the term apply
beyond the animal kingdom. I am a little
uncertain with bacteria. Initially, I thought not,
but on second thought, I imagine some micro-

to tease out a few properties of it. Then we’ll
deal with the artificial part and see if we can
come up with a better definition of the field.

Readers familiar with work in knowledge
representation or philosophy or linguistics will
realize that we are unlikely to produce a precise
definition of intelligence. They know that most
words that describe properties or categories of
things in English or any other natural lan-
guage inherently lack precise definitions. For
instance, consider trying to define the notion
of a chair. We might try to define a chair by its
physical characteristics; say, it must have some
legs and a back and a place that you sit. But
counterexamples are easy to find—there are
chairs that don’t have legs because they consist
of solid blocks. In addition, you can find chairs
that only have little backs or no back at all.
And I’m sure someone has made a chair out of
stone. There’s a sliding scale between what a
chair is and what is just a big stone. So it seems
impossible to define the notion of a chair in
terms of its physical characteristics. You might
try to define a chair in terms of functional
characteristics. We might want to define a
chair as something that we sit on. Of course,
this doesn’t exclude large rocks that we sit on.
But what about a stone that someone intends
to use as a chair but has never yet been sat on?
And if a chair seats more than one person, isn’t
it a sofa, not a chair? So does a chair stop being
a chair if we can squeeze two people into it?
Again, we have a continuum of functional def-
initions between chairs and sofas.

While there’s no precise defining criteria,
we’re all perfectly comfortable with the notion
of a chair. This is the kind of concept we deal
with all the time, concepts that are given the
term natural kinds by philosophers. Given that
we can’t define the notion of a chair precisely,
we can’t expect a precise definition of a more
complex thing such as intelligence. But we can
learn some properties of it and maybe develop
some common intuitions about intelligence
that will help us define AI.

One way to explore the notion of intelligence
is to look at work by people who have studied it
in depth, for instance, in the education litera-
ture. And what we see there is the suggestion
that there really is no single form of intelli-
gence. Rather there are many different forms of
intelligence, or different intelligences, that peo-
ple have. There’s analytical intelligence, which
consists of the skills that are measured by typi-
cal intelligence tests. While some people have
taken that as the definition of intelligence,
many feel that it captures only one particular
skill that people may have. But there are many
other aspects to intelligence or types of intelli-
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biologist could convince me that some bacteria
are more intelligent than other bacteria. Again,
though, note that the notion of intelligence as
applied to bacteria may have nothing to do
with intelligence as applied to humans.

What about machines? The advertising
industry is absolutely positive that we have
intelligent machines. We have intelligent cars,
intelligent microwaves, all sorts of different
machines have some notion of intelligence.
And while I’d never depend on the advertising
industry to define anything accurately, this
does indicate that people generally feel com-
fortable applying the notion of intelligence to
machines. Certain machines will do some-
thing better than other ones and might adapt
better and, thus, are more intelligent at the
functions they perform. While some AI
researchers and philosophers might think it
outrageous to claim that a thermostat can be
intelligent, I doubt that most other people
have difficulty with the concept. Clearly, one
thermostat can be better at sensing and con-
trolling the environment than another, and
we are comfortable at characterizing this dif-
ference as a difference in intelligence.

The only things I can think of that aren’t
able to have intelligence in some sense of the
word are inert things like rocks. I have not
been able to think of a possible scenario where
someone could convince me that one rock’s
smarter than another one.

So what can we learn from this exploration?
We have developed a notion of species-specif-
ic, or more interestingly, task-specific intelli-
gence, which is a measure of how well some
entity can perform a set of tasks. Looking at
the previous analysis, a prerequisite for some-
thing to be intelligent is that it has some way
of sensing the environment and then selecting
and performing actions. Note that everything
discussed earlier except rocks can do this. To
use a very popular term these days, these are all
things that we might call agents.

So intelligence is a term applied to agents
that characterizes the degree to which they are
successful at performing certain tasks. The
term is relative both to the agent and to the
task you’re talking about. Notice that this def-
inition doesn’t require, nor does it prohibit, a
symbolic representation of the world, or acting
like a human, or anything else. Note also that
it means something can have intelligence even
if we understand how it works. 

Given some intuition about the notion of
intelligence, we can now consider the artificial
part of AI. In what sense is the intelligence we
create in a machine artificial? Given the previ-
ous discussion, it seems that intelligence as

applied to machines to compare different
machines is real intelligence; namely, it com-
pares how well they perceive the environment
to perform certain tasks. I think that the artifi-
cial part of the phrase comes from the fact that
we try to get machines to display intelligence
that we would normally only apply to people.
So it is this switching of senses that makes it
artificial. To try an analogy, we might try to
develop cat AI by training a dog to behave like
a cat. We would then evaluate how good a mod-
el we would have for the dog using the mea-
sures we would usually use for cat intelligence.

Pulling this all together, here’s my attempt
at a one-sentence definition of AI: “AI is the
science of making machines do tasks that
humans can do or try to do.” Note that I
haven’t used the term intelligence in the defin-
ition. Instead, I’ve used a slightly less mystical
word task, which implies the requirement of
acting in response to an environment to
achieve goals. Note that this definition also is
quite inclusive—you could argue in a sense
that much of computer science and engineer-
ing could be included in this definition. For
instance, adding numbers is a task that people
do, and so you could argue that building a
machine that can add numbers up is AI. And
actually, I think that’s probably right. I think
the inventors of the first adding machines
would have seen themselves as the precomput-
er-era AI pioneers. But in current times we
understand very well how to build machines
that add numbers, so it’s not particularly an
interesting issue with regard to intelligence,
and the field focuses on the more complex
things that people do. 

Developing Good Work Habits
With a working definition of the field in hand,
the next thing to worry about is developing
good work habits, namely, our methodology
and modes of research. To start this discussion,
I want to describe some of the prime mistakes
that we have made in the past. I’ll try to do this
without insulting specific people and would
include myself as one of the offenders as well.
After pointing out the mistakes, I want to turn
it around and argue that we probably couldn’t
have done better previously, given what we
knew at the time (a principle characteristic of
the infancy of the field). But we can do better
now.

So here are some mistakes. Each of these has
a perfectly reasonable set of starting assump-
tions but a bad ending result.

The microworld mistake: In order to study
a problem, you design a highly simplified
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theories, we wouldn’t have been able to make
them run.

But things have changed now, and we have
the ability and opportunity to do better. The
opportunity is that we now have a wide range
of concepts, techniques, and tools to support
intelligent behavior. And in addition to that,
we have achieved some basic competence in
supporting real-time perception and motor
skills. Consider the power of some of the tech-
niques that we have developed: game playing,
where we have built the world chess champi-
on; scheduling, where we have fast, heuristic
scheduling algorithms that yield dramatic
speedups over traditional methods; decision
making, where we have expert systems as stan-
dard tools in many companies and products;
and financial forecasting, where we don’t hear
much about what people are doing, but Wall
Street firms seem to hire AI researchers at a
rapid rate.

On the perception side, robots with vision
are revolutionizing manufacturing. In addi-
tion we have a robot crawling over Mars, and
inexpensive robots are readily available that
are on the retail market for a few hundred dol-
lars. We have viable commercial speech-recog-
nition systems now, supporting over 30,000-
word continuous speech, with 95-percent
accuracy after training on a single speaker. This
is a very impressive performance compared to
where we were a few years ago and good
enough to support many applications.

Given that we have basic perceptual capabil-
ities and we have a wide range of higher-level
reasoning techniques, how are we to proceed?
First, we must identify the particular intelli-
gence we want to study. It doesn’t make sense
to try to capture all forms of human intelligence
simultaneously. Rather we must study more
mundane and limited tasks (or intelligences).
For example, we might want to build a house-
cleaning robot or an assistant for logistics plan-
ning or a telephone-based automatic customer-
service agent. Each one of these tasks defines a
particular capability or task that could support
long-range research efforts. For the selected
task, we then define a set of telescoping restrict-
ed domains, all the way from the long-term
dream down to some absolutely trivial. 

The next step after defining the set of tele-
scoping tasks is to define the rules of evaluation.
Ideally, the evaluation measures should apply
over the full range of tasks that are possible,
from the trivial to the most complex. It is an
added bonus if the evaluation criteria can also
be applied to people doing the same task, for
then we can compare system performance with
human performance on the identical tasks. 

microworld that captures part of the problem.
You then develop and test systems that can do
tasks in this microworld. This is all very fine as
the start of the research project. There are two
mistakes that follow. One involves generaliz-
ing from this initial work to make claims about
the original problem without ever testing
beyond the microworld. The other involves
forgetting about the original problem com-
pletely and basing all future work on the sim-
plified microworld.

The abstraction mistake: A related but dif-
ferent problem is the abstraction mistake. Here
we identify a few properties of a real task and
produce mathematical abstractions of these
properties. Again, both of those steps are per-
fectly good as initial exploration. But then we
work with the mathematical abstractions and
never come back to the issues that came up in
the original task. In some cases, new subfields
of research have arisen based solely on this lev-
el of abstraction, and work becomes farther
and farther removed from the original moti-
vating problems.

The magic bullet mistake: The third class
of mistakes covers a wide range of issues I call
the magic bullet mistakes. These all use the same
form of argument: “We just need to do this
one thing X, and then intelligence is just going
to happen. So we don’t have to worry about
intelligence per se, we’re just going to work on
X.” Again, typically X is a reasonable thing to
work on in its own right; the problem is in the
claims that are made that cannot be evaluated
until the indefinite future. Here are some clas-
sic magic bullets:

If we get the right learning algorithm,
intelligence is just going to emerge. So all
we need to do is study learning.

If we work on basic mechanisms, such as
motor control and sensing, intelligence
will just emerge.

If we encode enough commonsense facts
about the world, intelligence is just going
to emerge. 

As I said before, all these are reasonable
things to be doing, in context, but they’re not
going to suddenly solve the problem of artificial
intelligence. And they shouldn’t be sold as that.

From a distance, its easy to laugh at every-
one who has made these mistakes, which
includes most researchers in the field. But in
fact, in our defense, remember we were in our
childhood. We were allowed to make mistakes
then; that’s part of the evolution of the sci-
ence. We started off with no workable theories
and learned a lot. And given the power of com-
puters until recently, even if we had had great
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Now we are ready to develop a model and
system for the very simplest task domain.
Since the initial task should be highly simpli-
fied, we should be able to accomplish this in a
relatively short time period and establish some
baseline of feasibility for this line of research.
We then evaluate the model on the simple task
domain. Once we have reasonable perfor-
mance, we then evaluate the model on the task
domain the next level of complexity up. 

By focusing on a simple task first, we can
ground the research and evaluate capabilities
early on. Evaluating on the next level of com-
plexity up would have a nice sobering effect on
the claims that we would then make about
how general our systems are. It would also
identify the next set of critical problems for
the research project. This approach still allows
the use of microworlds, abstraction, or magic
bullets for preliminary research, but it forces us
to continually ground the research back to the
task as we go along.

To reiterate the strategy, we study intelli-
gence with respect to a task, and we simply
turn real problems into manageable ones by
restricting the task rather than the abilities of
the machine.

An Example: 
Conversational Agents

Let me give a concrete example of this method
for research based on our own work at the Uni-
versity of Rochester on conversational agents.
We’ll start with the dream and then refine that
down into more and more simple domains.
Then we’ll establish the rules of evaluation
that we’re going to use throughout this, and
consider what initial steps we’ve taken. 

The dream is a fully conversational, multi-
media system that converses with a human
level of competence on arbitrary topics, essen-
tially a machine you could just sit down and
talk to. Examples in the popular media would
include HAL in 2001: A Space Odyssey and the
computer in the Star Trek series. Obviously,
we’re not going to achieve this level of compe-
tence in the near future. But we can start refin-
ing it down, as shown in figure 1. We can, for
instance, consider conversational agents that
collaborate with people to solve concrete prob-
lem-solving tasks. This includes most forms of
interaction that we would probably want a
computer to engage in: diagnosis, design,
planning, scheduling, information retrieval,
command and control, and a wide range of
other task-directed activities. This restricted
task is still too general for immediate solution,
so we refine it again to concentrate only on

transportation planning and scheduling tasks.
Once we get down to a fairly concrete level,

we can start parameterizing domains along
other dimensions. So, with planning and
scheduling, for instance, we can parameterize
the size of solutions required, the number of
actions in a solution; the number of different
action types that you need to reason about and
their complexity, the complexity of temporal
interactions in the domain, reasoning about
quantities, static worlds versus dynamic worlds
that change as you go along, and so on. There
are many different parameters, and it is impor-
tant to define the different dimensions of the
domain so that we have a rich understanding
of the problems that are there and those we’re
abstracting away as we simplify the tasks. 

Note that this is a very different way of
breaking up the problem than one might take
in defining a conversational agent. We might,
for instance, have tried to restrict tasks by lim-
iting the vocabulary, the range of language
that can be understood, the range of conversa-
tional acts handled, or the level of complexity
we can handle in the discourse. The problem
with simplifying in this way is that it does not
simplify the problem for the person who must
use the system. Rather it complicates things as
they must learn a set of rules that restrict their
natural behavior. So the computer’s task
becomes simpler, but the human’s task
becomes more complicated. Our approach is
not to limit the person except by having them
focus on solving the task. That way, the com-
plexity of the task they have to solve naturally
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Figure 1. Telescoping Tasks by Restricting Topics for Conversational Agents.
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videotapes and example sessions for papers,
and so on. In the past, this would have been
enough to warrant claiming success. But given
that we had achieved some basic competence,
new questions arose that we couldn’t ask
before: How well does it work? What factors
contribute to its success? We couldn’t ask such
questions before because we didn’t have a con-
versational system that worked even badly
(that is, drawing a metaphor back to flight,
we’d never have gotten a conversational sys-
tem off the ground). 

To better answer how well it does work, we
performed an experiment. We recruited some
undergraduates, showed them the two- and
one-half–minute videotape, and let them prac-
tice on the speech recognizer and then gave
them cue cards with the problems to solve on
it. We measured how long each session took,
whether it ended in a working plan, and we
measured the quality of the solution by con-
sidering how long the plan would take to exe-
cute. Seventy-three out of 80 sessions resulted
in successful plans, which we considered to be
an excellent success rate. However, it’s also
important to realize that TRAINS didn’t really
improve on a person doing the same task. In
fact, what it really shows is that people can
solve simple tasks under duress and eventually
coach a reluctant system to get through and
get to the solution. So we hadn’t succeeded
based on our prime evaluation criteria of
improving human performance. But we did
establish the basic feasibility of the approach.

Having a complete system running also
allowed us to do other experiments that can
lead to incremental improvements as well as
explore other interesting issues. For example,
we were interested in how well the robust lan-
guage processing worked. To explore this, we
compared using the system with speech input,
which had about a 30-percent error rate in this
experiment and with keyboard input, which
had about a 3- to 4-percent error rate due to
typos. Interestingly enough, even with the
high error rate, the speech-driven sessions took
only 66 percent of the time of the keyboard
while producing the same quality of plans.
And when given the choice, 12 out of 16 peo-
ple chose speech to interact with the system
rather than with keyboard. I’m not saying that
speech is better than the keyboard in general
for human-computer interaction. We would
need to do much more elaborate experiments
with alternative interfaces to establish some-
thing like that. But it is true that in the TRAINS

task, robustness of the language processing
allowed speech to be a viable, in fact, a pre-
ferred mode, of interaction.

limits the complexity of the interactions that
they typically attempt.

Since the goal is a conversational agent that
collaborates with the user on planning and
scheduling tasks, a natural evaluation criterion
is how well the system enhances human per-
formance on the task. This criterion can be
applied in any of the different tasks, whatever
level of complexity, and it provides a way to
determine whether we’re successful or not. In
addition, we can use it to compare with
human performance on the same tasks and,
say, compare a person working with the system
versus working alone, or compare it to two
people working together.  

In addition, because this project is studying
conversational agents, an additional restric-
tion is introduced that spoken language is a
primary mode of communication. Note that
this is an assumption not directly motivated
by the evaluation criteria. If the goal were sole-
ly to improve human performance in planning
and scheduling tasks, we might need to evalu-
ate whether language is the best way to do it.
By stipulating this restriction at the start, how-
ever, we focus the research. Additionally, we
require that no restrictions be placed on what
the user may say and that the system should
function as well with novices or experts. As a
consequence, we allow only minimal training,
a few minutes at most, before a person is able
to use the system.

Given this, in 1995 we explored the funda-
mental feasibility of this line of work. To do
that, we defined the simplest domain we could
come up with that still required extended
interaction and constructed a system to handle
it, TRAINS-95. The TRAINS-95 domain required a
person to interact with the system to construct
efficient routes for trains given a route map
(see an example in figure 2). To complicate
matters, in each session, problems such as bad
weather were randomly generated in the sce-
nario that only the system initially knew
about. In addition, trains would be delayed if
they attempted to move along the same track
segments at the same time. Much of the effort
in TRAINS-95 was aimed at developing tech-
niques for the robust understanding of lan-
guage in context in the face of speech-recogni-
tion errors, and we could get away with quite
simple dialogue models. Readers interested in
seeing a video of the session can obtain a copy
from the web site at www.cs.rochester.edu/
research/trains.

We had a few friends try TRAINS and found
that they often could successfully solve prob-
lems using the system. In other words, it
seemed to work, and we could generate good
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With basic feasibility established on the
base-level task, we were ready to move on to
the next stage of the research. Our goal was to
define a task that was still simple but one
where we hoped that we could actually show
that a person with the system can improve on
human performance; that is, it has got just
enough complexity. The result was a new task
of moving cargo and personnel around from
different locations under time and cost con-
straints, with multiple modes of transporta-
tion. There’s increased opportunity for com-

plex interactions because you can move
things, drop them off somewhere, and have
something else pick them up. Options can be
compared based on cost and time. In addition,
the world might change during planning, so
we might have a plan almost constructed and
then new information comes in that changes
the situation. The need to handle a more com-
plex domain forced us to handle much richer
language phenomena that arose because of the
more complex task.

We have just completed the first experimen-
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Questions
There are a few questions that I believe that
people will ask about what I’ve been saying.

Isn’t Building Systems an 
Awful Lot of Work?
The answer is, yes, but so is building bridges.
AI won’t develop without systems, just as civil
engineering would not exist unless someone
built bridges. This doesn’t mean that every-
body has to build systems. In civil engineering,
since bridge construction is well understood,
the field can progress using controlled experi-
mentation and theoretical analysis. But it’s still
ultimately grounded back to actual bridge con-
struction. And that’s where everything ulti-
mately gets tested.

Are You Saying That the Last 30 Years
of Effort Have Been Wasted in AI?
Absolutely not! In fact, if you look at the TRAINS

and TRIPS systems, they build on a long history

tal version of TRIPS (the Rochester interactive
planning system). A typical problem in TRIPS

involves an island, and the task is to evacuate
all the people off the island using some avail-
able vehicles before a storm hits. By varying
the number of people, the types of transports
available, and the time before the storm hits,
we can generate a wide range of problems of
varying difficulty. Figure 3 shows a screen shot
from a session in which a plan is partially
developed. Currently, TRIPS runs reliably only
on scripted sessions where we have planned in
advance the interactions that will occur. How-
ever, everything the system does is real. After
evaluating TRIPS, we will then continue this
process, improving the system, generalizing
the tasks and domains, and so on. Along the
way, new research problems arise that we
would not have thought of otherwise, and the
evolving system serves as an excellent test bed
for supporting a wide range of research in col-
laborative planning, interactive dialogue, and
spoken-language understanding.
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Figure 3. Developing a Plan with the TRIPS System.



of AI research, ranging from the seventies,
with ideas in chart parsing, STRIPS-style plan-
ning, hierarchical planning, and constraint
satisfaction; the eighties, with unification-
based grammars, incremental semantic inter-
pretation, hierarchical discourse models, tem-
poral reasoning, and plan-recognition
algorithms; and the nineties, with statistical
language models, robust parsing, and tempo-
rally based planning. And there are many oth-
ers. If this work hadn’t been done, we would
not have the system today. So this really is an
incremental development rather than a radical
change from what we’ve done so far. 

Well, System Building Is Applied
Work. What I’m Interested in Is the
Science, the Theory of AI.
System building is the experimental founda-
tion on which the science of AI is based. If we
don’t have the experimentation, we don’t
have the science. 

Well, How Can Work Progress, 
Then, Except for the Few 
Well-Funded Institutions? 
Not everybody has to build full systems. But I
would point out that if you work in a subarea
of AI where nobody’s building systems to test
theories that are being developed, you might
consider what your foundations are. But once
you have the grounding in some experimental
systems, then each subarea can define other
relevant methods of evaluation. 

And, for example, in the natural language
field, there are many different methods now
that allow people to do experimentation with-
out building complete systems. There are large,
shared databases of annotated corpora, annotat-
ed with features that have a communitywide
agreement about what is crucial for the lan-
guage-understanding task. There’s agreement on
some subproblems that are crucial to the entire
process, such as extracting out sentential struc-
ture. And while it would be nice to see more,
there is a beginning of sharing of system compo-
nents, such as speech recognizers, parsers, and
other components, where people can actually
build systems using other people’s work. For
instance, in the TRAINS and TRIPS systems, the
speech-recognition technology was built at
Carnegie Mellon. If we’d had to build that our-
selves, we would never have gotten it done.

Parting Thoughts
AI is a young field and faces many complexi-
ties because of the intimate relationship
between the object of study (namely, intelli-

gent behavior) and people’s intuitions about
their own intelligence. Despite a growing
record of success in the field, many discount
this progress by defining the successful work
out of the field. Much of this is a result of the
lack of an inclusive definition of the field. I
have proposed a new definition and have
argued that we are at a critical point in the
development of the field because we can now
construct simple prototype working systems.
This new capability opens the door to new
methodologies for evaluating work in the field,
which I predict will lead to an accelerating rate
of progress and development.
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